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1 Introduction

The past decade has seen extensive research into the

topic of strictness analysis and a rich family of analysis

algorithms have been described in the literature. Most

of the algorithms described in the literature fall into one

of two classes: forward analysis [Mycroft 80], based on

abstract interpretation, and backward analysis [wH87],

based on projections. Forward and backward analysis

are also useful outside the context of strictness analysis,

and have been applied to a wide range of problems such

as binding-time analysis, sharing analysis and escape

analysis [BjeHo189, JonLeM89, GomSes91, HunSan91,

ParGo191].

This work is concerned with the relationship between

the deductive power of forward and backward strictness

analysis. We provide a precise and formal characteriza-

tion of the relative power of these two analysis methods,

when used for the strictness analysis of first-order func-

tional programs over flat domains. Our main theorem

is as follows: forward strictness analysis will determine

that program P has property D zjf backward strict-

ness analysis determines that program P has equivalent

property D’. To our knowledge, this result is the first

of its kind.

Our results provide a foundation for a comparative

study of the forward and backward analysis. Thus,

by showing that the two analysis methods have equal

deductive power, we provide a basis for the study of

the relative eficiency of the two methods. Further-
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more, our results allow characterizations of the deduc-

tive power of one analysis method to be applied to the

other method. For example, in previous work [s MR91],

we have given a precise and formal semantic characteri-

zation of the deductive power of forward strictness anal-

ysis. This characterization takes the form of showing

that forward strictness analysis derives precisely those

strictness properties for program P which do not de-

pend upon any constant occurring in an evaluation of

P. From our current results, we can conclude that this

pleasant and important property holds for backwards

strictness analysis as well.

1.1 Overview of Results

In Section 4, we describe an inference system that for-

malizes backwards analysis and provides a general de-

scription of projection-based reasoning about programs.

Any specific backwards projection analysis algorithm

may be seen an instance of this inference system by

making an appropriate choice of specific projections.

As our interest lies with strictness analysis, we choose

our language of projections to be ID, STR and FAIL

as these projections can describe all simple strictness

properties of functions.

A major innovation in our inference system is the in-

clusion of a disjunction operator over projection proper-

ties. This allows us to better express strictness proper-

ties of the if-then-else construct by supporting state-

ments that express dependence between variables. In

backward analysis, we begin with a statement about

the program or expression as a whole (for example the

“context” in which it occurs), and derive statements

about its free variables. Previous formalization of

projection analysis [WH87, Hughes85, Kamin90, HL91]

have been restricted to deriving statements about the

variables that are independent of each other. Thus,

in these frameworks, expression if x then y else z is

strict in z, but as it is neither strict in y, nor in z,

we can reach no conclusions about them. In contrast,
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in our framework we can use the disjunction operator

to conclude that the expression is either strict in y or

strict in z. Observe that as forward analysis can ex-

press disjunctive properties, the frameworks described

in [WH87, Hughes85, Kamin90, HL91] do not have the

same deductive power as the corresponding forward

analysis methods.

For our main theorem, we show that our inference

system, restricted to the projections ID, STR and

FAIL, has exactly the same power as forward strict-

ness analysis. Below we briefly outline the proof which

is fully described in Appendix B.

The key step in the proof is the discovery of a map-

ping q5 that connects strictness properties in forward

and backward analysis by mapping projection-based

strictness properties to boolean functions. We show

that @ respects the semantics of the two systems, that

is, that the set of functions which have projection-

based strictness property D is equal to the set of func-

tions whose abstractions approximate +(D), i.e. that

D “means the same thing” as 4(D). For the final step,

we show that our inference system derives a property

D for expression e with respect to variables Z, if and

only if forward analysis derives boolean function 4(D)

for A;.e:

where &# is the standard abstraction

function [Mycroft80] in forward analysis. Thus we have

equivalence of the two systems.

