
Abstract Interpretation in Weak Powerdomains

Robert Muller*

Aiken Computation Lab

Harvard University

Cambridge, MA, 02138, USA

muller~das. harvard.edu

Abstract

We introduce a class of semantic domains, weak power-

riornains, that are intended to serve as value spaces for ab-
stract interpretations in which safety is a concern. We ap

ply them to the analysis of PCF programs. In the classi-
cal abstract interpret ation approach, abstract domains are

constructed explicitly and the abstract semantics is then re-
lated to the concrete semantics. In the approach presented
here, abstract domains are derived directly from concrete

domains. The conditions for deriving the domains are in-
tended to be as general as possible while still guaranteeing

that the derived domain has sufficient structure so that it

can be used as a basis for computing correct information

about the concrete semantics. We prove three main theo-
rems, the last of which ensures the correctness of abstract

interpretation of PCF programs given safe interpretations of
the constants. This generalizes earlier results obtained for

the special case of strictness analysis.

1 Introduction

Abstract interpretation provides a formal method for en-
suring the correctness of computations of properties of pro-
grams. The idea was first proposed by the Cousots [CC77]

and later applied to the problem of strictness analysis by

Mycroft [Myc81]. Since then there have been many impor-

tant developments. In [BHA86, Abr90], Mycroft’s setup was

extended to higher-order functions in the simply typed frame

and in [Abr86, Hug88] and [AJ91] the method was extended

to account for data structures and polymorphic func-

tions. Recent work [KM89, Jen91] has studied the connec-
tion between the abstract interpretation and type inference

approaches to strictness analysis.
The purpose of this paper is to propose a new class of do-

mains, what we call weak powerdornains, as value spaces for

*Work supported in part by the US Department of Navy, Space

and Naval Warfare Systems Command and Defense Advance Research

Projects agency under contract NOO039-8S-(!2).0163

tResearch performed in part at the Laboratory for Computer %i-

ence of the Massachusetts Institute of Technology. Funding for the

Laboratory M provided in part by the Advanced Research Projects

Agency of the Department of Defense under the Office of Naval Re-

search contract NOOO 14-89-J- 1988,

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

Yuli Zhout

Lab for Computer Science

Massachusetts Institute of Technology

Cambridge, MA, 02139, USA

zhou@abp.lcs.mit .edu

certain types of abstract analysis. In the claasical approach,

abstract domains are constructed explicitly and the abstract

semantics is then related to the concrete semantics through,

for example, collecting interpretations [Myc81, BHA86] or
logical relations [Abr90, HS91]. In the approach taken here,

abstract semantic domains are derived directly from con-

crete domains. The conditions for deriving the domains

are intended to be as general as possible while still guar-
anteeing that the derived domains have sufficient structure
so that they can be used as a basis for computing correct
information about the concrete semantics. The main advan-

tages of the approach are its simplicity and generality. It is
limited, however, to the analysis of properties of programs

representable by ideals.

Let D be a cpo and let Z(D) denote the set of all ide-

als of D. A weak powerdomain A of D is any subset of

Z(D) that includes D aa its top element and is closed un-

der intersection and least upper bounds of directed sets. (A
is ordered by subset inclusion.) Examples of weak power-

domains range from the one-point domain containing only

D to the complete Hoare pourerdomain (Z(D), ~). Other
familiar examples include the two-point strictness analy-
sis domain [Myc81], Wadler’s finite domain of lists [Wad86,

Hug88] and most instancea of Shamir-Wadge edended do-
mains [SW77]. (Other examples will be presented in the

sections that follow.) The key point is that the structure of

A is sufficient to guarantee that recursive functions over D

can be abstracted over A in such a way that the abstract
functions are continuous and yield correct information about

their concrete counterparts over D.

