
Proving the Correctness of Storage Representations

Mitchell Wand and Dino P. Oliva*

College of Computer Science

Northeastern University

360 Huntington Avenue, 161CN

Boston, MA 02115, USA

wand@lcorwin. ccs.northeastern .edu

olivaQcorwin. ccs. nort beast ern .edu

Abstract

Conventional techniques for semantics-directed compiler de-
rivation yield abstract machines that manipulate trees. How-

ever, in order to produce a real compiler, one has to repre-

sent these trees in memory. In this paper we show how the
technique of storage-layout relations (introducecl by Hannan

[7]) can be applied to verify the correctness of storage rep-

resentations in a very general way. This technique allows

us to separate denotational from operational reasoning, so

that each can be used when needed. As an example, we show

the correctness of a stack implementation of a language in-

cluding dynamic catch and throw. The representation uses

st, atic and dynamic links to thread the environment and con-

tinuation through the stack. LVe discuss other uses of these

techniques.

1 Introduction

‘rypical semanticall~,-derived compiler systems [2!, 3, 7, 18,

19] translate the parse tlees of the source language into the

language of an abstract byte-code machine. This abstract

byte code machine typically manipulates trees that repre-
Sellt the ellt,i~onnlel~t,, continuation, local stack, etc. HOW-

ever, in order to turn this into a real compiler, one has to

Iepresent these trees in machine storage. There are a vari-

ety of strategies for doing this [8], but this representation

step remains a critical and untmstworthy part of conlpiler-

developrnent technology. Indeed, in two recent compiler-

correctness plojects [9, 10], it t,urnecl out to be the most

difficult part of the task.

Hannan [7] has shown how, under certain restrictions,

one can automatically transform an abstract machine into

a storage machine. In this paper \ve show how similar tech-

niques can be used to verify the correctness of storage repre-

sentations in a far more general way. As in [18, 19, 20], we do

not attempt to clerit,e these representations automatically.

Instead, our goal is to build a framework in which com-

“ FVorh suppol-ted by tile iVatlonal Science ~’oundatloll and DARPA

under grants CCR-9002253 and CCR-9014603

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA

01992 ACM O-89791-483-X192/0006/0151 . ..$1.50

piler writers can prove the correctness of arbitrarily clever

human-invented representations.

The representations are formalized by the use of rep-

resentations that we call storage- la~out relations. Storage-

layout relations allow a compilel writer to specify the rep-

resentation decisions he or she has made. Storage-layout

relations were introduced in [7]. This work extends that of

[7] by liberating it from the particular architecture consid-

ered there, and by considering more complex representation

strategies, such as multiple terms threaded through a single

stack.

As an application, we consider a simple (not necessarily

functional) language with continuation semantics and catch

and tlmow operators. The language is designed to obey

stack discipline: that is, the language can be implemented

using only a stack. Our goal is to prove the correctness of

this assertion. In fact, \ve will show that, an ordinary stack

representation, with static anti dynamic chain pointels, com

stitutes a representation of the three trees (display, local

stack, and continnat,iou) of the abstract hyt, ecode machine,

\Ve first give a sernant)cs and a simple b~te-cocfe compiler

using the techniques of [3]. This compder produces code for

an abstract machine that manipulates combinator trees rep-

resenting the environment, con(rnuation, and a local stack.

We then consicler t~vo successively U]OI e conclete implemem

tations of this abstlact machme, In the first version, we

represent, the display, local stack, and continuation]n a sill-

gle stack kept in memory, Ivhile the plo,g] am Ielnalm as a,

tree In the second ~,el-sion, ~ve replesent progl ams hnearly

as well.

This example shows how we can separate denotational

from operational reasoning in a compiler correctness proof,

using each to best advantage: the translation flom solllce

code to combinator ttrees is p[ove(l corlect using structural

induction and cfenotational reasoning, the translation from

the abstract machine to the the concrete machineq is proved

correct using induction on length of execution Jnd opera-

tional reasoning. The link between the two Iegimcs is ob-

tained using general Iesult,s abollt the completeness of re-

duction strategies in the Lcalc. (dns \Vr beliete that this

strategy will be of general use

151

2 Comparison with Previous Work

Early proofs of compiler correctness, such as [1 I], did the

translation from source to target code in a single step. In
modern terminology, such proofs used a source semantics in

a direct style and a target semantics in a continuation style

or an operational style.

