Proving the Correctness of Storage Representations

Mitchell Wand and Dino P. Oliva*

College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA
wand@corwin.ccs.northeastern.edu
oliva@corwin.ccs.northeastern.edu

Abstract

Conventional techniques for semantics-directed compiler de-
rivation yield abstract machines that manipulate trees. How-
ever, in order to produce a real compiler, one has to repre-
sent these trees in memory. In this paper we show how the
technique of storage-layout relations (introduced by Hannan
[7}) can be applied to verify the correctness of storage rep-
resentations in a very general way. This technique allows
us to separate denotational from operational reasoning, so
that each can be used when needed. As an example, we show
the correctness of a stack implementation of a language in-
cluding dynamic catch and throw. The representation uses
static and dynamic links to thread the environment and con-
tinuation through the stack. We discuss other uses of these
techniques.

1

Typical semantically-derived compiler systems [2, 3, 7, 18,
19] translate the parse tiees of the source language into the
language of an abstract byte-code machine. This abstract
byte code machine typically manipulates trees that repre-
sent the enviionment, continuation, local stack, etc. How-
ever, in order to turn this into a real compiler, one has to
1epresent these tiees in machine storage. There are a vari-
ety of strategies for doing this [8], but this representation
step remains a critical and untrustworthy part of compiler-
development technology. Indeed, in two recent compiler-
correctness projects [9, 10], it turned out to be the most
difficult part of the task.

Hannan [7] has shown how, under certain restrictions,
one can automatically transform an abstract machine into
a storage machine. In this paper we show how similar tech-
niques can be used to verify the correctness of storage repre-
sentations in a far more general way. Asin [18, 19, 20], we do
not attempt to derive these representations automatically.
Instead, our goal is to build a framework in which com-

Introduction

* Work supported by the National Science Foundation and DARPA
under grants CCR-2002253 and CCR-9014603
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1992 ACM LISP & F.P.-6/92/CA
© 1992 ACM 0-89791-483-X/92/0006/0151...$1.50

151

piler writers can prove the correctness of arbitrarily clever
human-invented representations.

The representations are formalized by the use of rep-
resentations that we call storage-layout relations. Storage-
layout relations allow a compiler writer to specify the rep-
resentation decisions he or she has made. Storage-layout
relations were introduced in {7]. This work extends that of
[7] by liberating it from the particular aichitecture consid-
ered there, and by considering more complex 1epresentation
strategies, such as multiple terms threaded through a single
stack.

As an application, we consider a simple (not necessarily
functional) language with continuation semantics and catch
and throw operators. The language is designed to obey
stack discipline: that is, the language can be implemented
using only a stack. Our goal is to prove the correctness of
this assertion. In fact, we will show that an ordinary stack
representation, with static and dynamic chain pointers, con-
stitutes a representation of the three trees (display, local
stack, and continuation) of the abstract bytecode machine.

We first give a semantics and a simple byte-code compiler
using the techniques of [3]. This compiler produces code for
an abstract machine that manipulates combinator trees rep-
resenting the environment, continuation, and a local stack.
We then consider two successively more conciete implemen-
tations of this abstract machine. In the first version, we
represent the display, local stack, and continuation 1n a sin-
gle stack kept in memory, while the program remains as a
tree In the second version, we repiesent progirams linearly
as well.

This example shows how we can separate denotational
from operational reasoning 1n a compiler correctness proof,
using each to best advantage: the translation fiom sountce
code to combinator trees is proved correct using structural
induction and denotational reasoning, the translation from
the abstract machine to the the concrete machines is proved
correct using induction on length of execution and opera-
tional reasoning. The link between the two rcgimes is ob-
tained using general 1esults about the completeness of re-
duction strategies in the A-calculus Ve believe that this
strategy will be of general use

2 Comparison with Previous Work

Early proofs of compiler correctness, such as [11], did the
translation from source to target code in a single step. In
modern terminology, such proofs used a source semantics in
a direct style and a target semantics in a continuation style
or an operational style.

The restriction to direct-style semantics made it infea-
sible to use these techniques to prove the correctness of
compilers for languages with non-local jumps. Therefore, in
the 1970’s, attention turned to correctness proofs in which
the source language was given using continuation semantics.
Such proofs typically involved complex arguments about in-
clusive predicates that related the domains in the source and
taiget semantics [12, 17]. These proofs were quite complex
because they sought to model reasoning that was essentially
operational (induction on reduction sequences) by methods
that were essentially denotational (induction on approxima-
tions to inverse limit domains).

At the beginning of the 1980’s, Wand [18] showed how
to avoid the use of inclusive predicates by modelling the
target machine in the same semantic domains as the source
semantics. In this paradigm, one showed that the meanings
of the source and target programs were the same. Because
the semantics was compositional, this could be done by a
simple structural induction. This approach was refined by
Clinger [3] to prove the correctness of a compiler for Scheme.

In this approach, the target language was a sublanguage
of the A-calculus, designed to be closed under reduction. The
target machine simply had to simulate the reduction of the
target program. One could use any desired mechanism to do
this. The simulation proof could use operational reasoning.
The reduction strategy was known to be complete, so the
machine was guaranteed to reduce the target program to a
normal form if one existed.