Like [CC77, Myc81, MN83, Nie84] and [BHA86] we char-

acterize safety from a domain theoretic rather than a re-

lational (cf., [MJ86, Nie89, Abr90, HS91]) point of view.
Unlike earlier domain theoretic frameworks. however. our

approach does not make use of collecting interpretations or
concretization maps. Rather, the roles of the collecting inter-

pretation and the abstract domain are essentially collapsed
into one — the abstract domain itself has the (minimal) es-

sential structure inherent in the Hoare powerdomain. As we
show in theorem 1. when the concrete domain D is an al~e-

braic cpo, any weak powerdomain A derived from D for;s

an algebraic lattice. Moreover, since it inherits the infor-

mat ion ordering of D, abstract computations over A can

approximate concrete computations over D.
An important property of the domains considered here

is that their essential closure conditions are preserved by
the standard domain constructions +, x and ~. In this

paper we apply them to the analysis of PCF [P1077]. We

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA

01992 ACM O-89791-483-X/92/0006/01 19...$1.50

119

begin with a standard semantics in which terms of type a are

interpreted in the type frame {Do}, a collection of algebraic
cpos. We then derive a weak powerdomain A, from the

base domain D, for each base type L. Next we construct an

abstract frame {A~}, taking A~+~ = [Aa + AT] (i.e., the

continuous functions from Ar to AT). Although AO-.T is not

a weak powerdomain (because its components are functions
rather than ideals) we show in theorem 2 that it nevertheless

satisfies the required closure conditions.

In order to establish the safety of the analysis, each el-

ement of Da must be abstracted to an element of Aa. The
safety relation is defined inductively on types. For base type
~, a < At is safe for d & D, if d c a. For higher types u + r,

i ~ A~-.: is safe for ~ c D~-..~ if for all a G A. safe for

d c Da, ~(a) c A. is safe for j(d) & D.. We show in theo-
rem 3 that any non-standard semantics that maps constants
to safe values is safe for the standard semantics. This gener-

alizes the result established for the special case of strictness
analysis in [BHA86] and [Abr90].

Finally, we define some criteria for comparing the relative
information content of abstract analyses that differ in their

interpretations of constants. The most informative is that

which maps constants to the least abstract values safe for

them. An element din the base domain D, is mapped to the

least ideal d# G A, containing d. An element ~ c Da-. is

mapped to the least monotonic function $# E A~+~ safe for
~. Unfortunately, leastness is not preserved under function

composition thus there is an inevitable loss of information

from the ideal abstract semantics of PCF.

The remainder of this paper is organized as follows. In
Section 2 we define the standard semantics of PCF. In sec-

tion 3 we define the structure of abstract domains and con-
sider their essential properties. In Section 4 we consider

abstract mappings and safety and in section 5 we present
the abstract semantics. Section 7 considers some extensions

to the basis setup. Section 7 compares the present work with
related work and suggests some avenues of future research.

2 Standard Semantics of PCF

In this section we define the language PCF and its stan-
dard semantics. The present ation follows that in [P1077].

We begin with some preliminary definitions and elementary
properties. We assume some familiarity with elementary

domain theory.

Preliminaries

Let D = (U, L) be a partially ordered set. D is a complete

partial order (cpo) if it has a least element l-, and every
directed X G D has a least upper bound U X E D. An

element d E D is compact if for all directed X G D, d ~

U X + % c X such that d Q z. Let compact(D) be the
set of compact elements of D. D is an algebraic cpo if for
all d c D, d = U X for some directed set X such that
X & compac~D). A function f : D + D’ is continuous if
for all directed X ~ D, f(u~ X) = u~,{f(z) I x E X}.

If D and D’ are cpos then [D + D’], the set of continuous

functions from D to D’, is also a cpo under the pointwise

ordering, ~ ~ g if Vx, j(z) ~ g(z). Moreover, if D and D’
are algebraic then so is [D + D’]. (See, for example [Sch86],

for more details.)

We now define the abstract syntax of PCF type expres-
sions.

u ..—..— tll~+~

where, L, (i > O) denotes a collection of base t~pes with

LO = BooZ. We will use the metavariables a and r to range
over type expressions.

Definition 1 Let the base type L, denote an algebraic cpo
D,, with DB..1 = {tt, fl, 1} (L G tt, 1 L m. A twe fm~e

for PCF is a set of algebraic cpos {Da}, one for each type,
such that Da+. = [Da --+ D.].

