
Proving Memory

Language

Jawahar Chirimar*

Management Invariants for a

Based on Linear Logic

Carl A. Gunter* Jon G. Riecke*

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104

April 9, 1992

Abstract: We develop tools for the rigorous formula-

tion and proof of properties of runt ime memory man-

agement for a sample programming language based

on a linear type system. Two semantics are de-

scribed, one at a level of observable results of computa-

tions and one describing linear connective in terms of

memory-management primitives. The two semantics

are proven equivalent and the memory-management

model is proven to satisfy fundamental correctness cri-

teria for reference counts.

1 Introduction

Although much literature on optimization of programs

discusses the interaction of program execution and

memory management, one does not often find formal

statements and proofs regarding this interaction. For

inst ante, a compiler for a funct ional language may gen-

erate code that updates an array in-place instead of

copying the entire array, even though this optimiza-

tion is not always safe. The compiler writer proba-

bly does not prove the optimization is safe: the size

and complexity of real compilers is one serious impedi-

ment, but another problem is the lack of an appropriate

level of abstraction at which to carry out the proofs.

Most practical interpreters and compilers are written

for specific machines and hence are too low-level and

specialized to serve as tractable models, whereas the
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usual abstract operational semantics (e. g., natural se-

mantics or structural operational semantics [21, 24])

do not provide any information about memory man-

agement.

In this paper we investigate the interaction of mem-

ory management and interpret at ion, defining two op-

erational semantics of a functional language: one at a

high level ordinarily used for specifying the formal op-

erational semantics of a language, and one at a lower

level that explicitly manages memory. We give proof

techniques for showing that the two interpreters yield

equivalent results on programs, and for showing that

the desired invariants (e.g., correctness of the reference

counts) hold for the low-level specification.

Our main interest in developing such lower-level op-

erational semantics is to test theses about type sys-

tems and memory management. Many new type sys-

tems based on linear logzc [15, 16] have been proposed

that hypothesize simpler garbage collection or in-place

updating. (Others have proposed related type sys-

tems [10, 26].) The particular language we study is

essentially the linear logic-based language of [1, 2], en-

hanced with the operations of PCF [9, 23]. Types are

formulas in a fragment of linear logic, and terms en-

code proofs in the sequent calculus for this fragment

(Cf. [8, 12]).

We define two operational semantics for this lan-

guage. The first is a high-level natural semantics re-

sembling that of Abramsky [1, 2], which delaya evalu-

ation for terms of !-type. This semantics describes the

expected observational semantics of type-correct pro-

grams, but it does not explain the computational sig-

nificance of some of the linear connective: the weak-

ening rule of linear logic, which discards one of its two

arguments, is essentially interpreted as a “no-op”. The

second operational semantics, one that mirrors current

implement at ion technology, interprets linear connec-

tive aa memory-management primitives which carry
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out pointer manipulations and reference-counting. For

instance, the weakening rule is interpreted as a dis-

pose command which deallocates memory (or, more

precisely, decrements reference counts).

There are three principal technical contributions of

the paper. The first shows that our reference-counting

interpreter implements the more abstract semantics.

The second result is a proof that the reference-counting

interpreter maintains a correct reference count for

memory cells. The third and final result uses the

model to clarify some hypotheses regarding memory

management in a language with a linear logic-based

type system. In particular, we find that simplifica-

tion of garbage collection, along the lines suggested in

[1, 15, 16], is not possible.

The paper is organized as follows. In Section 2 we

abstractly describe the reference-counting operational

semantics for A-calculus-based functional languages.

The memory model is familiar, using closures to im-

plement Xabstractions with environments that point

to locations in memory; this implementation strategy

permits some obvious optimizations through the shar-

ing of data structures. Section 3 defines the syntax

and type-checking rules of the linear logic-based lan-

guage. In Section 4 we prove the correctness of the

reference-counting operational semantics, and in Sec-

tion 5 discuss the role of the linear type system with

respect to memory management. Finally, Sections 6

and 7 conclude with a discussion of related work and

possible extensions.

2 A Reference-Counting Oper-

ational Model

We first describe the low-level model in some general-

ity, leaving vague the functional language to be inter-

preted.