The restriction to direct-style semantics made it infea-

sible to use these techniques to prove the correctness of

compilers for languages with non-local jumps. Therefore, in

the 1970’s, attention turned to correctness proofs m which

the source language was given using continuation semantics.

Such proofs typically involved complex arguments about in-

clusive predicates that related the domains in the source and

ta~get semantics [12, 17]. These proofs were quite complex

because they sought to model reasoning that was essentially

operational (induction on reduction sequences) by methods

that were essentially denotational (induction on approxima-

tions to inverse limit domains).

At the beginning of the 1980’s, Wand [18] showed how

to avoid the use of inclusive predicates by modelling the

target machine in the same semantic domains as the source

semantics. In this paradigm, one showed that the meanings

of the source and target programs were the same. Because

the semantics was compositional, this could be done by a

simple structural induction. This approach was refined by

Clinger [3] to prove the correctness of a compiler for Scheme.

In this approach, the target language was a sublanguage

of the Lcalculus, designed to be closed under reduction. The

target machine simply had to simulate the reduction of the

target program. One could use any desired mechanism to do

this. The simulation proof could use operational reasoning.

The reduction strategy was known to be complete, so the

machine was guaranteed to reduce the target p~ogram to a

normal form if one existed.

The Wand-Clinger approach simplified the inclusive-pre-

dicate approach in two ways. first, lt allowed the denota-

tional reasoning to be done in a single ~-model that gave

denotations to both source and target terms, and second, it

separated operational from denotational reasoning, so each

could be used where appropriate. This paper extends the op-

erational pa~t of the proof by showing how the tree- rewriting

systems can be implemented in a conventional storage model,

and how that implementation can be proved corl ect using

operational reasoning.

Raoult and Sethi [14] ancl Schrmdt [16] considered the

issue of single-threading: when a particular term (o1 class

of terms) could be represented by a single destructively-

updated quantity, but they did not consider the representat-

ion of such quantities in a linear store. Hannan [7] showed

how certain classes of tree-rewriting systems could be trans-

formed into a stored-prog~ am form, inc]udmg the lineal rep-

resentation of programs, much hke our stoled-p~ogram ma-

chine in Section 8, but he represented all mutable data either

]n the heap or in multiple stacks, rather than considering the

single-stack representation considered here,

3 Source Language

Our source language is a simple language with continuation

semantics. Its values are integels, recursive procedure, and

continuations. Operations on integers ale addition and cow

clitiona] branch (on zero). Operations on continuations ale

catch and throw. Catch captures the current continuation

and binds it to an identifier. Throw invokes a bound con-

tinuation on a value, discarding the cnment continuation.

Procedures are recursive, using a local identifier for self-

reference. Any kind of value may be passed to a procedure,

but procedures may return only integers, so that the lan-

guage can be implemented using only a stack. The semantics

is given relative to an unspecified domain of command con-

tinuations, so that non-functional primitives may be added,

The language is given by

E ::= Id I (E+ E) I (if E E E) I (catch Id E)

I (thror.r Id E) I (E E) I (reC Id(Id) E)

The semantics of the language is given by a valuatlon

Z[–]. We typically think of f[–] as a syntactic transform-

ation, whose output is a A-term of the app~opliate type,

That is, if we write ~ for the set of A-terms of type ‘T, then

we think of t as having type E + U - 1(’ — C, where U,

K, and C are types given by

C’ = Command Continuations

v= Int+[v+KJc]+[v-c’]
I<-= V+ (j’

U= Id~V

The lattice-theoretical details are not relevant, since \ve are

dealing with A-terms rather than denotations; ~ve assume

only the existence of a non-trivial model with this type theo-

ry. We write the summands of V as (int, n), (proc, p) or

(ccmt, ~). We assume the existence of combinators that can

distinguish these pairwise; this is easy to do by coding

The semantics is given by

L-[I] = ApK. K(p[I])

t[(eI + e2)] = ApK.t[el]p(Aul .t[e2]p(At’2 sum LIV2K))

&[(if e~ e~ e~)] = ~pfc,t[e~]p(~u~.t,l = (int, O) -

qe3]pK,

:[C21PA)
Z-[(ret F(1) e)] = ~ptc. ~(proc,

(fitiJpJvK.C[e] (p[(proci P)/F. u/1])

(J?.J. retl,rn /i(J))))

f[(el e2)] = ApK.Z[el]p(Aul .&”[e2]p

(A1!2 apply,> ,!,1J26))

.f[(catch~ e)] = Apti.&[e]p[(cont, K)/l]!i

S[(throwf e)] = ~p~.~[e]p(~vl.t[~]p(~~z applyk r, ,,2))

The operators sum, apply~, apptvk. and rcturrt all cl~eck

their arguments fo~ membership in tile appi-opliat,e suln-

mand. In particular, return, only allo}vs proceciules to Ietuln

integers; this prevents upward funargs and allotvs a st ack-

discipline implementation.

sum= ,\v,czti.(u, = (int, n,)) =
(2Z = (int, ,2,)] -

~((i’lt,”l + “Q)))
(error “Non-integel second a~g”).