The language PCF will include a set Var = {Z~l, ZG2, . . .
} of variables each of fixed type and a set Corwt = {c~,, C~2,
. . . } of constants each of fixed type. The set Const includes

the boolean symbols ttand fl as well as the conditional ija :

Bool - u + u - u, one for each type and the fixpoint
combinator Ya : (u + u) -+ u, one for each type. Here

and in the treatment of expressions we will usually omit the
type subscripts to avoid clutter. PCF is then given by the
abstract syntax

e ::=clzleel Xz. e

We use the symbol Exp to denote the set of expressions and

the symbols e, e’, . . . as metavariables ranging over Exp.

The semantics will be defined relative to an interpreta-

tion of the constants as determined by the valuation SC :

Const + U{Da}. The interpretation of the booleans is

given by

Sc[tt] = tt

SCM = H

The interpretations of the conditional and fixpoint constants

is given by

{

-1_ if b= J_,

&[ifl b d d’ = d if b=tt,- --

sc[Y](f) = u f“(l)

The set of type respecting environments map variables

of type u to D,7.

We use the notation, p[d/~] to denote the environment p

perturbed at x.

The empty environment maps any variable oft ype u to L.

The standard semantics is then given by the valuation
S : lkp + EnvS + U{ Da} which is defined in the usual
way by induction on the structure of e.

S[z]p = p[z]
S[e e’]p = S[e]p(S[e’]p)

S[k.e]p = Ad. S[e](p[d/x])

It is well known that the semantics is well-defined in the

sense that any expression e E Exp is assigned a meaning in
the appropriate domain Da.

120

3 Abstract Domains

Given a type frame {DO} for PCF, we wish to construct an

abstract frame {Ae } over which an abstract semantics of
PCF can be defined. Naturally, each abstract domain Aa

should represent a class of properties on the corresponding

concrete domain Da. The abstract domains we shall con-
struct are all algebraic lattices that are (at base types), or
are isomorphic to (at function types), subsets of the Hoare

powerdomain of the corresponding concrete cpo’s. The con-
struction will be carried out inductively, first for the base

types (weak powerdomains) and then for the function types.

We recall from domain theory some basic concepts about

lattices. A complete lattice A is a cpo in which U X and
llX exist for every subset X ~ A. An algebraic lattice is a

complete lattice which is algebraic as a cpo. A subset E ~ A
is called a sub-basis of A if z = U{e I e c E and e ~ z} V

z E A. E is a basis of A if it is moreover closed under the lub
of all its finite subsets, i.e., V E’ ~ E, E’ finite, U E’ G E.
Let compact(A) be the set of compact elements of A, then
it is closed under the lub of ail its finite subsets. Thus A is

algebraic if compact(A) is a basis of A.

3.1 Weak Powerdomains

Given a concrete domain D, thekind of properties we are

interested in are represented extension ally by ideals of D.

Definition 2 An ideal of D is a subset I ~ D s.t.

An abstract domain for D will be a collection of ideals
of D, thus a subset of the Hoare (lower) powerdomain of
D. Clearly, not every subset can be an abstract domain

as it may lack the structure needed for abstract semantics.
On the other hand, the full Hoare domain has many ideals

which are of no conceivable int crest. We therefore int reduce

the following:

Definition 3 Let D be a cpo. A weak powerdomain (wpd)

of D is (A, ~) where A is any collection of ideals of D sat-
isfying the following closure conditions:

(i) D c A (we shall call D the top element of A and denote
it by TA),

(iii) For all directed X Q A, U X 6 A.

Example 1 Let int be the domain of integers. The familiar

abstract domain for the rule of signs

S = {{l}, neg, zero, pos, int]

is a wpd of int, where

neg= {1,...,–2,–1}

zero = {1,0}

pos= {1,1,2,,..}.

Example 2 Let D be any domain. The two point abstract
domain {O, 1} for strictness analysis is a wpd of D, where
O={l}andl=D.

As it will be shown, closure conditions (i) and (ii) make A
a complete lattice, and condition (iii) in addition guarantees

A to be algebraic. In fact, A has a much nicer structure than
what is implied here, which will be revealed as we proceed

to prove t~ foregoing claims. We first define an abstraction
mapping : D + A that relates concrete and abstract

elements:

Definition 4 d# = n{a E A I d c a}.