Memory in the model is structured using environ-

ments and closures in much the same way as the SECD

machine [17, 22]. Fix an infinite set of locations Lot,

with the letter 1 denoting elements of this set. Then

● An environment is a finite function from vari-

ables to locations; p denotes an environment, and

Env denotes the set of all environments. The no-

tation p(x) returns the location associated with

variable z in p, and

The symbol 0 denotes the empty environment.

● A value is either a numeral k; a boolean b; a clo-

sure tuple (z, M, p), where p is an environment; or

●

●

a suspended object susp(l)—a boxed value-where

1 is a location. The letter V denotes a value, and

Value denotes the set of values.

A storable object is either a value or has the

form thunk(lvf, p). We use S to denote a storable

object, and Storable to denote the set of storable

values.

A store is a function a : Loc + (N x Storable); the

left part of the returned pair denotes a reference

count. Moreover, a store must contain no loops

of references—e. g., a function which mapped lo-

cation 11 to (z, P, p) where 12 is in the range of

p, and mapped location la to susp(lI), would be

illegal. Finally, the domain of a store a must be

finite, viz., the set

dom(a) = {/ 6 Loc : refcount(l, m) > 1}

is finite. Our operational rules will always main-

t ain these invariants. The symbol u denotes a

store, @ denotes the empty store, and Store de-

notes the set of stores. Abusing notation, we use

a(l) to denote the storable object associated with

location i, and refcou nt(i, a) to denote the refer-

ence count stored at 1.

A few operations are needed for manipulating refer-

ence counts, environments, and stores. The operation

update(l, S, cr) updates the store u and binds I to the

storable object S but leaves its reference count un-

changed; incr(l, a) increments the reference count of

location 1 in a and returns the resultant store; and

d ec(i, u) decrements the reference count of / and re-

turns the resultant store. Other operations include

increnv(p, m), which for every variable x c dom(p), in-

crements the reference count associated with location

p(x); and dec-ptrs(l, m), which decrements the refer-

ence count associated with location /, then recursively

decrements the reference counts of all locations stored

in location 1 if the reference count of 1 falls to zero. For

instance, dec-ptrs(l, a) has the following action:

t f

‘E?’kB
Note that dec-ptrs(l, a) is easier to define if there is no

loop within u starting from location 1; this explains

our earlier restriction on stores. Complete definitions

of increnv(p, o) and dec-ptrs(l, o) may be found in Ap-

pendix A.
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The lsst operation we need is a relation for al-

locating memory cells. A subset R of the product

(Storable x Store) x (Lot x Store) is an allocation re-

lation if for any store a and storable value S’, there is

an 1’ and u’ where (S, u) R (1’, a’) and

1’ # dom(o);

dom(a’) = dom(c) U {1’};

u’(1’) = S and refcount(l’, u’) = 1; and

For all locations 1 ~ dom(o), a(i) = m’(l) and

refcount(l, c7) = refcount(l, c7’’)’. ‘ ‘

In particular, an allocation relation can reuse cells im-

mediately when their reference count falls to zer-the

usual reference-count ing garbage collection scheme—

or may occasionally invoke a stop-and-copy or mark-

and-sweep collection [4] to determine those cells with

reference count zero for use as the next cells. For speci-

ficity, we choose some specific allocation relation new,

and by abuse of notation write new(S, a) for some pair

(/’, a’) such that (S, u) new (/’, a’). Of course, our op-

erational rules should be independent of the choice of

allocation relation, a point formalized later.

The operational rules for a reference-counting inter-

preter are written in natural style [21]. The rules derive

conclusions of the form

(M, p, 0) u,. (/, U’)

where the domain of p is exactly the free variables of

M, and 1 is a location, in the domain of u’, that holds

the result of evaluation; [13] gives a denotational se-

mantics in essentially the same form. As an exam-

ple of an operational rule, suppose the language has

a construct (SUCC M) for computing the successor of a

number. Then the operational rule is

((SUCC P), p, a) $,.(V, a’)

{

suppose (P, p, ~) $.. (/0, co)

if
fJo(L)) = n

let al = dec(lo, Uo)

in (/’,0’) = new(n + 1,c71)

Note that the reference count of location /0 is decre-

mented; this maintains a correct reference count on 10

in a way described more precisely in Section 4.