1.2 Related Work

John Hughes [Hughes85] first proposed the use of back-

ward analysis for reasoning about function strictness on

structures. Subsequently, Wadler and Hughes [WH87]

used projections to formalize backward analysis and de-

scribed an algorithm for computing a variety of strict-

ness properties using projections. Wadler and Hughes

note that their treatment of conditional expressions has

the limitations we have described above, but their work

does not address whether these limitations are an inher-

ent aspect of the use of projections. Our results demon-

strate that this problem can be addressed by incorpo-

rating a disjunction operator into the analysis system.

Wadler and Hughes do not offer any comparison of the

deductive power of their system with forward strictness

analysis.

Burn [Burn90] compares the expressiveness of pro-

jections versus abstraction in terms of sets of functions

definable using the two techniques. His main result is a

characterization of a class of projection properties that

correspond to abstractions. Kamin [Kamin90] has fur-

ther characterized projections that cannot be expressed

as finite abstractions. These works do not discuss the

relative deductive power of the two techniques.

Hughes [Hughes90] describes a family of analysis

problems as instances of backward analysis. He claims

that backward analysis is more efficient than forward

analysis. However, it appears that the greater efficiency

of backward analysis is due, at least in part, to the rela-

tive weakness of its deductive power. Future work could

study the relative efficiency of forward and backward

analysis using systems of equal deductive power.

The work of Hughes and Launchbury [HL91] is sim-

ilar in spirit to our work. They describe an inference

system for reasoning with projections and use it as a

means for comparing backward with forward analysis.

Their main result is the observation that, for certain

problems, backward analysis might involve less search

that forward analysis. Their work does not explicitly

address the issue of the relationship between the de-

ductive power of the two techniques.

1.3 Conclusion

Forward and backward analysis are important tools that

have been widely used to design a variety of analysis

algorithms. There is, as yet, little comparative study

of the strengths and weaknesses of the two techniques.

As a consequence compiler designers have chosen one

or the other technique based on their intuition or by

examination of a few examples. By demonstrating that

forward and backward strictness analysis have equal de-

ductive power, our work provides a first step towards

the systematic comparative study of the two analysis

techniques. Such a study would provide unambiguous

guidance for compiler designers, based on principles and

fact in place of intuitions and examples.

2 A Simple First-Order Func-

tional Programming

Language

Figure 1 shows the abstract syntax for the language we

are studying. Its semantics are described in figure 2. We

assume that we are given some domain of values Val.

We are not concerned with the details of Val. In order

for the if-then-else structure to be useful, however, Val

should contain values for true and false .

The meaning of a program will be a mapping for de-

fined function symbols (FIVam) to functions over Val.
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Syntactic

~, Xi

C, Ci

k,ki

f, fi

Syntactic

Domains

● Var (variables)

= Const (value constants)

E Prim (primitive functions)

E FNam (function names)

e, e, E E~p (expressions)

d, di E Decl (declarations)

p, pi E Prog (programs)

Equations

Exp ::= X (variables)

Ic (constants)

I f(ei,...,%) (application)

I k(ej, . . ..en) (primitive application)

I if el then e~ else es (if-then-else)

Decl ::= f(i) = e (function declaration)

Prog ::= dl, . ..)dn (program)

Figure 1: Abstract Syntax

3 Strictness Analysis Using

Project ions

Recall that a projection a : A -+ A is a idempotent

function which is less defined than the identity function.

DEFINITION 1 Let ai be projections, ~i c A; +

Ai, VI < i < n, and /3 be a projection, ~ c B + B. An

n-ary function f : Al * . . . * An + B has the basic strict-

ness property ~ ==$ [al, . . . . an] at point (al, . . . . an) E

Al * . ..* Am if

P(f(alj . . . . an)) = d(f(~l(u~), . . ..@n(an))).

If f has the property at all (al, .. ..an) ~ Al x . ..* An.

then we say that f has the property /3 ~ [al, . . . . an].

If f has the property /? ~ [al, . . . . an], we write f ~

/3 ==$’ [al,...,%]. We also use ~ ~ [al, . . ..an] to

denote the set of f which have the property. We use

v, v; to denote arbitrary basic strictness properties.