Intuitively, # maps d ~ D to the least element in A that

contains d. This fact gives us the following obvious lemma:

Lemma ldEa~d#~a.

Now the main theorem:

Theorem 1 Let A be a weak powerdomain of an algebraic
cpo. Then A is an algebraic lattice.

Proof We first show that A is a complete lattice and then
show that it is also algebraic. Let X ~ A, since A is closed
under intersection, llX = nX. UX = n{zlVy c X y ~ x}
is just the ordinary definition of lub in A. Therefore A is a

complete lattice. To show that A is algebraic we require the
following lemmas.

Lemma 2 For all d 6 D, d# G A is compact.

Proof Let d# ~ U X, where X ~ A is directed. By lemma

1, d c UX. Since UX = UX, there is some z c X, s.t.

d c Z. It then follows that d# ~ x, i.e., d# is compact. ❑

Remark 1 Note that d# is always compact in A, even if d
is not compact in D. Therefore the wpd A of an algebraic
cpo D is generally not w-algebraic as compact(A) can have

uncountably many elements.

Lemma 3 B = {d# I d ~ D} is a sub-basis of A.

Proof The statement in the lemma means that for each

element z c A,

which according to lemma 1 is equivalent to

Let x’ = U{d# I d c x}. Since d# ~ x if d E Z, we have

z’ ~ z. On the other hand, every element d E z is contained

in d#, thus in z’, therefore z C z’. ❑—

By the definition of a basis, the equation

B*={ UEIE~Band E infinite}

defines a basis of A, where all element of B* are compact.

Lemma 4 compact(A) = B*.

Proof Clearly B* ~ compact(A), we now show that the
reverse inclusion also holds. Let z be any compact element
of A. According to lemma 3,

~=U{d#ld#Cx}= — U{~l~~zandu6B*}.

Since z is compact, there is some u ~ 1?” s.t. z ~ u. More-
over since u c m, we have z = u E B*. ❑

Lemmas 3 and 4 together prove theorem 1. c1

121

3.2 Abstract Frames

In order to define an abstract semantics of PCF, we need to

set up a collection of abstract domains {Am} for each type
frame {Da}. Such a collection of abstract domains will be

called an abstract frame.

Definition 5 Let {Da} be a type frame for PCF, where

the base domains are DB~~~, D,,, Given wpd’s ABOO(,
A ,1, we define an abstract frame to be {At}, where

A ~_.r = [Aa + Ar], the set of all continuous functions from

Aa to A,.

Example 3 For the purpose of strictness analysis, let us ab-
stract each base domain, such as int, into two points {O, 1}

wit h the usual meaning. This induces an abstract frame
according to our definition. As an example, the abstract
domain Aint+int = [Aint - ‘int] haa three functions (rep-

resented by their graphs): {O = O, 1 ~ O}, {O + O, 1 + 1}

and {O w 1, 1 * 1}, with the obvious ordering among them.

In view of theorem 1, the basic results of domain theory
gives us the following

Theorem 2 Every abstract domain Am is an algebraic lat-

tice.

The induced structure on Aa+~ is defined by the order-
ing

~ ~ g if Vz E Aa, f(z) ~ g(x),

and the operations

In case F is directed, we also have

Note that at a function type, Aa-.., is not a wpd of

D~-, as elements of the former are not ideals of the lat-
ter, although it has exactly the structure required of wpd’s

in view of the equations above. In fact, we can define the

following wpd’s inductively

.
and show that A~-T is isomorphic to A~-. ~.

4 Abstraction and Its Safety

Given a type frame {D. } and an abstract frame {Aa }, we

need a way of relating elements in Ac to elements in Do as

the basis for relating an abstract semantics to the concrete
semantics. Usually, the desired relationship is one of safety,
defined inductively on the type as follows:

Definition 6 (i) a = A,, is safe for d c D,, if d c a.

Example 4 Consider + E int -+ int -+ int. swwe we
have a safe abstract function ~ for +, it means that if

s~y = Z, then m c z and n E y s m+n E z. Thus safety
corresponds to our intuitive notion of the correctness of ab-

straction. In the context of strictness analysis, the equation

0~1 = O means 1 + m = 1 for all m 6 int, i.e., + is strict

in its first argument.