(error “Nominteger first arg”)

uf@Jk = k, 212.(V2= (Conti K)) —

(7r~ = (int, n)) – K(UJ),

(error “Nominteger second arS’”),

(error “NolL-col~tll~tlatlo[~ filst ai~’)

152

return = kw.(v = (int, n)) + K(V),

(error “Non-integer return value”)

CWbp = hVZK. (ZII = (wwp)) -+ PV2SL

(error “Non-procedure to apply”)

4 The Byte-Code Compiler

Our compiler is a straightforward byte-code compiler based

on [3, 18]. Our abstract machine has three registers: a dis-

play u, a local stack < (essentially a local register file, which

is manipulated as a stack), and a continuation. A program

acts on these to produce a command continuation. The ma-

chine uses the following domains:

1: L Lexical Addresses

(Irrtx Int)

r: UC= Id--+L Symbol Tables

u: UR=LAV Run-Time Environments

(displays)

r : P = UR -+ V* --+ K -+ C Programs

(, v* Local Stacks

A program is a term of type P. The compiler takes an

expression and a symbol table, and returns a basic block

(that is, a function ~ -+ ~) for that expression. The goal

of the basic block is to execute its sequel in the same rnn-

time environment and continuation, but with the value of

the expression pushed on the local stack This specification

will be the induction hypothesis for the compiler correctness

proof. We write this specification as follows:

Here we see that the expression is to be evaluated in the en-

vironment which is the composition of the symbol table and

the display. Given the binding-time annotations suggested

for Z and C, each side of this equality can be interpreted as

a J-term of type C, so the equality is to be interp~eted as

equivalence in some suitable J-theory.

The compiler is defined as follows:

Thus the code for el + ez consists of the code for e! followed

by the code for ez, followed by an add instruction, followeci

by the program T that is to follow this basic block. (We leave

it to the reader to verify that this definition is consistent

with the binding-time annotation given above).

The instructions fetch, add, etc., are combinators that

satisfy the following equations:

(br27r17r2)u((int, nl) :: <)K

= ((n, = o) – (rr,zt(K), (T, U< K))

(Satw-corztmm)u(fi

= rrz(ezt~((cont, (contrrlu<~)), ())u)()(cont rrlu<~)

(throzo)u((int, n) :: (cent, (coratrr’u’<’fi’)) :: OK

= r’u’((int, n) :: ~’)K’

(cto.se~’rr)u~K = m((proc, cto.sureu*’) :: OK

(rts)u((int, n) :: <)(cor2t7r’u’<’K’) = r’u’((intj n) :: <’)K’

(jsr-rr)u(v :: (proc, closureu’m’) :: <)k

= T’(edR(7), (proc, c~o$~~el~’~’))t<’)()(c~~t~~<~)

In addition, the instructions must also satisfy a set of

equations for error conditions in the semantics, such as

(addx)u(u :: (proc, p) :: <)K = error “Non-integel first arg”

Hele cent and closure are combinators defined by:

and e.ric and eZtR are combinators such that

(ert~(v, v’)u) o (e.ctc(I, I’}r) = (ZIo r)[V/l, w’/I’]

The equations for the instructions are not quite combinators

as presented here, but it is straightforward to write combi-

nators that obey these equations.

Now we can state the correctness of the compiler:

Theorem 1 The compder C is correct, that w, for all source

progrums e, symbol tables r, run-time environments u, stacks

~, ond continuations 6,

Proof: By a straightforward structural induction on t he

expressions of the source language. ❑

The bytecode machine definition M denota tional. How-

eve], except for the error rules, each instruction definlt,lon is

of the form

7iu(ti = T’u’<’kr

tvllele ii, u, <, k, r’ w’ ~’ K’ are gi,en by the following

glammal:

rr ;:= (fetch 1 x-) I (addrr) I (km)

I (saue-corttrrz) I (throw) I (close 7r7i)

\ (rts) / (jsrri)

1(::= C?llfJt~d/.@@~ / (eZtR(V, (prOC, C~OSUre U’?T))U’)

I (ert.Q((COllt, (COnt7TU’(K)), ()) U’)

< := () / (?) :: ()

1! “:= (int, n} I (proc, c/osuf-e uri)

I (Collt, (cor?tru(K))

k .:= trrltcont I (col~trra<~)

(where in the productions for u, the occurrences of u’ ale

the same; this could be avoided by introducing two new

comhiriators).