The Wand-Clinger approach simplified the inclusive-pre-
dicate approach in two ways. first, 1t allowed the denota-
tional reasoning to be done in a single A-model that gave
denotations to both source and target terms, and second, it
separated operational from denotational reasoning, so each
could be used where appropriate. This paper extends the op-
erational patt of the proof by showing how the tree-1ewriting
systems can be implemented in a conventional storage model,
and how that implementation can be proved coriect using
operational reasoning.

Raoult and Sethi [14] and Schmidt [16] considered the
issue of single-threading: when a particular term (or class
of terms) could be represented by a single destructively-
updated quantity, but they did not consider the representa-
tion of such quantities in a linear store. Hannan [7] showed
how certain classes of tree-rewriting systems could be trans-
formed into a stored-program form, including the linea: rep-
resentation of programs, much hke our stored-program ma-
chine 1n Section 8, but he represented all mutable data either
in the heap or in multiple stacks, rather than considering the
single-stack representation considered here.

3 Source Language

Qur source language is a simple language with continuation
semantics. Its values are integeis, recursive procedures, and
continuations. Operations on integers ate addition and con-
ditional branch (on zero). Operations on continuations aie

152

catch and throw. Catch captures the current continuation
and binds it to an identifier. Throw invokes a bound con-
tinuation on a value, discarding the current continuation.

Procedures are recursive, using a local identifier for self-
reference. Any kind of value may be passed to a procedure,
but procedures may return only integers, so that the lan-
guage can be implemented using only a stack. The semantics
1s given relative to an unspecified domain of command con-
tinuations, so that non-functional primitives may be added.

The language is given by

E Id |(E+E)|(itE E E)| (catch Id E)
| {(throw Id E) | (E E) | (rec ld(ld) F)

The semantics of the language is given by a valuation
E[—]. We typically think of £[—] as a syntactic transfor-
mation, whose output is a A-term of the appropiiate type.
That is, if we write T for the set of A-terms of type T, then
we think of £ as having type £ - U — K — C, where U,
K, and C are types given by

C = Command Continuations
Va=ht+[V—-K—C]+[V-—(C]
K=V —-C

U=1d—V

The lattice-theoretical details are not relevant, since we are
dealing with A-terms rather than denotations; we assume
only the existence of a non-trivial model with this tvpe the-
ory. We write the summands of V' as (int, n}), (proc,p) or
{(cont, k). We assume the existence of combinators that can
distinguish these pairwise; this is easy to do by coding

The semantics is given by

E[IY = Apr.r{p[I])
Effes + e2)] = Aps.Ele] p(Avi.Elex]p(Ave sumvivar))
E(ifer es e3)] = Apr.Efea]p(Avy.v1 = (int, 0) —
Eles]px,
Elea]pn)

Ef(rec F(1) €)] = Apr.s{proc,
(fiopror el pl(proc.)/ F. o/ 1))
(Av. return ke))))
El(er e2)} = dpr.Eled]p(Av1.Ele2]p
(Ava. apply, v1v2n})
E[(catehl e)] = Apr.Ele]pl{cont,)/ Ik
El(throul €)] = Apr.Ele]p(Av1.E[I p(Ava apply, viv2))

The operators sum, apply,, apply,. and return all check
their arguments for membership in the appropiiate suin-
mand. In particular, return only allows proceduies to return
integers; this prevents upward funargs and allows a stack-
discipline implementation.

sum = Mvyvzn.{vy = (int, n1)) —
(v2 = {int, n2)) —
r{{int, n; 4 na)},
(error “Non-intege1 second arg”),
{error “Non-integer first arg™)
apply, = dvyve.(ve = {cont,)) —
(01 = (int, n)) — K(v),
(error “Non-integer second arg”),
{error “Non-continuation fust aig™)

return = Axv.(v = (int, n)) — x(v),
(error “Non-integer return value”)

apply, = Aviv2k.(v1 = (proc, p)) — puzk,
(error “Non-procedure to apply”)

4 The Byte-Code Compiler

Our compiler is a straightforward byte-code compiler based
on [3, 18]. Our abstract machine has three registers: a dis-
play u, a local stack ¢ (essentially a local register file, which
is manipulated as a stack), and a continuation. A program
acts on these to produce a command continuation. The ma-
chine uses the following domains:

l: L Lexical Addresses
(Intx Int)

I': Uco=Ild— L Symbol Tables

v: Up=L—-V Run-Time Environments
(displays)

7#: P =Up—V"— K-— C Programs

¢: V* Local Stacks

A program is a term of type P. The compiler takes an
expression and a symbol table, and returns a basic block
(that is, a function P — P) for that expression. The goal
of the basic block is to execute its sequel in the same run-
time environment and continuation, but with the value of
the expression pushed on the local stack This specification
will be the induction hypothesis for the compiler correctness
proof. We write this specification as follows:

(Cle]Tmyulr = Efe](u o DY Az.mu(z :: {)r) (1)
Here we see that the expression is to be evaluated in the en-
vironment which is the composition of the symbol table and
the display. Given the binding-time annotations suggested
for £ and C, each side of this equality can be interpreted as
a A-term of type C, so the equality is to be interpreted as
equivalence in some suitable A-theory.