DEFINITION 2 Let C = {vl, . . . . Vm} be a set of strict-

ness properties. We say that a function f has basic

property set C at point (al, . . . . an), if for all i, f has

vi at point (al ,..., an). We will sometimes write C as

VI A .. . A Vm, or, more compactly, A~=I vi.

DEFINITION 3 Let D = {Cl, . . . . Cmj be a set of basic

property sets. We say that a function f has the dis-

junctive strictness property D if

~(al, . . ..a~) E Al * . . . *A~, 3Ci c D,such that

f has basic property set Ci at point (al, . . . . an).

I

We will sometimes write D = {Cl, . . . . Cm} as

D= CI V... V Cm, or, more compactly, ~~=1 C’i or

~~=~ A& v~j, tO e’n~hasi~e the disjunctive nature of
the definition. We use DSPs to denote the set of basic

strictness properties over the projection set S.

In order to characterize simple strictness (fl = 1)

with projections, it is necessary to lift the domains and

functions with an additional element $, pronounced

“abort”, where \ c 1. We will be working with lifted

domains for values, but will still denote the lifted do-

main by Val. Functions will be lifted so that for all

f eFunc, f$ = $.

DEFINITION 4 We say that a projection a is strict if

a(l) = j<

The idea of strict projections is that they represent a

level of demand which includes simple strictness. The

simplest strict projection is STR defined as

STR(\) = $

STR(J) = +

STR(Z) = X, z g 1.

Observe that a function f is strict if and only if f E

STR =+ STR. We use NS to denote the set of non-

strict projections ({a I a(l) # $ }).

DEFINITION 5 A strictness property D is satisfiable if

f G D for some f. Otherwise it is unsatisfiable.
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Semantic Domains

Val (Values)

Func = Val” -+ Val (Functions)

Env = N + Val (Variable Environment)

FEnv = FNam + Func (Function Environment)

PEnv = Prim + Func (Primitive Environment)

Semantic Functions

c: Const 4 Val

K : PEnv
D : Prog + FEnv + FEnv

& : Exp ~ FEnv --+ Env d Val
P : Prog + FEnv

Semantic Equations

E[z&Op = p;

t[c]pp = C[c]

E[k(el, . . ..en )]PP = ~[~](~[ellpp, . . . . ~UenIlpP)

E[f(el, . . . . en)]wp = dfl(~[edw, .-., &Uenlw)

&[if el then ez else e3]pp =
S[e2]pp, if &[el]pp = true

S[es]pp, if &Uel]~p = false

“u::;: :;

PM] = f[eil~

P~] = ui((D~])~([f, H l]))

Figure 2: Language Semantics

We define the set Propn to be the set of all satisfiable

basic strictness properties for a function of arity n:

We will need some way in which to combine two de-

mands to yield a new demand. Suppose we have that

f E @ - [al, a2]. Let g = ~z.~zz. We should be able

to find an a for which g E ~ ~ [a]. Following [WH87],

we define an operator b, and say that a = CYlbaz. This

OPCAOr is defined = foll~wg:

{

ifczl (d)= +,

(a,&a,)a? = $ or az(d) = $,

al(d) u az(d), otherwise.

Let’s consider some simple examples using just the

projections ID and STR. This allows us to talk about

simple strictness of a function. The identity projection,

ID, represents no information. Thus, any function has

the properties ID ~ ID and STR ~ ID.

Consider the definition

f(~,Y) = ~+v

Since f is strict in both z and y, we have f E STR ~

[STR, STR]. Now consider the definition

f(z, y) = y

Because f does not use x, so we cannot have f E

STR ==+ [STR, STR]. We have only f E STR =+

[ID, STR]. Suppose we have the following definition:

f(z, y) = if z = O then

Y

else

Y
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First of all, if is strict in the first argument and = is

strict in both its arguments, so f is strict in z. Further,

since y is returned in both cases, f is strict in y, so

f c STR a [STR, STR].