Each step in the reduction sequence of ~a~t: w]ll have

tlte folm T’u’c’h’ fol SOMC plogram T’. display u’, stack (’,

and continll ailon h’ as specified by this g,ranlm al. Thmefole

153

we can give the bytecode machine an operational semantics

by thinking of it as a 4-register machine and regarding each

of the equations for the instruction combinators as rewriting

rules. The resulting abstract machine is shown in Figure 1.

We can state the soundness of this machine as follows:

Theorem 2 1~ (x, IL,<, K) =+ (rr’, u’, <’, K’), then X-U(K +

rr’u’<’ti’.

It can also be shown that the machine is complete with

respect, to eithel call-by-value or call-by-name reduction [13],

since these reduction strategies coincide on the terms ma-

nipulated by the machine, and the machine emulates these

reduction strategies.

So far this is just an example of the method set out in

[3, 18] (see also [5] for some more extended examples). W-e

next turn to OUI main topic. the representation of these

trees in a linear store.

5 Stack Representation

This abstract machine simulates the reduction of the terms

~Jrodnced by the compiler, However, it is still a tree manipu-

lation system. In order to implement this abstract machine

on a real computer, one must represent these trees in mem-

oly. It, is the correctness of this representation that is our

main conceln in tlus paper.

In particular, our language was carefully designed to

obey stack d?sczplzne. that is, the language can be mlple-

mented using only a stack. Our goal is to prove the correct-

ness of this assertion In fact, we will show that an ordinary

st acli ~epresentation, tvith static and dynamic chain point-

ers, constitutes a ~epresentation of the three trees (display,

local stack, and contlnuaiion) of the abstract bytecode ma-

chine

lJ7e will do this in two stages. In the filst stage, \\,e

lvil] Leplesellt the dlsplav, local stack, and continnatlon in

a single stack kept In memory] Jvhereas the proglam rr will

remam as a tree. In the second stage, we will replesent

plograms lineally as well

Our concleternachlne wdlbea5-tuple

(x, Upl sp, kp, o-)

consisting of a program rr, a display pointer up. a stack

pointer 5P a continnatron pointer ,kp, and a store a, The

pointers are addresses in the stole, satisfying sp > kp > up.

~~reassn]ne that each cell of thestore canholdatag(procor

int), a pointer, and occasionally a plogram. (The program

will be condensed to a pointer in the second step),

ITe no!v sketch the representation of the abstract ma-

chine’s quantities m the conclete machine.

1. l’alues (integers or closures) are represented as single

\t,ords in memory, including theil tags. Continuations

bound by catch are represented as single words con-

tmmng a tag and a pointer to the continnatlon struc-

tnle.

2. A local stack (r,,, ~~ L,,,_t :: :: u~ :: f)) ,is speclf,ecl

by giving uppe, and lolve, l,onnds asmchces, and is

leplesented as ~ heries of \volds in the stack

E
‘d: rrn

vrl-1
.

u]
lb

This notation is intended to mean that ub and /b are

pointers into the stack, that ub points higher in the

stack than lb, and that the valnes from position ub,

mowng downward, are v~, v,,-], , U1.

Aru I~-tillle ellvirollnlellt (display)extension of the form

eZtR(7J, (Pr0c, ciosureu’x’)}u’ is specified by a pointer

p into the stack:

‘“w

where p’ M a pointer to the display u’ (ie, a static

chain pointer). He~e the second slot is used both for

the closure that is bound to the local name for the

procedure and for the static chain that is in the closure.

Arun-tlme environment (display)extension of the form

eZtR((cont, (contrr’ u~~)), (})uis specified by a pointer

p into the stack.

p:

R

Cent, p

P

whele (cent, p’) represents (corzt IT’u~K) (according to

item 1 above) and p“ is a pointer to the display u (ie,

a st, atic chain polntel).