The compiler is defined as follows:

ClUr = feteh(D[I])=

Cl(e1 + e2)]T'm = Clea T (Cle2]T (add)}

Cl{if e e2 e3)]T7 = Clea [T (br(Cle2]I m)(Cles T w))

Cl{rec P(I) e)]T'r = close(Cle](extc (I, F)T') rts)=

Cl(e1 e2)]T'r = CleJT(Cle=]T (ys7 7))

Cl(catch])T 7 = save-cont(Cle](extc (I, d)T) ris)w
(d a fresh identifier)

Cl(throw] e)]T'x = Cle]T'(C[I]T throw)

Thus the code for e; + ez consists of the code for e; followed
by the code for e,, followed by an add instruction, followed
by the program = that is to follow this basic block. {We leave
it to the reader to verify that this definition is consistent
with the binding-time annotation given above).

The instructions fetch, add, etc., are combinators that
satisfy the following equations:

(fetch Im)ulr = mul(u(l) :: ()5
(addm)u({int, n2) :: {int, n.) :: Or
= wu({int, 71 + n2) :)K

153

(brzmima)u({(int, n1) :: ()&

= ((n1 = 0) — (mu(x), (m1u(x))
(save-contmima)ulk

= ma(extr{{cont, (contmiulx)), ()u){)(cont myulx)
(throw)u({int, n} :: {cont, (cont7'u'¢'s")) : {)x

= n'u'((int, n) :: {')&’
{closen'm)ulk = mu({proc, closureur’) :: {)x
(rts)u({int, n) : {)(contn'u'¢'k’) = v'v'({int, n) :: ()&’
(ysrm)u(v :: {proc, closurenw'n") ::)k

= ' (extr (v, {proc, closurew'w")yu' Y} (cont mulx)

In addition, the instructions must also satisfy a set of
equations for error conditions in the semantics, such as

(addm)u(v :: {proc, p) :: {)x = error “Non-integer first arg”

Here cont and closure are combinators defined by:

(contmulr) = Az.wu(z : {)K
(closureun) = fir(Ap. k. m(estr{v, {proe, p))u){)x)

and extc and extr are combinators such that
(extr{v,v")u) o (extc (I, IVT) = (u o T)[v/1,v'/I']

The equations for the instructions are not quite combinators
as presented here, but it is straightforward to write combi-
nators that obey these equations.

Now we can state the correctness of the compiler:

Theorem 1 The compiler C s correct, that s, for all source
programs e, symbol tables T, run-time environments u, stacks
¢, and continuations x,

(Clellm)uls = E[e](x o TYAz.mu(z = O)K)

Proof: By a straightforward structural induction on the
expressions of the source language. O

The bvtecode machine definition 1s denotational. How-
ever, except for the error rules, each instruction definition is
of the form

IR
ruCk =7 u'C K

, . .
where m, u, ¢. v, © ' ¢’ k' are given by the following
glammat:

T {(fetch) | (addw) | (bromwm)
| (save-contrm) | (throw) | {closenx)
f(rts) | (gs77)

emptydisplay | (extr{v, (proc, closurew'n)}u’)
| (extr{{cont, (contmu'(k)}, () u')

¢ = (] (v=()

v = (int,n) | (proc, closureuw)
| {(cont, (contmulx))

ko= awnatcont | {cont mulr)

(where in the productions for u, the occurrences of v’ ate
the same; this could be avoided by introducing two new
combinators).

Fach step in the reduction sequence of wu(x will have
the form = «’'¢’'s’ for some program =, display u’, stack ¢,
and continnation «’ as specified by this grammar. Therefore

we can give the bytecode machine an operational semantics
by thinking of it as a 4-register machine and regarding each
of the equations for the instruction combinators as rewriting
rules. The resulting abstract machine is shown in Figure 1.
We can state the soundness of this machine as follows:

Theorem 2 If {r,u,(,s) = (x', v, (', &), then mulx —
ot
7w (R

It can also be shown that the machine is complete with
respect to either call-by-value or call-by-name reduction [13},
since these reduction strategies coincide on the terms ma-
nipulated by the machine, and the machine emulates these
reduction strategies.

So far this is just an example of the method set out in
[3, 18] (see also [5] for some more extended examples). We
next turn to our main topic: the representation of these
trees in a linear store.

P

5 Stack Representation

This abstract machine simulates the reduction of the terms
produced by the compiler. However, it is still a tree manipu-
lation system. In oxrder to implement this abstract machine
on a real computer, one must represent these trees in mem-
ory. It is the correctness of this representation that is our
main concein in this paper.

In particular, our language was carefully designed to
obey stack discipline. that is, the language can be imple-
mented using only a stack. Our goal is to prove the correct-
ness of this assertion In fact, we will show that an ordinary
stack 1epresentation, with static and dynamic chain point-
ers, constitutes a representation of the three trees (display,
local stack, and continuation) of the abstract bytecode ma-
cline

We will do this in two stages. In the first stage, we
will tepresent the displav, local stack, and continuation in
a single stack kept in memory, whereas the progiam = will
remain as a tiee. In the second stage, we will repiesent
programs linearly as well

Our conciete machine will be a 5-tuple

(7w, up, sp, kp, o)

consisling of a program w, a display pointer up, a stack
pointer sp a continunation pointer kp, and a store o. The
pointers are addresses in the store, satisfying sp > kp > up.
We asswne that each cell of the store can hold a tag (proc or
int), a ponter, and occasionally a program. (The program
will be condensed to a pointer in the second step).

We now sketch the representation of the abstract ma-
chine’s quantities 1n the conciete machine.