The reference-counting model and corresponding

evaluation of terms should seem quite familiar, but

like the SECD machine we probably would not imple-

ment the model directly: for example, storable values

in both models may occupy more than one word of stor-

age [11, 17, 22]. The SECD machine ia, ‘m aomc ways,

easier to implement: our rules implicitly involve stack

operations, e.g., the evaluation of the body of succ in

the rule above, which the SECD machine would make

explicit. On the other hand, implementation details

lacking from the SECD model have been made explicit

in our model, in particular the management of memory.

3 A Functional Language Based

on Linear Logic

Syntax: The syntax of the language is based on PCF

[23] and Abramsky’s linear functional language [1, 2].

Types are built over the grammar

s ::= Nat I Bool I (s -o s) I !s

where + denotes linear implication or linear function

space, and ! denotes the possibility of using a value zero

or more times. (A complete description of linear logic

may be found in [2, 7, 8].) We use the letters s, t, u,

and v to denote types. Types without leading !’s, e.g.,

Nat and (Nat -o BooI), are called linear; a variable

of linear type must be used exactly once in a term,

whereas variables of !-type may be used zero or more

times.

The set of raw terms in the language is given by

M ::= zl(Ax:s. i14)l(i14iM) /n [true Ifalsel

(SUCC M) I (pred M) I (zero? M) I

(if M then M else M)/ (PZ : s. M) I

(delay M) I

(fetch ~ from M in M) I

(share z,y as M in M) I

(dispose M before M)

where the letter x denotes any variable, and n denotes a

numeral in {0,1,2,, . . . }. The last four operations corre-

spond to the special rules of linear logic, which we will

explicate shortly; the other operations are the opera-

tions of PCF. The usual definitions of free and bound

variables apply here, where (fetch z from M in N) and

(share x, y as M in N) bind the variables x and x, y in

N respectively. Terms are identified up to renaming of

bound variables, and syntactic substitution is written

M[z := N] [3].

The type-checking rules of the language appear in

Table 1, and are essentially those given by AbramSky

in [1, 2]. The symbols r and A denote type con-

texts, which are lists of pairs xl : S1, . . ., Zn : s~,

where each xi is a distinct variable and each Si is a

type. In the rules, !I’ denotes any context of the form

(xl : !S*),..., (Zn : !Sn), i.e., where the primary type

constructor of all the types mentioned in !r is !. The

two constructs dispose and share require their argu-

ments be of !-type; these are the only constructs avail-

able for using a value zero or more times. The rule
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I’, x:s, y:t, Al-M:t
X:sl--x:s

r,y:t, x:s, At M:t

I’EN:U A.x:sk M:t

I’, A k M[z:=N]:u

r,x:sl-M:t

r !- (kz:s. M):(s+t)

!r~M:s

!I’ F (delay M) : !s

rthf:t

17, x : !s + (dispose x before M) : t

l-n: Nat

I’i-M: Nix

r 1- (SUCC M) : Nat

I’1-M: Nat

I’ t- (zero? M) : Bool

!r, x.

rtN:s A,x:tl-M:u

r, A,~:(s-ot) F M[z:=(f N)]:u

r,x:sl-M:t

r, ~ : !s ~ (fetch x from * in M) : t

r,~:k,y ;!s~N:t

I’z:!s 1- (share x,yaszin N):t

F true, false : Bool

rFM: Nat

r !- (pred M) : Nat

I’1-L:Bool AFlkf:s AtN:s

I’, A t- (if L then M else N) : s

!s~M:s

!r i (PZ:!S. M):S

Table 1: The type-checking rules

for checking recursions was suggested to us by Sam-

son AbramSky, and will be justified in the next section

when we consider the operational semantics of the lan-

guage.