The following technical lemmas will be required in Sec-

tion 5.

Lemma 5 If a is safe for d and a’ is safe for d’ then a u a’

is safe for d and d’.

We now show that safety is an order-preserving property

on cpo’s, i.e.,

Lemma 6 Let E ~ Da, X ~ Aa be directed. If for every

d E E there is some z E X s.t. z is safe for d, then UX is

safe for UE.

Proof By induction on the type.

u = L,. If z is safe for d, then d c Z. Therefore for every

d G E there is some z E X s.t. d E x. It then follows
that E~UX=UX. Since UXis an ideal, UEEUX,

therefore U X is safe for U E.

u = r -+ /. For clarity, let us substitute F for X and H for

E. Let z c Ar and d G D. be s.t. z is safe for d. Consider
the equations

(U F)(Z) = U{f(x) I f e F}

(u H)(d) = U{h(d) [h c H}.

For every h(d) c {h(d) I h E H}, due to the existence of

an abstract function ~ c F safe for h, there is an element
~(z) c {~(z) I ~ E F} safe for h(d). Thus by the induction

hypothesis u{~(z) I ~ c F} is safe for U{h(d) I h ~ H}. By

definition, this means U F is safe for U H. ❑

Since Am is a complete lattice, every concrete d E Do
has the safe abstraction TAr. However, one is clearly more

interested in fl{z I z E Ao is safe for d}. The latter is the

least element in Ao that is safe for d. Note that at base
types This element is exactly dx, therefore we extend the
definition of # to all types:

Definition 7 Let d E Da. Define

d# =n{zlz EA and z issafe for d].

Remark 2 A more constructive way of extending # to func-
tion types is to define for h E D~+~,

hx(~) = U{h(d) I z is safe for d}.

We can actually show that the two definition gives the same

abstract function due to the algebraicity of A. In case A

is not algebraic, the latter definition may give a monotonic
but discontinuous function strictly below that given by the
former in terms of the ordering ~.

122

5 Abstract Semantics

We now define the abstract interrmetation A which mam. 1

an expression e c Exp to a value in {Am}, where the frame

{Am} is derived from the {Dm} according to the conditions

prescribed in Section 3. Our principal aim is to prove that

the abstract interpretation is safe whenever the constants

are interpreted safely and the abstract environment maps

variables to safe values. We will then define a method for
comparing different abstract semantics and characterize a
least (i.e., most informative) abstract semantics.

5.1 Semantics

We first require an interpretation of the constants A. :

Const ~ U{AO}. This must include interpretations of all of
the constants of PCF including { tt,fl,if, Y}. In general we
will only be interested in safe interpretations of constants.

Definition 8 An abstract interpretation of constants AC is
safe for a standard interpretation ~. if for all constants c.

Ac[c] is safe for S. [c]. -

Example 5 Let {Aa } be an abstract frame derived from

{Da}. Define .4=* by

{

LAO if b = ~A~OOl,

A.# [ifIlb a a’ = a,
if b= {tt}~,

a if b= {~~,

aUa’ otherwise.

Ac~[Y](/t) = u h“(l)

n~O

Proposition 1 dc~ is safe for SC.

Proof The first two cases are obvious and the third follows

immediately from lemma 5. That

Ac.[Y](h) = u h“(l)

n>O

is safe for

sc[Y](f) = u $“(1),

n>O

follows from lemma 6 and the fact that -LAm is safe for 1~ .
b

Abstract environments are defined analogously to the
definition of concrete environments given in Section 2.

Definition 9 An abstract environment q is safe for a con-
crete environment p if Dom(p) ~ Dom(q) and Vx c Dom(p),
q(z) is safe for p(z).

Given an interpretation of constants A. and an environ-

ment q, the abstract semantics is then given by the valuation

A : Exp + Enud + U{Am}. Its definition is schematically
identical to the definition of S given in Section 2.