Let’s try to abstract if-then-else:

g(z, y, z) = if z then

Y

else

f(~, Y) = 9(ZZ= o, y, y)

We would still like to be able to find ~ E STR ==+

[STR, STR]. Unfortunately we can’t do this using

basic strictness properties, for what property can we

assign to g ? Certainly, g is strict in its first argu-

ment, so we have g c STR ~ [STR, ID, ID], but

this is inadequate to find the strictness of f. We

have neither g c STR ~ [STR, STR, ID] nor g e

STR ~ [STR, ID, STR]. The first case fails to hold

for g(false ,1, z), the second, for g(true , z, 1). Simi-

larly, we can’t have g c STR =$ [STR, STR, STR],

as both of the above examples serve as counterexam-

ples to this assertion. Thus, the best we can do for g

is g < STR ~ [STR, ID, ID], a fact inadequate to

yield the desired information about f.

In order to remedy this problem, we use disjunctive

strictness properties. Disjunction allows us to express

the fact that g is strict in one of the two arms without

specifying which one. Thus, we can say g E STR ~

[STR, STR, ID] v STR ==5’ [STR,lD, STR]. Now if

we consider g(x = O, y, y), we can see that in either case,

the expression is strict in y, so we can get f c STR ~

[STR, STR].

4 An Analysis System

We now present an inference system for reasoning about

strictness properties of programs. It is assumed that

the user of the rules provides a set of projections which

is closed under &, and complete sets of properties for

the primitives. If the system is to be used for practical

puposes, the set of projections needs to be finite. This

insures that the property sets derived are finite.

The system derives disjunctive strictness properties.

By their nature, individual disjunctive properties are

capable of expressing all of the valid properties of a

function. Thus, rather than having several proof trees

for a given expression each of which yields one of the

expression’s properties, we have one proof tree which

yields a single disjunctive strictness property which con-

tains all of the information which the system can derive

from the starting assumptions. This is a result of the

fact the disjunctive strictness propreties are very much

like boolean expressions, and two can be conjoined into

a single property.

In describing the rules, we will use the notation

e[%l, ..., %] G D.

This means that if we regard e as a function from the

variables al, . . . . Zn, (Z), to a value, it has strictness

property D. Roughly speaking, though abstraction is

not part of our language

(Me) c D.

In the rules, n will always represent the length of the i

variable vector.

In order to simplify the presentation of the applica-

tion rule we use an operator @m,n defined in figure 3.

This operator handles the application of an m-ary

function to m expressions, and computes a strictness

property with respect to n free variables. The first ar-

gument it takes is a simple property of the function.

The rest are simple properties of the actual parameters

to the function. Note that the ai occur in two places,

and so must match. In order to insure that this opera-

tor is only used when such a match occurs, we define a

predicate operator 0, also shown in figure 3.

For an A E FNarn + DSP, B E

e E Ezp, 2 an n-vector of Var’s, and

system derives statements of the form:

A, B\e[i7]~D

where

Prim + DSP,

D G DSP, our

D = ~~& =+ [~tjl,...,aijnl
ij

meaning that with function strictness assumptions A,

and primitive function strictness assumptions B, e has

property D with respect to the variables Z.

We present the inference rules in figure 4.

The (const) rule states that for a constant, we have

the conjunction of all rules which give non-strict con-

texts to the variables. This is clearly correct, since a

constant has no free variables, so that any free vari-

able z can be replaced by any a(z), provided that a(z)

doesn’t yield j. If a(z) gave abort, then we would

derive incorrect results, for example, for j(x) = 1, we

could find f E STR =+ STR, which is clearly incor-

rect.

The (var) rule is just slightly different from the

(const) rule, recognizing that a variable expression z

has one free variable, namely z. Thus we restrict the

context of z to be the context in which the expression

appears. Thus, for example, for f(z) = z, we only de-

rive properties of the form a ~ a.
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v m,’n : Propm * Propnm 4 Propn

On,n : Propm ~ Propnm 4 Bool

‘m>n(::!lff:ll=’’
Figure 3: Definitions of Q and @

The (app) rule is where all of the interesting work 5 Comparison of Inference Sys-
happens. The basic idea is this: We have a disjunc-

tive strictness property for the function being applied.