The rules in Table- 1 have a rather different form

than most type systems: our system corresponds to a

sequent-style formulation of linear logic, whereas most

type systems correspond to a natural deduction-style

formulation [8]. One main difference between the two

styles arises in the form of the rules. In natural de-

duction systems, one uses introduction and elimination

rules, e.g., the rule

rk~:(s-ot) AtiV:s

17, AF(A4N):t ‘

is an elimination operation for -O. Natural deduction

type systems must also satisfy another criterion, the

substitutivit y property [8]: if both 17 F M : s and

A,x : S 1- N : t are provable, then the proofs

may be combined by concatenation to yield a proof

of r,A 1- N[z := M] : t. It is unclear whether

for the linear logic-based language.

there is a true natural deduction formulation of the

{-o, !}-fragment for our language, although a melding

of natural deduction and sequent-style typing rules is

discussed in [18]. In the interest of retaining the ele-

gant proof-theoretic properties of linear logic, we use

the sequent-style rules.

Examples of Programs: To get a feel for how one writes

programs, it is useful to compare the language to Stan-

dard ML [20]. For instance, consider the following pro-

gram written in Standard ML:

let fun add x y =

if (x = O) then y

else (add (x–1) (y+l))

in add 2 1

end;

There are two reasons that make this program not im-

mediately translatable to our language. First, in the

body of the recursive add function, the variable x is

used more than once: in the test for O and in the
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recursive call to add. Multiple uses of variables are

not allowed in well-typed terms; instead, the variable

names of the two uses must be made distinct through

the operation share. On the other hand, even though

the variable y is mentioned twice, it is not used twice

since at most one branch of the if is executed. Sec-

ond, the variable x appears in the else branch but not

in the then branch. Again, this is not allowed; the

programmer must explicitly annotate the fact that the

variable x will not be used in the then branch.

The addition program in our language is

~ Add: !(!Nat -o Nat+ Nat). k : !Nat. Jy : Nat.

share w, z as z in

if zero? (fetch rz from w in n)

then dispose z before (dispose Add before y)

else (fetch a from Add in a)

(delay (pred (fetch z from z in z)))

(sum y)]

(delay 2) 1

There are some minor syntactic differences between

this program and the above Standard ML code, e,g.,

the recursive function is explicitly declared using p-

and J-notation. But there are also four new constructs

in this program: delay, fetch, share, and dispose. The

operations delay and fetch create and destroy objects of

!-type, which are the only objects that may shared; the

operations share and dispose, on the other hand, create

and destroy re~er-ences to objects of !-type.

4 Two Operational Semantics

A high-level interpreter for our language, written in

natural style, appears in Table 2. The notation M J c

is read “AI halts at canonical term c“; the canoni-

cal terms have the form n, true, false, (k. M), and

(delay M). We write ill $ when there exists a c such

that M $ c. The rules maintain the invariant that only

canonical forms are substituted for variables. To pre-

serve this invariant, (pz. M) is reduced by substituting

(delay (p. M)) in the body M and reducing the resul-

tant term; this operational rule justifies our choice of

type-checking rule for recursions.

The rules for the lower-level semantics of our lan-

guage appear in Appendix A; the rules derive conclu-

sions of the form (M, p, c) Jr= (/’, a’), where dom(p)

is exactly the free variables of M, The operations

of our language take their names from the intuitive

actions of the reference-counting interpreter. For in-

stance, (share z, y as M in IV) first evaluates M,

then binds the variables z and y to the location re-

turned, and finally evaluates N in the new environ-

ment. This crest es multiple references to cells. An-

other import ant collect ion of rules are the rules for re-

ducing (fetch z from P in Q); the interpreter evaluates

P to a suspended object, and returns the result of

evaluating the location under the susp, memoizing the

result of computation if the suspended object points to

a thunk. This memorization saves steps when a subse-

quent fetch of the susp ‘ended object is done, and hence

resembles a call-by-need reduction strategy. (Accounts

of operational semantics with call-by-need evaluation

appear in [5, 25].)

The reference-counting interpreter must satisfy a

number of invariants in order for it to be correct:

1. The evaluation of a term in a legal store must

always return a store as one of its results, i.e., the

resultant store must contain no cycles of references

and must have a finite domain.

2. A store a is thunk-correct if for all 1 such that

3.