The continuation (corrt~u<fi) M represented by a poin-

ter p into the stack as follows:

p : the saved program (counter)

pointel to the saved environment

dyna,rmc chain (base) pointer

left open fol culrent environment

left open for current environment

top value in <

bottom value in <

top of frame for next continuation fi

Storage Layout Relations

This pictorial specification is adequate for compiler writers,

but it is not, (Lnlte folrna] enough to zdlo~v LIS to do proofs,

\Ve fornlallze these pictures as a family of I elationsj called

storage loyout retat?ons, that tell precisely when a pointer

into a stack corresponds to a given abstract structure. In

general, a stolage layout relation wdl be a ternary relation

a ~ p & m, which means that pointer p corresponds to

abstract, stluctnle 711 in stole CT. 117e ~vill consistently put

{he conclete obJect on the left of the equivalence, and read

= as “coI Iesponds to.’”

\Ye \vill have fc,ur storage layout, relatlons, one each for

values, stacks, en\,ilonments, and contlnnations. These will

hc defined by simultaneous induction on the terms for val-

ues, stacks, ellvlronment~, and continuations, Since these

.al e Lel at ions on (e] ms (not their denotations), the existence

of’ the I-clations 1> a5slilcd

The definlt]on of the leJat]ons is now a straightfolvrard

tlanscrir,(ioll of the {Ifita J1l tile diagrams above.

154

Abstract machine:

((jetch 17r), u,<, K) =+ (~,~, (~(~) :: [), ~)

((arZd7r), u,((irrt, nz) :: (irrt, n~) :: (), K) ~ (7r, u, ((int, n~ + n,) :: <),~)

((br-zrr’7r), u,rr :: ())K) =+ ((choose v7r’rr), U,(,K)

((.save-cont7r’rr), u, ~, K) =+ (7r, (ext~((cont, (corrt7r’u~~)), ())u),

(), (corztrr’zJ(K))

((throw), u,(cont, (corrtrr’u’<’K’))::(int, n) :: ~),tt) =+ (7r’, u’, ((int, n) :: <’), K’)

((close m’m), U, <, K) =+ (T, t,, ((proc, ctosrrreum’) :: ~), K)

((rts), u, ((irrt, n) :: (), (cont7r’a’<’fi’))==+ (7r’, u’, ((int, rr) :: <’), K’)

((jsrrr), u, (v ~~(proc, closurev’m’) :: <), K) ==+ (ri’, e.rtR(o, (proc, Closttreu’m’))u’l

(), (corrf7rrt<K))

Auxiliaries:

(choose v 7r’m) = (u = (int, O)) – T, z’

Figure 1: Actions of the abstract machine.

● Relatilig Pointers and Tagged Values

U+b.psvs

?ither v = (int, n) = o(p)

or u = (proc, (closureux))

and a(p) = (proc, (closu~e up m))

and up < p and a *U up & rr

or ‘lJ = (Cent, (co71t7ru(K;))

ancl cr(p) = (cent, p’)

and p’ < p

al,d r7 >IC p’ & (contrru<~)

s Relatin8 Pointers and Stacks

m *: (p. p’) =(e

eit hm (= () and p = p’

or <=(: .:< ’)an(l~) >l~’andm~, ~}mz

and cr ~Z (p – l,p’) & <’

● Rela(, inx I)ointels and EIl\,ilonnlents

OEL:))HU=

eithel (, =

or u=

and

a n d

a 11d

and

or (, =

1.an c

a n d

a n d

a uc1

and

errll]iyrltsplci~ and p = —1

{-lt~(l,$ (proc, clost{reu’ir’))rr’

cr+~p~tl

~ *b p — 1 & (proc, closrr7’eu’7i’)

a(])— 1).7[< p

rr +(, CJ(j)-l). ri R u’

(eJtr?((collt, (conf7#U’(K)), ())7,’)

r(p) = (cent, p’)

p’ = p + .3

a +Ii p’ E (COift7iV(K)

C70)—l) u<])

0 +[; rr(])-l), rr & /(’

Here Ivc rrx I lIe notation o(p), u to denote the contents

0[elll,irolll i]cnt-l>[jilltcr fiel{l of luca{iou p of o Lve

●

will use similar notation for field selectors throughout.

Note that this relation specifies that that the static

chain is kept in the same field of the second word of

the erwironrnent representation, whichever variation

(proc or cent) is used,

The p+3 case arises when a save- continstruction is ex-

ecutecl. this instruction pushes a new continuation on

the stack, using the format, in item 5 above, and binds

the continn ation in the vacant environment frame.