1. Values (integers or closures) are represented as single
words in memory, including theii tags. Continuations
bound by catch are represented as single words con-
taining a tag and a pointer to the continuation struc-
ture.

3]

. Alocal stack (vn - vn—y . owp i () 18 speafied
by giving upper and lower bounds as indices, and 1s
represented as a series of woids in the stack

154

ub: [v,
Vn—1
U1

b

This notation is intended to mean that ub and b are
pointers into the stack, that ub points higher in the
stack than lb, and that the values from position ub,
moving downward, are vp, vp_1,..., V1.

3. A run-time environment (display) extension of the form
extr{v. {proc, closurew'x’))u’ is specified by a pointer
p into the stack:

p: v
{proc, closurep’n”)

where p’ 15 a pointer to the display «’ (ie, a static
chain pointer). Here the second slot is used both for
the closure that is bound to the local name for the
procedure and for the static chain that isin the closure.

. A run-time environment (display) extension of the form
extp{{cont, (cont 7’ ulr)), (})u is specified by a pointer
p into the stack.

P

{cont. p
pl’

wheie (cont, p') represents (contr'u(x) (according to
item 1 above) and p” is a pointer to the display u (ie,
a static chain pomter).

5 The continuation (contwux)1s represented by a poin-
ter p into the stack as follows:

prolow the saved program (counter)
up | pointer to the saved environment
Lp | dynamic chain (base) pointer
left open for cuirent environment
left open for current environment
Un top value in ¢
vy bottom value in ¢
hp: top of frame {or next continuation &

6 Storage Layout Relations

This pictornial specification 1s adequate for compiler writers,
but it is not quite formal enough to allow us to do proofs.
We formalize these pictures as a family of 1elations, called
storage layout relations, that tell precisely when a pointer
into a stack corresponds to a given abstract structure. In
general, a storage layout relation will be a ternary relation
o = p =~ m, which mecans that pointer p corresponds to
abstract structure m in storte . We will consistently put
the concrete object on the left of the equivalence, and read
~ as “corresponds to.”

We will liave four storage layout relations, one each for
values, stacks, environments, and continuations. These wi]l
be defined by simultaneous induction on the terms for val-
ues, stacks, environments, and continuations. Since these
are relations on terms (not their denotations), the existence
of the rclations 15 asswied

The defimtion of the relations is now a straightforward
transcription of the data m the diagrams above.

Abstract machine:

((fetchln),u, ¢, k) = (m,u, (u(l) = ¢), k)
((addw), u, ({int, n2) = {int,m1) :: ¢),k) = (m,u, ({int,n1 + n2) : {), &)
((brzx'm),u,v : €), k) == {(choosevn'n), u,(, k)
((save-contw'n),u,(, k) == (r,(extr{{cont, (cont'ulk)),) u),

(), (contw'ulx))

{{throw), u. {cont, (contx'u'¢'k")) :: {int,n) = O,k)y = (&', ({int,n) :: ¢'), K"

((closen'n),u,{,k) = (=, u,({proc, closureuw’) :: ¢), &)
{(rts), u, ({int, n) :: ¢), (cont7'u'¢'w")y = (x',u',{{int, n) :: ¢'), &’
((srm), u, (v - (proc, closureu's") :: ¢), k) == {(r', extr{v, (proc, closureu’="))u’,
(), (contmulr))
Auxiliaries:

{choose vm'r) = (v = (int,0)) — 7, 7’

Tigure 1: Actions of the abstract machine.

e Relating Pomnters and Tagged Values

cbEvpru &

either v = (int,n) = o(p)

or v = {proc, (closureu))
and o(p) = (proc, (closure up r))
and up<pand oy up>~u

or v = {cont, (cont Tulx))

and o(p) = {cont, p")
and p’ < p
and o =x p' 2~ (contrulk)

e Relating Pointers and Stacks

oz (pp) = (¢ =
either ¢ =()and p=7p’
or (=(z:2C)andp>p and o prz
and o |z (p~1,p") =’

e Relating Pointers and Environments

will use similar notation for field selectors throughout.
Note that this relation specifies that that the static
chain is kept in the same field of the second word of
the environment representation, whichever variation
(proc or cont) is used.

The p+3 case arises when a save-continstruction is ex-
ecuted. this instruction pushes a new continuation on
the stack, using the format in item 5 above, and binds
the continuation in the vacant environment frame.

e Relating Pointers and Continuations

cERp R &>
either & = ineztcont and p = 0
or k= (contmulx’)
and o(p) =«
ando(p—1)<pandofEvo(p—1)~u
and o(p—~2)<pand o = o(p—2) ~ &'
and o =z (p—5,0(p—2)) ~¢

7 The Proof

clEvp~u &
either « = emptydisplay and p = —1
or u = ertg{v.{proc, closurew' ")}’
and o =y pow
and ¢ =y p— 1~ (proc, closureu'n")
and o(p—1)u<p
and o Er o(p — 1).u >~ u’
w = (eatr{{cont, (contx'u'(r)}, HHu')
and o(p) = {(cont, p)
and p' =p+3
and o i p’ o (cont mulK)
and o(p—1)u<p
and o =g oa(p— 1w~ 2

or

. /
Here we use the notation o{p).u {o denote the contents -

We

of environment-puinter field of location p of o

155

Lemma 1

18]

We begin by stating some useful lemmas about these re-
lations.
the changing locations in the stack above a pointer does not
change the quantity that the pointer represents. Let o0 =, ¢’
denote the proposition Vr.0 < z < p = o(z) = o'(z).
Then we have the following:

The most important of these lemmas state that

LIlfo=,0 & oy pxvtheno v po
v.