4.

a(i) = thunk(ll,p), refcount(l, o) = O or 1. We

could reformulate the rules so that this invari-

ant is not required, but maintaining it allows us

to optimize the rules. We also say that a tuple

(l~,...,l~, p,,.. ., pn, a) is thunk-correct if a is.

An environment-store pair (p, a) is called count-

correct if for any location 1’ in dom(a), the num-

ber of references to 1’ in dom(cr) plus the number

of references to 1’ in p equals refcount(l’, a). Simi-

larly, a location-store pair (/, a) is count-correct if

for any 1’ in dom(a), the number of references to 1’

in dom(a) plus the number of references to 1’ in 1

(obviously either O or 1) equals refcount(l’, u). We

may also generalize the notion of count-correctness

to tuples (/1, . . . . lk, pl, . . . . pn, a) in the obvious

way. Intuitively, (~1, . . . . lk, pl, . . . . pn, a) is count-

correct if we regard the locations mentioned by

(l,,...,lk, p,,.. ., pn) as a “root set” of pointers,

and the reference counts of cells take into account

these root set pointers.

Finally, all environments should hold pointers to

values. First, we say that u is well-formed if for

every location 1’, a(l’) = (y, P, p’) or thunk(P, p’)

implies that for each z E dom(p’), o(p’(c)) is a

value, i.e., not a thunk. Again, we may extend

this in the straightforward way to tuples: a tu-

ple(ll,.. .,i~, pi,... , p~, a) is well-formed if a is

well-formed, each O(li ) is a value, and for every

x c dom(pj), m(pj(s)) is a value.

The fact that the interpreter maintains these invariants

can be verified formally. For instance,

Theorem 1 1~ a is a store and (M, p, u) J.lrc (/’, a’),

then u! is a store.
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nun true J true false J. false

MIJn MJJ(n+l) M$O

(SUCC M) J. (n + 1) (pred M) J n (pred M) J O

M1.10 iMJ. (n+l)

(zero? M) $ true (zero? M) d). false

L J- true MJ,lc L J false NJJ. c

(if L then M else N) 4J.c (if L then M else N) J c

M[z := (delay pz. M)] J c

pz. M.lJc

MJJ. XC. P NIJu’ ~[Z:=~UC

kc. M J kc. M (M N)lJc

M .lJ (delay P) P .lJ c’ N[x := c’] J-c

(delay M) l). (delay M) (fetch x from M in N) .lJ c

MJd Nuc MIJd p[ic,y:=~vc

(dispose M before N) J c (share z,y as M in P) Jjc

Table 2: The high-level operational semantics of the language.

The proof proceeds by a simple induction on the num- The rule first reduces the operand of succ using the

ber of steps in (M, p, m) $.. (/’, a’). One may also

prove that the interpreter maintains correct reference

counts.

Theorem 2 If (p, a) is couwt-correct, thunk-correct,

and well-formed, and (M, p, a) JJrc (1’, a’), then (/’, a’)

is count-correct, thunk-correct, and well-formed.

Proof: (Hint ) By induction on the height of J,,,

where we prove the following generalization:

Suppose the tuple (ii,...,l~,p,pl,p~,a)~,a)

is well-formed, count-correct, and thunk-

correct. If (M, p, a) $re (V, a’), then the tu-

ple (/’, /1, . . . . 1~, pi,.. ., p~, a’) is well-formed,

count-correct, and thunk-correct.

It is worth considering part of one of the cases of this

induction. Recall the rule for reducing successors:

((SUCC P), p, a) V.c(i’, a’)

{

suppose (P, p, ~) Jr. (~o, ~o)

if
c70(/0) = n

let ml = dec(lo, Uo)

in (/’,0’) = new(n + l, CTI)

reduction (P, p, m) ~rc (/0, ao). By the induction hy-

pothesis, we assume that if (/1,.. . ,Ik, p,pl, . . . ,pn, a)