We also have disjunctive strictness properties for each

of the actual parameters relative to the variables of in-

terest (Z). The result is a disjunction, the disjuncts of

which are formed by choosing a disjunct from each of

the function property and the actual parameter prop-

erties. For each result disjunct, all of the choices of

basic strictness properties from the source disjuncts are

considered. Each of these compatible sets gives a ba-

sic strictness property to the result through the use of

the w~,~ operator. So far the manipulation is purely a

logical one, and follows from the fact that the conjunc-

tion and disjunction in the properties correspond to the

logical operations conjunction and disjunction.

The ~~,. operator is basically an application oper-

ator. Its operation is to collect the individual contexts

in which the variables occur in each actual argument

and, using the & operator, generate a suitable context

for each variable for the whole application. The correct-

ness of using & to join the contexts is argued in [WH87],

and is not hard to see by reviewing the definitions.

The (ret) rule allows derivation of properties for a

whole program. Note the assumption that A(f) is satis-

fiable. This is necessary because assuming unsatisfiable

properties for a function can yield a result claiming that

some function actually has an unsatisfiable property, a

contradiction.

tern with Abstract Interpreta-

tion

In this section we will consider an instance of the infer-

ence system in which we consider only the projections

ID, STR, and FAIL. These three projections allow

us to talk about simple strictness as Mycroft’s system

does.

5.1 Abstract Interpretation

We start by presenting an abstract interpretation sim-

ilar to Mycroft’s. We define abstraction map(s), ~ in

figure 5. This map tells us exactly when a function is

strict in a given argument or set of arguments. In other

words, for a given program p and n-ary function j de-

fined in the program, ‘P~][~](al, . . . . am) = 1 exactly

when ~(’P~][f])(Ao(ul), . . ..~(am)) = O. Of course,

since termination is, in general, undecidable, we can-

not compute ~ (P ~] [f] ). We therefore define a com-

putable approximation to this abstraction, P#. The

following relationship holds between ?, P#, and ~:

~(~~][f]) ~ @ ~][f]

for all p, f. Thus, ‘P# may not always tell us when a

function fails to terminate.

5.2 Relative Power of the Two Systems

Note that with only the three projections ID, STR and

FAIL, the only basic properties which are of any inter-

est are of the form STR ~ [al, . . . . an]. The only

satisfiable property of the form ID ~ [al, . . . . am],
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(COMA)

{

-w- [%,...,%] [w <i< ?2, Cq G Ns}
A, Btc[~e A u {ID ~ [ID, . . .. ID]}

u {FAIL * [FAIL, . . . . FAIL]} }

(w)

{

{P ==$’ [%,..., cl, fl, c%+l,l,%].,%]I VI < i < n, a, e ivs}
A,BEzJ~EA u {ID * [ID, . . .. ID]}

u {FAIL ~ [FAIL,..., FAILI 1 }

Figure 4: Inference Rules

Vf, A(f) is satisfiable

(ret)
V1 <i <m, A, B}ei[z~] EA(fi)

( f~(~;) = e, ]

is ID =+ [ID, . . . . ID], which is held by all functions.

For any function, we have FAIL =+ [FAIL, . . . . FAIL]

which is the strongest property of the form FAIL ==+-

. . . . so there are no interesting properties of that form.

Note that any expressible property is equivalent to some

property of the form:

(

STR ==+ [all, . . ..aln]

A ID =+ [ID, . . .. ID]

A FAIL =+ [FAIL,..., FAIL] )

v;

(

STR =+ [~~1, . . . . cx~n]

v A ID ~ [ID, . . .. ID]

A FAIL ~ [FAIL, . . . . FAIL] )

SO for v~nl A~=l /3j =+ [~ijl} . .. . Gj~], we have, for all
i, that ,L?il = STR, fl;z = ID, ,&3 = FAIL, ct~zk = ID,

and ff~ak = FAIL. We call properties written in this

form canonical properties. It can be shown that if the

assumptions (A, B) in the inference rules give proper-

ties in canonical form, then the rules will only yield

properties in canonical form. Thus we can restrict our

attention to canonical properties.