By theorem 2 the above semantics is well-defined in the
sense that every term of type u is assigned a meaning in

U{AO}. It remains to establish the connection between the
abstract semantics and the standard semantics defined in

Section 2. The essential connection is given in the following
theorem.

Theorem 3 Let AC be any safe interpretation for S=. Then
for all e, p and q safe for p, A[e]rj is safe for S[e]p.

Proof By induction on e. ❑

Example 6 Let us take the abstract frame of example 3.
Consider the function

APPly(int_.int) _.int+int = Afx.fx.

Below is the table for the graph of Apply in the abstract

‘omtin ‘fint-int)+int-. int:

This gives the desired strictness information: Apply is strict
in the first argument, but not in the second (actually, it is

strict in the second argument when its first argument is a
strict function).

5.2 Relating Abstract Interpretations

We would now like to compare two abstract semantics A

and A’ over an abstract frame {A. } which differ in their

interpretations of constants Ac and AC, and possibly in their
environments q and ~’.

Definition 10 (i) Define the relations ~ (same notation)
such that AC ~ d=, iff Vc c Const, A=[c] ~ dc~[c],
q < q’ iff Vz, q(z) c q’(z) and A ~ A’ iff for all e,

A[ejq E A’[e]q’.

(ii) Define d= ~ d=, if AC ~ d=, and d=, < A= and like-
wise for q and A.

The following proposition confirms that the abstract seman-

tics is determined by its interpretation of constants.

Proof By induction on e. ❑

Let A,.# be as in example 5 and let Ax denote the ab-
stract semantics obtained using Ac#. It can be shown that
this is the least semantics which is safe for the standard

semant its.

123

Example 7 Let AC, be the interpretation of constant ob-
tained from Ac# by replacing the interpretation of ij with

A,+[ifb a a’] =aUa’.

Then A’ is clearly correct in the sense of being safe for S.
However, it is also true that Ax < A’.

Unfortunately the least (i.e., most informative) abstract
semantics is, in general, incomputable aa leastness is not

preserved under composition (i.e., (.f o g)# Q (f# o g#)).

This kind of information loss cau be ameliorated by case
analysis which we discuss in the next section.

6 Extensions to the Basic Scheme

Data Structures

The basic scheme for abstract interpretation as presented in

Sections 2-5 can be easily extended to accommodate non-
recursive datatypes. Let al, uz, . . . , On be types, the expres-

sions al +. . . +a”andul x... x an then denote respectively

the n-ary (coalesced) sum and (cartesian) product types for

the concrete domain:

Abstract domains for sum and product types can be derived
inductively:

Note that the abstract domain for sum becomes a product,

since otherwise an abstract value can not contain elements
from both Ac, and Ao, for distinct i and j.

For recursive data types the abstract domains derived

according the equations above will be infinite. Therefore,

various methods of flattening the domain may be useful.

For example, in [Wad86, Hug88] a recursive domain of lists

is abstracted to a four point domain

Here, 1 denotes {J_}, m denotes the set of all lists not

ending in rad, lC denotes the set of lists containing at least
one 1 and T is the set of all lists. It is clear that this domain
of coalesced elements is itself a weak powerdomain and thus
the results developed in this paper ensure the correctness of
the analysis.

Case Analysis

Let f : u + r be a function and f# be an abstract function
safe for f such as obtained by our previous construction.

Given an abstract value u, suppose it can be decomposed
into u=ul U... u un, where u,, 1 < i < n are abstract
values in the same domain. we can show that U:=l f# (ut)

is also safe for f(u). This is essentially the case analysis

proposed in [SW77].
Case analysis is most useful for tightening up the in-

terpretation of conditionals. Given the abstract domain
{l, zero, nonzero, nat} where zero = {O}L, nonzero = {1, 2,
and nat = {O, 1,.. .}~, consider the program

Since fac always computes a nonzero value, we would like
to have fac# (nat) = nonzero. However, this is impossible

under our simple scheme since it gives

fac# nat = (1)

nonzero U nat *# fac# (nat –# nonzero),

Using case analysis, let us decompose

nat = zero U nonzero,

thus obtaining the following equation

fac# nat = (2)

nonzero U nonzero *X facx(nonzero –x nonzero),

which gives us the desired result. The improvement obtained
by case analysis is easily seen by comparing equations (1)

and (2).