is count-correct, thunk-correct, and well-formed, then

so is (/0, /1, . . ..lk. pi,... ,Pn, ~o). The result is then

tested to make sure it is a numeral n. Next, the ref-

erence count of location 10 is decremented yielding a

new store al; thus, (n, . . ..lk. pi,... ,pn, al) is count-

correct. Finally, a new cell 1’ is allocated to store the

result; thus, the result (/’,/1, . . . ,lk, pl, . . . ,pn, a’) is

count-correct. Proving that the result is well-formed

and thunk-correct is easier, and the other cases of the

induction are similar to this one. ■

Finally, one may prove that alternative choices of the

allocation relation “new” do not result in different re-

sults. For specificity, if ~ is an allocation relation, let

JJ,c,j be the relation defined (as in the Appendix) by

using ~ in the place of new. Then

Theorem 3 Suppose f and g are allocation relations,

and (M, p, o) $,C,$ (/’, u’) and o’(V) = n, true, or false.

Then (M, p, a) u~~,$ (i”, a“) and CT’’(Z”) = m’(1’).

The proof again follows by an induction on the proof of

(M, p, a) JJrc,f (/’, u’), using a strengthened induction

hypothesis describing the equivalence of two stores.
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It is harder to prove that the reference-counting

interpreter correctly implements the high-level inter-

preter,

Theorem 4 For any closed term M, M J c iff

(Jf, O,O) U,. (i’, 0’). Moreover, c = n iff cr’(1’) = n,

and similarly for true, false.

Proofi (Hint) The main difficulty in proving this the-

orem lies in the memorization done under suspended

objects in the reference-counting interpreter. This

memorization causes the reference-counting interpreter

to return results that are “more evaluated” than results

returned by the high-level interpreter. To overcome

these difficulties, we first define a relation M < N, read

“M is more evaluated than N ~ in which closed sub-

terms of N may be reduced via U to obtain M. We also

define the functions valof(M, p, U) and valofcell(i, U) for

extracting closed terms out of an environment-store

pair or out of’ a cell-store pair. The definition of <

can be extended to stores in the obvious way. We then

prove the following by induction on the height of $,C

and $:

Suppose the tuples (/1,... ,i~, p, PI,. . . ,p~j a)

and (n, . . ..lk. p,pl, p~, up), u’) are well-

formed, thunk-correct, and count-correct,

and u’ < u. Then valof(M, p, a) J c iff

(M, p, m’) Jrc (/”, m“) where a“ < & and

valofcell(l”, a“) < c.

Since the only terms < basic constants are the con-

st ants themselves, the theorem follows directly. 1

5 The Linear Type System and

Memory Management

It would seem that only susp ‘ended objects may have

more than one pointer to them. This would lead to

many potential optimizations: succ and pred could, for

instance, be implemented using in-place updating. Un-

fortunately, this is not the case. Consider the closed

typable term

share y, z as (delay 2)

in (fetch g from y in (fetch h from z in M))

for some term M. During evaluation, the value 2 is

placed in some cell /1, and y and z are bound to 10

which holds Susp(il). When the evaluation contin-

ues, the variable g is also bound to /1, so /1 has more

than one pointer to it at some intermediate stage. We

could, of course, explicitly copy the cell cent aining 2

and bind g to a new location holding 2, and thus avoid

having more than one pointer to a non-susp’ended cell.

But if 2 were instead some closure, we would have to

copy all cells referenced by the environment of the clo-

sure, and then recursively copy those cells referenced

by those cells copied. It is clear that this would be

a very expensive operation. There may well be other

general ways to guarantee that the reference counts of

non-susp ‘ended objects are always 1, but we have not

found any honest, efficient means yet.

Linear constructs do provide information, though,

about when certain data structures may be garbage

collected. Consider, for example, the terms

NI = ((h. if B then (dispose x before P)

else (dispose z before Q)) M)

N2 = ((kc. dispose z before if II then P else Q) M)

Nz dispose’s the cell bound to M as early as possible;

this may potentially free enough space so that the com-

putation of B does not run into problems. This gives

the programmer fine control over memory management

with some degree of safety: type-correct programs do

not dispose pointers unless it is safe to do so, insuring

the absence of dangling pointers which may happen in

languages like C with memory-management primitives.