Relating Pointers and Continuations

U+ I<7)EKU

either K = zn?tcont and p = O

or ti = (corltrrt/ <K’)

and a(p) = ri

and a(p – 1) < p and u +[r a(p – 1)R u,
and a(p – 2) < p and a 1=~~ a(p – 2) & K’

and a ~Z (p–5, a(p– 2)) N (

7 The Proof

~Ve begin by stating some useful lemmas about, these re-

lations. The most important of these lemmas state that,

the changing locations in the stack above a poiutel does not

change the quantity that the pointer represents. Let r =P a’

denote the proposition Vz, O ~ z < p * o(~) = a’(r).

Then we have the following:

Lemma 1 1. Ifa=P rr’ & m +Y pe u thena’ ~~. p~

t).

2. Jfa =r rr’ & 0 +2, (p, p’) N (then a’ *Z (p, pr) & (.

,3. Ifa =~,,,+~ 0’ .V a +Cr up R u thfm a’ +U op~ ‘u.

~. If u =~p 0-’ & a +J,- kp E h fherr a’ +], kp~ K.

155

Proof: By induction on the definition of =. For stacks,

the condition a ~ z (p, p’) implies p’ s p. For environments,

we need to write up +3 because the first slot might contain

a continuation, we potentially can point 3 slots up in the

stack. ❑

We can now define thecorr-espondence between abstract

and concrete machine states

Definition 1 We say a concrete machtne state (z-, up, sp,

kp, u) corresponds to an abstract mach2ne state (rr’, u,<, K)

(wr!tten (~, up, sp, kp, u} N (rr’, tL, ~, K)) if and on/yzf the

,followtng conclztlons are sotasfiecf:

1. rr=?r’,

2. a ➤U up~u,

5’. a~z (sp, ,kp)~<j and

~. a+k-kp RK.

This says (among other tlungs) that thelocals tack <is

kept at thetopof the stack, andlslmmediate]y followed by

the representation of K; the display u is threaded through

t,he stack but need not be near the top.

Vi’ith this definition ofcolrespondence between machine

states, Ive can work out, the action of OUL inst,rnctions on

the concrete machme. Figure 2 shows the most complex

example, the Jsr instruction. Here sp’, up’, and kp’ denote

then ewvalueso ftheconcretem achine registers. Sincesp’ =

kp’, thenewvalne of(isthe ernptystack ()

Adlagram such asthatin Figure 2canbe translated into

a formal representation more suitable for formal reasoning,

similar to the definition of the abst~act machine in Section 4,

This 1s done in Figure .3. Here we use u.kpto extract the

continllat,lon field from a stored continnat,ron, and LI. ir to

extract the proglam field from a storecl closure.

\Te can show that t,he followinginvariant is preserved by

the machine:

Lemma 2 Inc~l/n~{~ch~?testates, sp>.kp> up+.].

The correctness of the auxiliary firrdis also shown:

Lenlmra 3 I$a KU upm u then

a +V (finrll?ipcr) Hu(l)

Now we can show the main theolem, which asselts that

the conclete machme collectly simulates the abstract nla-

chine:

Theorem 3 Let .41 and AZ be states of the ubstract rno-

ch~rre and G and C’Z be states of the concrete rnnchzne. If

C’] =.11, AI ==+ AJ, crndCJl =+ Cl, thvnC’2 E.4Z

Proof Byanalysis of each instluctlon Hele wes how two

cases, fetch audjsr.

c Assume wella~,e ((fetch 17r), Up, spik]j, rr) N ((fe~c~l ~~)

rlj<)~) ~Ye must snow that,

(~, “P, ‘P+]. ~P, ~’) ~ (~ “ (“(~) ‘:() “)

Whele a’ = ~[(~ool~~[l] 1 Up fl)/(5p+l)]. IYe considei
eacl~ of the condltlorrs fol m In turn:

●

1.

2.

3.

4.

T=71

Wehavesp+l> up+3anda+u up mu. There-

fore’ ~U up~uby Lemmal.

We have o *V (fincllupu) N u(l) and rr ~z

(sp, kp)~~. Hence a’+z(sp+l, kp)cx (u(l)::

()

sp+l > kp and a >1{ kp s K. Therefore o’ +1{

kp~tc

Assume we have ((~srm), up, sp, kp, a) & ((jsr~), U, (u ::

(proc, closure u’~’) :. <), K). We need

(a(sp - 1).m, sp, 3p+3, sp+3, (push-contupspkp u))

R (r’, (ezt~{v, (proc, closure u’rr’))zr’), (), (contrrrL(K))

where (’ = (v :: (proc, closureu’~’) :: <) and a’ =

(push-c~ntupspkpo) Bythedefinition ofpush-cent,

a and a agree on all locations less than or equal to sp.