7 Related Work

Our approach has been strongly influenced by the gen-

eral framework developed by Shamir and Wadge in [SW77]
— our conditions for weak powerdomains are essentially de-

rived from their conditions for extended domains. There
are several differences. First, as a technical matter, Shamir-
Wadge extended domains are not directed complete and thus

there are continuous functions over concrete domain which
do not have continuous abstractions over the extended do-
main. In our setting, any continuous concrete function is
guaranteed to have a continuous abstraction. Second, ev-
ery Shamir-Wadge extended domain contains an isomorphic

image of its concrete domain. This is not required in our set-
ting. Finally, their analysis applies to first-order functions

in an untyped setting while ours treats higher-order func-

tions in the simply typed frame. Shamir and Wadge also

emphasized the tightness of abstract functions to a greater

extent than we have done here.

Ideals ordered by inclusion also figure prominently in the
ideal model of polymorphic types presented in [MPS86]. In

that setting, each type term a denotes an ideal in the Hoare
powerdomain induced by the concrete domain D~. A syn-

tactic inference algorithm is presented which infers some
type a for any term e. The soundness of the algorithm

is then proved by showing that the denotation of the term is
always contained in the ideal denoted by the inferred type
term. Our approach suggests generating a much sparser
weak powerdomain based on the domain constructions.

Along this line, Ernoult and Mycroft [EM91] have re-

cently proposed uniform ideals to model strictness analy-

sis. These are subsets of the Hoare powerdomain tailored at
base type for strictness analysis (i.e., containing {1} and D)

P
and closed under x and ~ (see [MPS86]). Uniform ideals
are shown to be isomorp IC to the Burn-Hankin-Abramsky

strictness types developed in [B HA86]. This isomorphism is
a special case of that cited in Section 3 between our abstract
domains of higher type, Ar-. and the weak powerdomain
2.+.. Thus, uniform ideals can be seen as the special case

of weak powerdomains suitable for strictness analysis. While

}*
our work has been more general in this sense, it does not
stress effectiveness to the same extent.

fac x s if z = O then 1 else z * fac(rz – 1),

124

Conclusions and Future Work

We have introduced anew class ofsemantic domains, which

are intended to serve as valne spaces for abstract semantics.
These domains are derived under fairly general conditions

directly from concrete domains. In this paper we applied
them to the analysis of PCF and proved several theorems

which ensure the correctness of abstract computations.

The domain theoretic approach to abstract interpreta-

tion is usually very costly, especially on higher types, as the
computation constructs the graph of the function (aJthough

some efficient algorithms have been proposed, see for exam-

ple [JC87, JM86, HH91]), even though most of the informa-

tion there is not needed. A computationaJly more effective

approach is type inference [KM 89, Jen91]. The semantic
domains presented here provide an explicit link between the
concrete and abstract domains which was left implicit in

[Jen91]. It is then natural to consider what logicaJ systems
arise from the constructions developed here. We expect that
the general theory developed in [Abr91] is relevant.

FinaJly, we believe that the approach presented here could
be profitably applied to the static analysis of untyped lan-

guages such as LISP. The essential technique used in this
paper, that of constructing abstract domains following the

inductive structure of the concrete domains, is applicable to
the untyped setting
limits.

Acknowledgements

The authors wisfi to
on this work.

References

as well, where domains ar; ‘defined as

thank Mitch Wand for helpful feedback

[Abr86]

[Abr90]

[Abr91]

[AJ91]

[BHA86]

[CC77]

[EM91]

S. Abramsky. Strictness analysis and polymor-

phic invariance. In Programs as Data Objects
(H. Ganzinger and N. Jones editors), pages 1-23.
Springer-Verlag LNCS Vol. 217, 1986.

S. Abramsky. Abstract interpretation, logical re-

lations and kan extensions. Journal of Logic and

Computation, 1, 1990.

S. Abramsky. Domain theory in logical form. An-

nals of Pure and Applied Logic, 51:1–77, 1991.