6 Relation to Previous Work

Our study haa focused primarily on abstract models

of memory management for the purposes of detect-

ing certain optimizations. Jones and Muchnick [14],

Hudak [13], and Deutsch [6] use abstract interpret a-

tion to deduce the correctness of certain compiler op-

timization, e.g., in-place updating of arrays. Only

Hudak’s work explicitly incorporates memory manage-

ment (through reference-counting), although it proba-

bly could be added to the other models. The main dif-

ference between these papers and ours is that we prove

more properties of our low-level operational semantics:

first, ~hat it matches the higher-level description, and

second, that it satisfies the necessary invariants. Such

principles may be harder to state and prove in the mod-

els of these papers.

Others have discovered that objects with linear type

do not necessarily have one pointer to them. For in-

st ante, Wadler [26] noticed (although informally) in

the context of graph reduction, subgraphs correspond-

ing to terms with linear type do not necessarily have

one pointer to them. Wadler’s language, though, is

slight ly different than ours—he considers terms with-

out the linear constructs of delay, fetch, dispose, and

share, and attempts to infer the position of these con-

nective in raw A-terms.

Lincoln and Mitchell [19], on the other hand, use

almost exactly the same language aa ours with slightly
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different typing rules. They also define an abstract

machine with two heaps, one for objects with only one

pointer to them, and one for objects with possibly more

than one pointer to them. As with our work, Lincoln

and Mitchell find that objects with linear type cannot

be guaranteed to have exactly one pointer to them;

they may need to be placed in the second heap. It

seems that further work is needed to prove that their

abstract machine exploits the linear type system in any

significant way.

7 Conclusion

The goal of our work here is to develop tools for

formally establishing applications for linear logic, as

well as proving memory-related optimizations correct.

What we have done should also be relevant to other

investigations that involve rigorous demonstrations of

properties at several levels of semantic abstraction,

such as work on efficient implementations of call-by-

name evaluation.

The linear language may have uses beyond guaran-

teeing a safe “dispose” operation. For instance, pro-

grams in functional languages, e.g., PCF, can be trans-

lated into the syntax of our language in a relatively

straightforward manner [7]. Our language may there-

fore provide a suitable intermediate representation for

finding memory management optimizations, just as

continuation-passing style is used to find control op-

timization. The language may also be useful as a tool

for profiling memory usage in standard functional lan-

guages.
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A Reference-Counting Interpreter

1

on 7 where the domain of p is {*1, . . . . Zn}

c1 = incr(p(zl), a)
increnv(p, a) =

mn = incr(p(zm), C7n_l)

1

Un , where the domain of p is {z1, . . . . an}

al = dec-ptrs(p(xl), m)
decenv-ptrs(p, o) =

an = dec-ptrs(p(zn), on–l)

1

dec(l, a) if a(i) = 72, true, or false

dec(l, U) if refcount(i, 0) > 1

dec-ptrs(l’, m’) if refcount(i, c) = 1, U’ = dec(l, update(l, O, o)), and

dec-ptrs(l, u) =
u(i) = Susp(i’)

decenv-ptrs(p, u’) if refcount(l, o) = 1, U’ = dec(l, update(l, O, o)), and

a(l) = (z, M, p)

decenv-ptrs(p, o’) if refcount(i, a) = 1, o’ = dec(l, update(l, O, CT)), and

u(l) = thunk(ll, p)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(lo)

(11)

(z, p, u) U,c (p(z), 0)

(n, p, a) U,c new(n, v)

(true, p, U) $rc new(true, a)

(false, p, CT) or. new(false, a)

((h. P), p,a) J,C new((x, P, p), a)

((delay P), p, m) !,. new(susp(lo), me), where (l., ao) = new(thunk(P, p), a)

{

suppose (~, p, ~) Jr. (lo, Uo)

((succ P)jp, 0) U,. (i’, u’) if
C7cl(kl) = n

let al = dec(lo, Uo)

in (/’,0’) = new(n + l,oI)

((Pred ‘), P,’) UrC (~’,”) ‘f (p, P,o) Jrc (~’, “) and “(i’) = 0

((wed ~)jpj ~) Urc (~’ju’) if

{

((zero? P))p, 0) U.C (/’, u’) if

{

((zero? P), p, m) U.. (lo, al) if

{

suppose (P, p, a) J.. (~0, ‘O)