Rather than always saying

STR ==+ [all,...,%]

A ID ==+ [ID, . . .. ID]

A FAIL ==+ [FAIL, .,., FAIL]

we will abbreviate this by STR ==+ [all, . . . . aln], leav-

ing the ID and FAIL cases understood.

Our aim is to prove that our inference system, using

only the projections ID, S TR and FAIL, has exactly

the same power as the abstract interpretation we have
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Bool = {o, 1}, o~l

& : Val --+ Bool

A(l) = o
&(v) = 1, V+-L

A: ( Vat” + Val) + (Booln --i Bool)

An(f) (h,..., h) =
{

O if Vv~..’.vn, (VI < i < n, ~(v~) Q b~) - ~(~(vl, . ...%)) = O

1 otherwise.

&#[c]yJp ==

&# [U]W =

E#[k(el, . . ..en)]w =

‘@uf(el>., %Jnw =

1

pi

(K#[k])(@[e~]9p, . . . . E#lJen19p)

(9 Ufl)(@Uel19p, .... @lIen]9p)

Figure 5: Abstract Interpretation

presented. We begin by demonstrating a mapping ~

from disjunctive strictness properties to boolean func-

tions. We then show that this mapping respects the

semantics of the two systems, that is, that the set of

functions which have disjunctive strictness property D

is the same set of functions whose abstractions approx-

imate 4(D), i.e. {f I f G D} = {f I &(f) L 4(D)}.

This tells us that D “means the same thing” as q5(.D).

Once we have this, we will show that when our inference

system derives a property D for a function in a program,

the abstract interpretation (E#) will derive #(D). Thus

we will have equivalence of the two systems.

We define an operator, =, which gives a boolean func-

tion for each of our projections.

ID(z) = 1

STR(Z) = z

FAIL(z) = O

We define ~ : DSP + Bool” + Bool in figure 6.

Taking an interesting property of if-then-else for ex-

ample,

( sTR ~ [STR, STR, ID]

4 v STR a [STR, ID, STR] )

This being equivalent by distributivity to Mycroft’s def-

inition of IF~, IF#(p, x,y) = pA (z V y).

PROPOSITION 1 Let D c DSP,

(
STR ~ [Clll, . ...%]

STR b [a21, . . ..~zn]
D= ;

i
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[

STR ==3 [all, . . ..al~]

1[

Z@l) A . . . A~(bn)

0:
STR ~ [cql, V Z@)l) A . . . A~(bn). . ..a2n] ~ ~;. v . . .

. . .

v STR ~ [aml, . . ..amn] V ~(bl) A... A=(bn) 1

or, more compactly
d

#(v(STR ==+ [ail, . . . . %])) = ~~. ; A %(b)

i=l i=lj=l

Figure 6: Definition of q5

Now we prove the equivalence of expression analysis.

After that, we will prove the equivalence of program

analysis, which basically follows from the expression

analysis result.

THEOREM 1 Let A : FNam + DSP, B : Prim +

DSP, and p : FNam + Bool” --+ Bool. Assume that

for all f, A(f) is in canonical form, and that for all

k, B(k) is in canonical form. Further, assume that

#(B(k)) = K#[k], and that #(A(f)) = V[f]. Then fo~

ang expression e, and any disjunctive strictness prop-

erty

D=

STR ~ [all, . . . . aln]

v . . .

\ v STR ~ [aml, . . ..crnn]

our znference system derives

A, Bhe[~6D

if and only if

&#[e]p = 4(D).

Now we need to prove that our inference system can

generate the same results for programs that abstract

interpretation does. This is a fairly simple result of

theorem 1.

THEOREM 2 Let p be some program. Assume that

#(B(k)) = K#[?cj for all primitives k. Then zfP#@] =

~(A), inference system II can derme B h p : A.