S. Abramsky and T. P. Jensen. A relational ap-

proach to strictness analysis for higher-order poly-
morphic functions. In Proceedings of the Eigh-

teenth ACM Symposaum on Principles of Program-
ming Languages, pages 49–54, 1991.

G. Burns, C. HankIn, and S. Abramsky. Strict-
ness analysis for higher-order functions. Science

of Computer Programming, 7:249–278, 1986.

P. Cousot and R. Cousot. Abstract interpreta-
tion: A unified lattice model for static anaJysis
of programs by construction of approximations of

fixpoints. In Proceedings of the Fourteenth ACM
Symposium on Principles of Programming Lan-
guages, pages 238-252, 1977.

C Ernoult and A Mycroft. Uniform ideals and
etri.tnem anedysis, In %?.eedinga of ICA LP ‘9i,
Springer-Verlag Lecture Notes in Computer Sci-
ence, 1991.

[HH91]

[HS91]

[Hug88]

[JC87]

[Jen91]

[JM86]

[KM89]

[MJ86J

[MN83]

[MPS86]

[Myc81]

[Nie84]

[Nie89]

[P1077]

S. Hunt and C. Hankin. Fixed points and fron-
tiers: A new perspective. Journal of Functional

Programming, 1:91-120, 1991.

S. Hunt and D. Sands. Binding time analysis: A

new perspective. In Proceedings of the Symposium
on Partial Evaluation and Semantics-Based Pro-

gram Manipulation, pages 154-165, 1991.

J. Hughes. Abstract interpretation of first-order

polymorphic functions. TechnicaJ Report 89/R4,

University of Glasgow, Department of Computing

Science, 1988.

S. P. Jones and C. Clack. Finding fixpoints in ab-
stract interpretation. In Abstract Interpretation of

Declarative Languages, pages 246-265. Elk Hor-
wood Limited, 1987.

T. P. Jensen. Strictness analysis in logical form. In
Proceedings of the A CM Conference on Functional

Programming Languages and Computer Architec-
ture, pages 352-366, 1991.

N. Jones and A. Mycroft. Data flow analysis of ap-
plicative programs using minimal function graphs.

In Proceedings of the Thirteenth ACM Symposium
on Principles of Programming Languages, pages

296–306, 1986.

T. Kuo and P. Mishra. Strictness analysis: A new

perspective based on type inference. In Proceed-
ings of the ACM Conference on Functional Pro-
gramming Languages and Computer Architecture,

pages 260-272, 1989.

A. Mycroft and N. Jones. A relational frame-
work for abstract interpretation. In Programs as

Data Objects (H. Ganzinger and N. Jones editors),
pages 156–171. Springer-Verlag LNCS Vol. 217,

1986.

A. Mycroft and F. Nielson. Strong abstract in-

terpretation using power domains (extended ab-

stract). International Colloquim on Automata,

Languages and Programming, Springer- Verlag,

Lecture Notes in Computer Science, 154:336-547,

1983.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal

model for recursive polymorphic types. Informa-
tion and Computation, 71, No. 1/2:95-130; 1986.

A. Mycroft. Abstract Interpretation and Opti-
mizing Transformations for Applicative Programs.

PhD thesis, University of Edinburgh, 1981.

F. Nielson. Abstract Interpretation of Denota-
tional Definitions. PhD thesis, University of Ed-

inburgh, 1984.

F. Nielson. Two-level semantics and abstract

interpretation. Theoretical Computer Science,
69:117-241, 1989.

G. Plotkin. LCF considered as a programming
language. Theoretical Computer Sctence, 5:223-
255, 1977.

125

[Sch86] D. Schmidt. Denotational Semantics: ,4 MethodoL
ogy for Language Development. Allyn and Bacon,
1986.

[SW77] A, Shamir and W. Wadge. Data types as objects.

In lth Colloquium on Automata, Languages and
Programming, Lecture Notes in Computer Sci-
ence, Volume 5.2, pages 465–479, 1977.

[Wad86] P. Wadler. Strictness analysis on non-flat domains

(by abstract interpretation over finite domains). In

Abstract Interpretation of Declarative Languages,

pages 266–275. Ellis Horwood Limited, 1986.

126