Ifo=po' & o=z (p,p) = theno' =z {p,p') ~ (.

Afo=ups o' & o=y up 2 u then o' =y up ~ w.

Ifo=p, o &olErkprnthena B kp = k.

Proof: By induction on the definition of ~. For stacks,
the condition o =7 {p, p') implies p’ < p. For environments,
we need to write up +3 because the first slot might contain
a continuation, we potentially can point 3 slots up in the
stack. O

We can now define the correspondence between abstract
and concrete machine states

Definition 1 We say a concrete machine state {x, up, sp,
kp, o) corresponds to an abstract machine state {z',u,{, &)
(written {x,up, sp, kp, o) =~ (x',u,¢,k)) if and only if the
following conditions are satisfied:

[=,

2. 0 v up = u,

3. o=z (sp, kp) = (, and
4. 0 Ex kp > k.

This says {among other things) that the local stack ¢ is
kept at the top of the stack, and 1s immediately followed by
the representation of x; the display u is threaded through
the stack but need not be near the top.

With this definition of correspondence between machine
states, we can work out the action of our instructions on
the concrete machine. Figure 2 shows the most complex

. . / / !
example, the jsrinstruction. Here sp’, up’, and kp’ denote
the new values of the concrete machine registers. Since sp’ =
kp', the new value of ¢ is the empty stack {)

A diagram such as that in Figure 2 can be translated into
a formal representation more suitable for formal reasoning,
similar to the definition of the abstract machine in Section 4.
This 1s done in Figure 3. Here we use v.kp to extract the
continuation field {rom a stored continuation, and v.wm to
extract the progiam field from a stored closure.

We can show that the following invariant is preserved by
the machine:

Lemma 2 In all machine states, sp > kp > up+3.
The correctness of the auxiliary find is also shown:
Lemma 3 If o =y up >~ u then
o v (findlupo) ~ u{l)
Now we can show the main theorem, which asserts that

the conciete machine corlectly simulates the abstract ma-
chine:

Theorem 3 Let Ay and A, be states of the abstract ma-
chine and C1 and C» be states of the concrete machme. If
(Y~ Ay A = As, and Cy = 5, then (h ~ 4,

Proof By analysis of each instiuction Heie we show two
cases, fetch and jysr.

o Assume we have ((fetch I), up, sp, kp, o) =~ ((fetch I 7).

1, ¢, k) We must show that

{(m,up, sp+1.kp, o'y o (m, w, (w(l) :: O} w)

where o' = o[(lookup lupo)/(sp+1)]. We considex
each of the conditions for o~ n turn:

156

I.7=m

2. We have sp+1 > up+3and ¢ Ev up ~ u. There-
fore o’ =y up ~ u by Lemma 1.

3. We have ¢ v (findlups) ~ u(l) and ¢ =3
Sp, kp) ~ (. Hence o' =z {(sp+1,kp) ~ (u(l) =

4. sp+1 > kp and 0 Ex kp ~ &. Therefore o' i
kp >~k

o Assume we have ((ysrr), up, sp, kp, o) =~ ((ysrr), u, (v =
(proc, closurew’7’) :. ¢), k). We need

{o(sp —1).7, sp, sp+3, sp+3, (push-contup spkp o))
o~ {7, (extr{v, (proc, closureu'n"))u'), {}, (cont Tulx))

where ¢’ = (v 1 (proc, closureu’s’) = ¢) and o' =
(push-contupspkpo) By the definition of push-cont,
o and o agree on all locations less than or equal to sp.

1. We have o =z {sp, kp) ~ ¢' and [¢’] > 2. Hence
o(sp—1).r=na'.

2. 0 =z (spkp) ~ ¢ and |¢'} > 2 Hence o’ f=v
sp =~ (extr(v, (proc, closureu'7'))u').

3. 0"z {(sp+3,sp+3) =2 ()

4. a'(sp—l—S) =7
o' (sp+2)=up+3 < sp+land o=y up~u
= o'y o'{sp+2) > u
o' (sp+1)=kp< spt+land o Ex kp~ &
=o' Er o' (sp+1) >k
o Ez {sp,kp) = ¢ and |{'| > 2 = o =z
{sp—2,0"(sp+ 1)) =¢(
= ¢ x sp+3 ~ (contwulk)

O

This theorem shows that the concrete machine and the
abstract machine compute in the same way. staited in cor-
responding states, they compute by passing through a se-
quence of corresponding states. Thus the concrete machine
will give the same answer as the abstract machine

This theorem is not surprising, of course. What is new
here is a way of formalizing the representation of environ-
ments, continuations, etc., so that we can see how even very
low-level stiuctures directly represent the quantities in the
language definition. Furtherinore, this organization allows
us to separate denotational from operational reasoning, so
that each can be used to best advantage.