PROOF: We have, from the definition of P#,

that D# ~](#(A)) = @(A) meaning that for all i,

&#[ei](d(A)) = d(A(fi)). But from theorem 1, we have

then that .4, B k e; G A(f~). From the (ret) rule then,

we immediately have B E p : A.

❑
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A Proof of Proposition 1

~ Assume f c D. We need to show that ~(f) ~

4(D). In other words, if ~(D)(~) = O, then

$(~)(~)+= O. Assume the ~ontrary, that for some

b, #(D)(~) = 0, but A(f)(b) = 1. Then from the
definition of ~, for some il, V1 < i < n, -40(vt) ~

b;, but &( f(F)) # O, i.e. f(ti) 3 L Fix this J.

Since f E D, we must have for some 1 ~ i < m,

that

STR(f(r7)) = ST R(j(cWl(vl), . . ..%(v1))).

Fix i. Now, since f(i7) # 1, we must have

STR(f(i7)) q 1. So we also have

STR(f(CYil(Vl), . . . . cqn(vl))) z 1.

Then f(ail(vl), . . . . a~~(vl)) ~ 1, since STR C

ID. This means that for all j, ~ij (vj ) #

$, since, if for some j, %j(~j) = $, then

~(@l (vI), .-., CYi~(V1)) = \. First, we know that

CIij is not FAIL, since FAIL(vj ) = ~. Now,

since crij is either STR or ID, this means that

Wj(vj) = vj for all j.

We have that ~(11) ($ = O. Then from the defi-

nition of ~, for all 1 < k < m, we must have

~(bl) A . .. A~(bn) = O.

Specifically, we must have

a~l(bl) A... Am(bn) = O.

This means that, for some 1< j < n, ~(~j) = 0.

But since ID(bj) = 1, we must have cwj = STR

(we already ruled out any CWj being FAIL). Thus,

STR(bj ) = O, which implies that bj = O. NOW, by

assumption, A(vJ ) E lq, so -4J(vj) = 0, imPly-

ing that V3 = L. But then cqj(vj) = STR(J-) =

$ # 1 = V1, contradicting the conclusion of the

previous paragraph.

Assume ~(f) ~ q5(D). If #(D)(;) = O, then

~(f)(;) = O. We need to show that f c D. As-

sume the contrary. We will show that there exists

a ; for which #(D)(;) = O, but ~(f)(;) = 1, de-

riving a contradiction.

Since we don’t have f E D, there is some i7 such

that for all 1< i < m,

STR(f(F)) # STR(f(cul(vl), . . . . %z(vn))).

Fix ii. For this to be the case, for each 1 <

i < m, there must be some 1 < ji < n, for

which aijt (vjC ) # Vj.. Clearly, either ~i~. must

be STR, and Vj, must be 1, or %j. must be

FAIL. Further, f(;) 31, for otherwise we would

have to have f(a;l(vl), . . . . cz;n(w~)) L 1, and then

STR(~(i7)) = STR(f(cxil(vl), . . . . C%(%)) would

hold since STR(Z) = j, if x ~ 1.

Let ; be defined by VI < k < n, b~ = Ao(v~).

Now

~11(.Ao(Ul)) A . A CIln(&(lln))

q5(D)(i) = “

V CIml(&(Vl)) A . . . A cYmn(#to(zIn))
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Recall that for all 1 < i < m, there is some 1 <

~i < n, for which either ~iji = STR, and ~j, = 1

or cxii, = FAIL. But then for all 1< i < m,

~(~(vj,)) = STR(A(~)) = STR(0) = O, or

ZZ(4(%.)) = FAIL(A(~j,)) = O

so q5(D)(i) = Ov... vo =0.

Now it remains to show that ~(~)(;) = 1, giv-

ing a contradiction. From the definition of ~,

we only need to show a i7 for which ~(vi) ~ b;,

but ~(~(;)) = 1. This is simply i’ that we fixed

above. We defined bi = ~(v;), so we certainly

have ~(vi) ~ bi. And we showed above that

f(;) # 1, so &( f(r7)) = 1.

❑

B Proof of Main Theorem

PRO OF: By induction on the structure of e.