L70(io) = n + 1

let al = dec(io, Co)

in (/’,0’) = new(n, al)

suppose (P, p, a) Or. (zOI 00)

(70(10) = o

let al = dec(io, ao)

in (/’, a’) = new(true, 01)

suppose (P, p, ~) Urc (101 ~0)

CTo(lo) = ‘n + 1

let al = dec(lo, Uo)

in (/’, u’) = new(false, al)
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(12) (if N then P else Q, pl U ~2,CT) u.. (/’, u’) if

{

(13) (if N then P else Q, PI U pz, a) ur~ (i’, a’) if

{

(14)

(15)

((P Q), PI U PZ,U) JJ.rc (/’, m’) if

[

(16) ((Pz” P), P,~) Jr. (i’, u’) if

{

(17) ((dispose P before Q), PI U P2, a) -!).,. (~’, ~’) if

{

(18) ((share z,y as P in Q), pl up2, a) U.,. (i’, u’) if

{

(19) ((fetch z from P in Q), p,&) J,c (/’, a’) if

[

suppose (N, PI, m) WC (~oj ~o)

c70(lo) = true

let al = dec(io, co)

in (P, pz, 01) J,!-., (/’, d)

suppose (~,pI, a) Urc (IO, ‘O)

c70(lo) = false

let al = dec(lo, Oo)

in (Q,Pz}~I) L-c (1’, u’)

suppose (P, P1, ~) Urc (~o, ~o)

refcount(lo, ~o) = 1

Uo(lr)) = (z, iv, p’)

let uz = dec(io, UO)

(Q, P2,02) 4.. (13, c73)

in (N, p’[z * 13], U3) J&-c (1’, a’)

suppose (P, PI, a) t-r. (10, ~0)

refcount(lo, uo) > 1

CTI)(lo) = (%, fv, p’)

let UI = dec(lo, UO)

U2 = increnv(p’, ~1)

(Q, Pz, u2) Urc (~s, US)

in (N, P’[Z I+ 13], 03) $.. (1’, a’)

let (/., ~0) = new(thunk((p~. P), P), U)

(/l, mI) = new(susp(lo), ao)

02 = increnv(p, ml)

‘n (p)~[z * ‘l])az) &C (l’, U’)

suppose (P, pl, ~) Ur. (~o, Uo)

let UI = dec-ptrs(io, ao)

in (Q, P2,~1) J-r. (v, d)

suppose (F’, pI, U) Urc (~Ot ~0)

let UI = incr(lo, c711)

in (Q,P2[z,Y + 10], ~1) Urc (1’, u’)

suppose (P, p, a) U.r. (/0, Uo)

ao(lo) = Susp(ll)

refcount(io, ~o) = 1

ao(ll) = v

let al = dec(io, ao)

in (Q, p[a w /1], al) urc (/’, a’)
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(20) ((fetch z from P in Q), p, a) $.. (1’, a’) if

(21) ((fetch z from P in Q), p, m) 1~~ (1’, c’) if

(22) ((fetch z from P in Q), p, m) l,. (i’, m’) if

suppose (f’, p, ~) Jr. (IO, ~0)

UO(LJ) =Susp(il)

refcount(lo, cro) > 1

(70(/1)= v

let al = incr(i~, c70)

uz = dec(lo, ol)

suppose (pj~j~)Urc (~oj~o)

UO(LJ) = Susp(il)

refcount(io, mo) = 1

Oo(il) = thunk(l?,p’)

let ml = dec(lo, LTO)

U2 = dec(il, al)

(R, p’, U2) u?-. (~3> U3)

in (Q, p[z * /3],03) &.c (i’, o’)

suppose (P, p, m) U,. (10, UO)

ao(lo) = Susp(zl)

refcount(io, uo) > 1

CTo(/l) = thunk(R, /)

let al = increnv(p’, c70)

(R, p’, a,) JJrc (12, C72)

03 = update(lo, susp(12), U2)

~4 = dec-ptrs(il, 03)

c75 = dec(lo, incr(iz, 04))

in (Q, P[Z w 12], u5) L-c (1’, a’)
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