8 Code Representation

We can similarly represent the program trees r in a linear
program store M. The details here are similar, but easier.
Instead of storing a program = in a single word of memory,
as we did in the previous machine, we represent = expliatly
in a linear program store A{. For example, the program
(fetch I ") would be 1epresented as a location p in AL

p: | fetch
{

where p-+2 represented 7. We assume that M has a domain
that is disjoint from the data stoie ¢ and that its 1ange is

Abstract machine:

{(ssr7), u, (v = (proc, closureu'w") ::), k) =
(', (extr{v, {proc, closuren’'z"})u'}), (), (cont rulx))

Concrete machine:

Before After Comments
sp', kp' T return address
up saved environment pointer
kp dynamic chain
sp: v up v old top of ¢, now in environment
{proc, closureu’n') {proc, closureu’n") | closure, including static chain
Un Un rest of ¢, now saved
kp: representation of &

Figure 2: Executing a jsrinstruction on the abstract and concrete machines.

Concrete machine:

(m, up, sp+1, kp. o[(lookup lupa)/ sp+1])

(7, up, sp—1, kp, a[(int-addsp(sp—1)o)/ sp—1})

{(choose o(sp) = =), up,sp—1,kp, c)

(7', sp+1,8p+5, sp+5, (ext-cpm upspkp o))

{o{o(sp). kp), o({o(sp).kp) — 1), a(sp). kp —4,
o({o(sp).kp) — 2),ola(sp—1)/ca(sp).kp — 4])

{m, up, sp+1, kp., o[{proc, closureup ')/ sp-+1})

{o(kp), o(kp—1), kp—4,0(kp—2),olc(sp)/kp — 4])

{o(sp —1).7, sp.sp+3, sp+3, (push-contw up spkp o))

{(fetch I x), up, sp, kp, o)
{(addT), up, sp, kp, o)
{(brzx’x), up. sp, kp, o)
((save-contr'w), up, sp, kp, o)
{(throw), up, sp, kp, &)

{(closen'x), up, sp, kp, o)
{(rts). up. sp, kp, o)
(s), up, sp, kp. o)

PR el

Auxiliaries:

(lookup{n,m) upa) = o(find{n, m) upo)
(find{n.m)upo) = ()(n =0} — (up—m), (find{n — 1, m)(a(up).up)o)
(int-add pp’ o) = (int. (o(p) mt) + (o(p').1nt))
(choose v ' ®) = ((v = (int, 0)) — =, 7")
(push-contr upspkpo) = olkp/ sp+1,up/sp+2, %/ sp+3]
(ext-cpm upspkpo) = (push-contw up sp+2 kpo){up/ sp+1, (cont, sp+5)/ sp +2]

Figure 3: Actions of the concrete machine.

157

large enough to hold a single opcode or a pointer (either to
data or program).

Again, we define a storage layout relation M pp > =
as the least fixpoint of a monotonic operator. (Note the
presence of goto, which prevents the use of structural induc-
tion. The goto instruction is not necessary, but illustrates
the power of the technique).

¢ Relating pointers and programs

MEppxr <
either « = (fetch I ')
and M(p) = fetch and M(p+1) =1
and M =pp+2xn
T = (add7")
and M(p) = add and M =p p+1 ==’
= (brz7'x")
and M(p) = brz
and M f=p]M(p—{—l) ~
and M Epp+ 27"
7 = (save-contw' n")
and M(p) = save-cont
and M =p M(p+1) =7’
and M Epp+2 "’
7 =rts and M(p) = rts
7 = throw and M (p) = throw
7 = (closex’'n"")
and M (p) = close
and M =p M(p+1) = 7
and M Epp+2x~x”
x = (gsr)
and M(p) =jsr and M =pp+1~7
M(p)=gotoand M =p M(p+1) ==

or

or

or

or
Oor
or

ot

or

¢ Relating stored values

Stored values correspond if they are alike except for
the representation of programs:

M sy so e sv’ =

either sv = (proc, (closure up p))

and sv’ = {proc, (closureupw))

and M =ppx~n=
o1 sv=pandsv ' =7rand M Epp=n
or sv = sv'

e Relating data stores

Data stores correspond up to pomnter p if they corre-
spond location by location for all smaller locations:

Mbpo~o <
0<p <p,MEsva(p')~a'(p)

We call the machine using this linear program store the
stored-program machine. In order to describe the machine
using simple pattern-matching rules, we specify the stored-
program machine using a fetch-execute cycle. The controller
of the machine has two states. fetch and execute. In the
fetch state, the machine uses 4 1iegisters: an instruction
pointer tp, which is a pointer into the program store, point-
ers up, sp, and kp, as 1n the preceding machine. In the
exccute state, the machine uses 1n addition an instiuction
register in

158

In the fetch state, the machine retrieves the opcode to
which the instruction pointer points, places it in the instruc-
tion register, and goes to the execute state:

F(ip, up, sp, kp, ¢) == E(ip, M (1p), up, sp, kp, o)

The execute state then performs a rewrite, dispatching on
the contents of the instruction register, and returns to the
fetch state. The rewriting system for the stored-program
machine is shown in Figure 4. This is similar to Figure 3
except for the treatment of pointers to programs.

Now we can define the correspondence between the con-
crete and stored-program machines. We define the corre-
spondence at the start of the fetch-execute cycle, that is,
at the fetch state of the stored-program machine. Since the
pointers into the data store are exactly the same, all that
is required is that the programs correspond, and that the
stores correspond up to sp.