1.

2.

3.

4.

We have rr ~z (sp, kp) N (’ and I(’I z 2. Hence

ff(sp– 1).7r = m’.

@ *Z (sP, kP) ~ ? and 1<’12 2 HenceC’ +U
sp~ (ezt~(v, (proc, closure a’~’))u’).

a’ +2 (sp+3, sP+3)!X()

a:(sp +3) = 7r

cr(sp+2)=up+3<9p+l and cr~u upcxtr

=+ a’ +U a’(sp +2) & u

a’(sp+ 1) = kp < sp+l and u ~J(kp N K

=+ a’ ~A’ CT’(sp+l) e K

u ➤Z (sp,k~) H <’ ancl 1(’1 2 2 ===+ U’ Rz
(sp-2ja’(sp+ 1))& (

* Cr’ +K sp+3 & (corrt7ra(K)

u

This theorem shows that the concrete maclune and the

abstract machine compute In the same way, stalted in cor-

responding states, they compute by passing through a se-

quence of corresponding states. Thus the concrete machine

will give the same answer as the abstract machine

This theorem is not surprising, of course. ~J7hat is ne~v

here is a way of formalizing the representation of en~irom

ments, continuations, etc., so that we can see how even very

low-level structures directly represent the quantities in the

language clefinitlon, Furthermore, this organization allows

us to separate denot,a,tiona] from operatloual reasoning, so

that each can be used to best advantage.

8 Code Representation

We can similarly represent the plograrn trees rr In a hnear

program store M. The details here are similar, but easier.

Instead of storing a program K in a single word of memory,

m we did In the previous machine, we represent, m explicitly

in a linear p~ograrn store K For example, the program

(fetch 1 m’) would be Represented as a location p in ill.

p:

m

etc

Ivhere p + 2 represented rr’. We assnlne that, M has a, domain

that is disjoint from the cla,ta stole u and that its Laltge is

156

Sp :

Abstract machine:

((~.$r~), u, (ZI :: (proc, closureu’r’) :: C), K) ==+

(T’, (eztR(7J, (proc, closureu’ir’))u’), (), (COntTU<K))

Sp’ , lip’ :

UP’ :

kp :

Concrete machine:

After

B
rr

up

‘P
v

proc, closure u r

‘un

I---+-T

Comments

return address

saved environment pointer

dynamic chain

old top of (, now in environment

closure, including static chain

rest of (, now saved

representation of K

Figure 2: Executing a jsr instruction on the abstract and concrete machines.

((fetch 1 r), IIp, sp, kp, a)

((c,dd7r), up, Sp> kp, Gr)

((brz T’T), up, Sp, kp, a)

((saw-contri’rr), up, Sp, St’p,Cr)

((throu), up, sp, l+, a)

((c/ose#7i), up, Sp, kp, 0)

((rts),up. Sp, kp, 0)

((jsr~), rrp, SP, kp. ~)

Concrete machine:

==+
==+’

==+

(7r, up, Sp+l, kp, cr[(lookup 1 UpU)/ 3,,+1])

(rr, Up, sp-1, kp, a[(2nt-addsp(sp -l)a)/ sp-1])

((choose O(sp] T’ rr), up, sy-1, kp, a)

(T’, Sp+l, sp+5, sp+5, (ert-cpri Upspkpa))

(O(a(sp). kp), O((a(sp).kp) - 1), a(sp). kp-4,

a((a(sp). kp) – 2), a[cqsp–l)/a(sp). kp – 4])

(~, up, sp +1, kp, a[(proc, closure upri’)/ sp+l])

(cr(kp), CT(lq- 1), kp-4i a(kp-2), cr[cr(sp)/kJ7 - 4])

(a(sp - 1).rr, .Sp, sp+3, sp+3, (pus/1-contT Upspkpa))

Auxiliaries:

(lookup (n, 777) Ufj a) = L@2d(rl, m) ups)

(J%d(n,rn) Ups) = ()(?I = o) – (Up–rrr), (jrd{n – l,m)(a(t [p).tfj))a)

(mt-oddpp’a) = (int, (u(p) tnt) + (cT(p’).znt))

(choose v T’ r) = ((v = (int, 0)) - T, rr’)

(push-contr tipspkpm) = u[kp/ Sp+l, rsp/ Sp+?, Tf sp+3]

(e.ri-cpir upspkpu) = (pwh-contr upsp+2 kpa)[up/ sp+l, (cent, sp+5)/ sp+?]