(const)

(var)

(app)

Since we are limited to ID, STR and FAIL, lTS =

{ID}, since STR and FAIL are strict. So the only

statement we can derive is

A,l? E C[~ c STR~ [ID,..., ID].

So @(D)(;) = lAIA... A1 = 1. From the definition

of &#, we have CMUc]~(;) = 1.

Again, since iVS = {ID}, the only statement we

can derive is

A,13 R Zi[;] E STR ~ [ID,..., ST, ID], ID].

From this we have ~(.D)(;) = 1 A . . . A STR(bi) A

. . . A 1 = ~i. From the definition of &#, we have

~#[~ijl~(b) = bi.

By assumption, we have that q5(A(f)) = v[f],

and by induction we have, for all i, that @(D;) =

&# ~ei]p. So we have that

@[f(el, . . . . em)l~(~) -

= (wlI~Il)(&#lIe~ilp~b), .-, &#Ue~~p(~))

= #( A(f)) (q5(D1)(b), . . . . ~(Dm)(b))

Let

D=

STR s [all, . . ..alm]

v STR ==+ [Cr21, . . .. CIZ~]

v . . .

V STR ==+ [~~1, . . ..a~m] )

And for each Di, let

[

STR * [Tjll, .-,?’jln]

STR e [7j21, . . . . 7j2n1
Dj= ~ ... )

Then we have

and

.kj=l 1=1

So we have that

Here, i indexes the choice of disjunct in the func-

tion’s property (D), j indexes the arguments to

the function, ki indexes the choice of disjunct from

the jth expression’s strictness property (Dj ), and

1 indexes the variable number.

Because ~ is monotonic in Bool, we can move it

inside the V and A to yield

V A V Aw(%zlb,)).
i=lj=l k,=llzl

Now, by distributivity we can move the Vh, outside

as follows:

Let’s work on the other side now. We can derive

A, B t f(el, . . ..e~) 6 D’
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We are interested in what q5(D’) is. Noting from Finally, we have

the definition of @ that 4(V A V) = V~(AV), let’s

look at the conjunction

4( A

q : ~~~ ? i Aw(m(bl))>

~%~(~o~~, ~lkljl, , %l%.im))
i=l kl=l km=lj=ll=l

(j,i,,...,jm)Es
matching our result for E# [f(el, . . . . em)]q(;).

Note that the conjunction will have only one con-

junct of the form S TR ~ . . . . Recalling the defi-
❑

nitions of Om,n and Q ~,n, and knowing that 4 only

looks at properties of the form STR ~ . . . . we are

only concerned with the case where j = 1. Let

VOiI = STR ==+ [ail, . . . . aim]. Having fixed j = 1,

the jz are fixed, since there is only one property per

conjunct which has the form iY~j ~ . . . .

Now

I#(~~,TI(~Oil, ~lk,j,, .-., %km.im))

= @(STR ==+ [&i{6jl}, . . . . &j{6j~}])

where

{

~jk,l> ~ij = STR

631 = ID, Qij =ID .

FAIL, cqi = FAIL

Note that

~jdb) = ?E@) = Swmw)) = am(b))) or
_~(b) = ID(b) = ID(7jkJz(b)) = ~(7jkjl(b))> or

bjl(b) = FAIL(b) = FAIL(~(b)) = z(~(b))

so we have that bjz(b) = ~(~(b)).

SO #(Qm,n(VOiI, 14k,j1, . . . . Vmkdm)) gives

bi{~jl}(bl) A . . . A &j{hjn} = ~ kj{6jl}(bt).
1=1

Note that for a,@ c {ID, STR, FAIL},

ID &ID = ID

ID&STR = STR

ID &FAIL = FAIL

STR&STR = STR

STR&FAIL = FAIL

FAIL&FAIL = FAIL

We can R. .aae by case that from the definition of

~, (~&~)(b) = ~(b) A ~(b). SO we get

and so replacing the definition of ~, and swapping

the A’s:
mn

~ ~ w(~(h)).

j=l 1=1

138