Definition 2 We say a stored-program machine state F(1p,
up. sp, kp, o) corresponds to a concrete machine state (x’,
up’,sp’ kp', @'Y (wrtten M = F(ap, up, sp,kp, o) ~ (7, up,
sp, kp, oY) of and only of

1. M E=p ip

2 up=up
3. sp=sp
4. kp=kp'
5 MEspox o

Now we can state the main theorem:

Theorvem 4 Let C1 and C) be states of the concrete ma-
chune and Ly and Ly be fetch states of the stored-program
machine. It M = Ly = Cy, C1 = Ca, and L, Lo,
then M = La =~ (5.

_—
B

Proof By analysis of each instruction This 1s tedious
but straightforward; since M is immutable, we do not need
free-location lemmas like Lemma 1. O

If we call the algonthm that translates from program
trees © to stored programs the “assembler.” then the cor-
rectness of the assembler factors into two parts:

1 Showing that the assembler 1s correct: that it emits a
stored program corresponding to the program tiee .

. Showing that 1f a stored program corresponds to a pro-
gram tice 7, then the machines will deliver cortespond-
ing outputs.

[

These two steps are somewhat analogous to the decom-
position of the compiler: showing that the compiler is cor-
1ect by showing 1t emits code that meets its specification
(Theorem 1), and then showing that the bytecode maclune
simulates 1eduction of the bytecode term (Theoremn 2)

As 1 the compiler case, the second part of the proof is
independent of the assembler algorithm, and that is the part
we have shown heie: what 1emains 1s the fust, assembler-
dependent pait. We hope to report on that clsewhere

F(ip, up, sp, kp, 7)

E(ip, fetch, up, sp, kp, o)
E(ip, add, up, sp, kp, o)
E(ip, brz, up, sp, kp, o)

FE(1p, save-cont, up, sp, kp, o)
E(2p, throw, up, sp, kp, o)

E(up, close, up, sp, kp, o)
E(Zp, ’I‘tS, up, sp, kp7 U)
E(ip, jsr, up, sp, kp, o)

PEe bheel

Stored-Program machine:

E(ip, M (ip), up, sp, kp, o)
F(ip+2, up, sp+1, kp, o[(lookup M (1p + 1) up o)/ sp +1])
F(ep+1, up, sp—1, kp, o[(int-addsp(sp—1)o)/ sp—1])
F({choose(o{sp))(sp+20 M (ip+1))), up, sp—1, kp, &)
F(M(ap+1), sp+1, sp+5, sp+5, (ext-cp(ip+2) upspkpa))
F((o(sp). kp), a(o(sp).kp — 1), o{sp). kp —1,

a(o(sp).kp —2),elc(sp—1)/c(sp).kp — 4])
Flip+2, up, sp+1, kp, o[(proc, closure up M (1p +1))/ sp+1])
F(o(kp),o(kp—1). kp—4, a(kp—2), ala(sp)/kp — 4])
F(o(sp—1).1p, sp, sp+3, sp+3, (push-cont(ip+1) up spkp o))

Auxiliaries:

(lookup{n,m)upco) = o(find{n, m) upo)
(find{n,m)upo) = (n = 0) — (up—m), (find{n — 1, m}{a(up}.up)o)
(1nt-add pp'o) = (int, (a(p).ant) + (o(p').ant))
(choose v 1p' 1p) = (v = {int, 0)) — ip, op’
{push-cont wpupspkpo) = alkp/sp+1,up/sp+2,1p/ sp+3]
(ext-cpepupsphkpo) = (push-cont wpup sp+2kpa)[up/ sp+1, (cont, sp-+5)/ sp+2]

Figure 4: The fetch/execute cycle of the stored-piogram machine.

9 Partial Correctness and Untagged Rep-
resentations

The stack machine derivation that we have presented is only
one application of these proof strategies. In this section we
will sketch another such application.

Our implementation still differs from an “ordinary” im-
plementation of a stack-based language such as C or Pascal
in that data values in C or Pascal do not include tags like ou1
int or proc. Tags like these would impose a considerable
run-time penalty in both time and space.’

In languages hike C or Pascal, the compiler typically uses
some form of type-checking to ascertain that primitive op-
erations like procedure call or arithmetic are invoked only
on legal quantities. For languages that are not type-safe,
such as C, these compile-time checks are of course less than
foolproof, and may lead to unpredictable consequences (e.g.
core dumps).

Here we have a semantic mismatch- the semantics is
given using disjoint sums, with specified error behavior (con-
tinuations of the form (error ...)), but the implementation
uses non-disjoint sums and has unspecified error behavior.
In what sense can we say that an implementation of such a
language is correct?

We can model this situation by using untagged storage
layout 1elations and weakening the requirements on the im-
plementation To get a storage layout relation for an un-
tagged implementation, we replace pattern-matching in the
definition of the storage relation by field selection. Thus we

1The benefits of tag eliminarion are less clear for languages that
require garbage collection, though even 1n this case 1t may be possible
to remove all tags [1, 6]

159

might replace

cEvp~r =

either v = (int.n) = o(p)
or v = (proc, (closureu m1))
and o(p) = (proc, (closure up,))
and up < pand o Fy up > u
by
ckEvp~e
either v = (int,n) and o(p) = n
o1 v = (proc, (closureun;))

and M Ep o(p).7 >~ m;
and o(p).u < pand o =y op) u > u

We can weaken the requirement on the implementation
by saving that if the abstract machine proceeds without in-
voking an error, then the concrete machine must do so also
If the abstract machine invokes the erior continuation, then
the behavior of the conciete machine is unspecified. This
contiact cortesponds to the Scheme notion [4] of “is an er-
ror.” With this contiract, the coirectness theorem becomes:

Theorem 5 Let 4, and Az be states of the abstract ma-
chine and Cy and Cy be states of the concrete machine.
If ¢y A1, Ay = A2, Az s not an error state, and
Cl = (. then C; ~ 4.

~

The only change fiom Theorem 3 is the addition of the
phrase “ 43 1s not an error state.” The proof goes as before.

10 Conclusions and Further Work

We have shown the coriectness of a stack implementation
of a programming language. The stack was shown to be a

data structure that represented three different terms in the
bytecode machine. The techniques generalize those intro-
duced by Hannan [7]. We believe that these techniques will
generalize to other crucial repiesentation strategies, such as
caching portions of the local stack ¢ in registers, representing
mutable entities with dynamic extent on the stack, and mod-
elling program loops by circular storage structures. These
techniques, especially the vaiiant in Section 9, should also
be adaptable to model the finite word size of real machines.

Acknowledgements

Paul Hudak originally suggested the coriectness of a stack-
discipline language as a useful exerase. Joshua Guttman,
John Ramsdell, Vipin Swarup, Larry Monk, and Bill Farmer
of the MITRE Corporation provided useful feedback on our
Pure PreScheme compiler, which led us to the questions
counsidered in this paper.

References

[1] Appel, AW, “Runtime Tags Aren’t Necessary,” Lisp
and Symbolic Computation £ (1989), 153-162.

Clément, D, Despeyroux, J., Despeyroux, T, and
Kahn, G. “A Simple Applicative Language: Mini-ML”
Proc. 1986 ACM Symp. on Lisp and Functional Pro-
grammang, 13-27.

Clinger, W. “The Scheme 311 Compiler An Exercise in
Denotational Semantics,” Conf. Rec. 1984 ACM Sym-
postum on Lisp and Functional Programmang (August,
1984), 356-364

Clinger. W.. and Rees. J.. eds. “Revised* Report on
the Algorithmic Language Scheme”, Indiana Univer-
sity Computer Science Depaitment Technical Report
No. 341, November, 1991. to appear in LISP Pownters,
1992 See also “Revised” Report on the Algorithimc
Language Scheme”, SIGPLAN Notices 21,12 (Decem-
ber, 1986). 37-T9

Friedman, D.P., Wand, M., and Haynes, C.T.. Fs-
sentials of Programmang Languages, MIT Press, Cam-
bridge, MA, and McGraw-Hill, Chicago, 1992.

Goldberg, B. “Tag-Free Garbage Collection for Strong-
ly Typed Programming Languages,” Proc. ACA SIG-
PLAN 91 Symp. on Programnung Language Design
and Implementation, June, 1991, 165-176.

Hannan, J. “Making Abstract Machines Less Ab-
stract,” Functional Programmung Languages and Com-
puter Architecture, 5th ACM Conference (J. Hughes,
ed.) Springer Lecture Notes in Computer Science,
Vol. 523 (1991), 618-635.

Lee, P. Topics in Advanced Language Implementation,

MIT Press, Cambridge, MA, 1991

Farmer, W.M |, Guttman, J.D., Monk, L.G., Rams-
dell, J D., and Swarup. V. “VLISP. A Venfied Lan-
guage Implementation FY 91 Year-Eud Report,” The
MITRE Coiporation Techrucal Report MTR11232, Oc-
tober, 1991.

160

[10] Oliva, D.P., and Wand, M., “A Verified Compiler for
Pure PreScheme,” Final Report for MITRE Contract
Number F19628-89-C-001. Included in [9].

{11] McCarthy, J. and Painter, J. “Correctness of a Com-

piler for Arithmetic Expressions,” in Proc. Symp. in

Appl. Math., Vol. 19, Mathematical Aspects of Com-

puter Science (J. T. Schwartz, ed.) Amer. Math. Soc.,

Providence, RI, 1967, 33—41.

[12] Milne, R. and Strachey C. A Theory of Programming

Language Semantics, Chapman & Hall, London, and

Wiley, New York, 1976

[13] Plotkin, G.D. “Call-by-Name, Call-by-Value and the -

Calculus,” Theoret. Comp Sci. 1(1975) 125-159.

[14] Raoult, J.-C. and Seth1, R. “The Global Storage Needs

of a Subcomputation,” Conf. Rec. 11th ACM Symp. on

Principles of Programming Languages (1984), 148-157.

{15] Reynolds, 3.C. The Craft of Programming, Prentice-

Hall International, 1981.

[(16] Schmidt, D A. Denotational Semantics: A Methodology

for Language Development Boston: Allyn and Bacon,

1986.

[17] Stoy, J.E. Denotational Semantics. The Scott-Strachey

Approach to Programming Language Theory, MIT

Press, Cambridge, MA., 1977.

[18] Wand, M. “Semantics-Ditected Machine Aichitecture”

Conf. Rec. 9th ACM Symp. on Principles of Prog. Lang.

(1982), 234241

Wand, M. “Loops in C'ombinator-Based Compilers,”
Info. and Control 57, 2-3 (May/June, 1983), 148-164.

Wand, M. “On the Coriectness of Procedure Repre-
sentations in Higher-Oider Assembly Language” Proc.
MFPS '91 (S. Brookes, ed) Springer Lecture Notes 1n
Computer Science, to appear