Figure 3: /lctions of the concrete machine

157

large enough to hold a single opcode or a pointer (either to

data or program).

Again, we define a storage layout relation M &p p N rr

as the least fixpoint of a monotonic operator. (Note the

presence of goto, which prevents the use of structural induc-

tion. The goto instruction is not necessary, but illustrates

the power of the technique).

● Relating pointers and programs

M*pp R7ru

either rr = (jetch 1 rr’)

and M(p) = fetch and M(p + 1) = 1

andM~pp+2?~’

or T = (Uidrr’)

and M(p) = add. and M *P p + 1 m K’

or ‘ri = (br-zrr’m”)

and M(p) = brz

and M ~p M(p + 1) = rr’

andM~Pp+2&#’

or r = (saue-contrr’x”)

and M(p) = save-cent

and M ~p M(p+ 1) H T’

and M ~P p + 2 N K“

or rr = rts and l14(p) = rts

or rr = throw and &I(p) = throu>

or m = (c/ose~’~”)

and M(p) = close

and M ~p M(p+ 1) N rr’

and M ~P p + 2 E’ T“

or 7r = (jsrrr’)

and M(p) = Jsr and M *P p+ 1 cx rr’

or AI(p) = goto and M ~.P M(P + 1) R T

● Relating stored values

Stored values correspond if they are alike except for

the representation of programs:

M *SI so E SV’ u

either 52J = (proc, (closure up p)}

and so’ = (proc, (closure upx))

andikf)=ppzx

01 su = p and SV’ = rrand M+p p&n

or Sv = Sv’

● Relating data, stores

Data stores correspond up to pointer p if they corre-

spond location by location for all smaller locations:

We call the machine using this linear program stole the

storerf-prograrn machine. In order to describe the maclnne

using simple pattern-matching rules, we specify the storecl-

program maclune using a fetcl~-execute cycle. The controller

of the machine has two states. fetch and execute. In the

fetch state, the machine uses 4 Iegisters: an instruction

pointel tp, which is a pointer into the program store, point-

ers up, sp, and A:p, as in the preceding machine. In the

execute state, the machine uses in addition an instruction

~egister ir.

In the fetch state, the machine retrieves the opcode to

which the instruction pointer points, places it in the instruc-

tion register, and goes to the execute state:

F(zp, up, sp, kp, o) ==+ E(zP, ~(tP), uP, SP, ~P, ~)

The execute state then performs a rewrite, dispatching on

the contents of the instruction register, and returns to the

fetch state. The rewriting system for the stored-program

machine is shown in Figure 4. This is similcm to Figure 3

except for the treatment of pointe~s to programs.

Now we can define the correspondence between the con-

crete and st orecl-program machines. We define the coI re-

spondence at the start of the fetch-execute cycle, that is,

at the fetch state of the stored-program machine. Since the

pointers into the data store are exactly the same, all that

is required is that the programs correspond, and that the

stores correspond up to sp.

Definition 2 l~e say a stored-program mackzne state F(zp,

up, sp, kp, a) corresponds to a concrete mriclztne state (m’,

up’, sP’, ,kp’, a’) (umtten M + F(2p, up, sp, kp, U) N (7T, up,

SP, b, u)) lf and onlrJ tf:

2 up = up’

3. Sp = Sp’

Now we can state the main theorem:

Theorem 4 Let Cl and C1 be states of the concrefe ma-

chine c[nd L1 unrl L2 be fetch stafes o,j the storw-progmm

n~achme. If M > L] CY G’, Cl =+ C2: r[nd LI ==+ 1,2,

thert A{ + 1,2 E C’2.

P[oof By analysls of each in.structlon This]s tedions

bnt straightforward; since M is immutable, we do not need

free-location lemmas like Lemma 1. ❑

If we call the algollthrn that translates from program

trees r to stoled proglams the “assembler, ” then the cor-

rectness of the assembler fzctors into two palts:

1 Showing that, the assembler Is correct: that, it emits a
stored proglan L corresponding to the prog~an~ tlee m,

2, Showing that If a stoled program corresponds to a pro-

gram tlee z, then the machines will deliver conesponci-

ing outputs.

These two steps are somewhzt, analosous to the deconl-

posltion of the compiler; sho~ving that the compiler is cor-

~ect by showm~ lt, emits code that meets its specification

(Theorem I), and then showing that, the hytecode machine

simulates lednction of the I>yterode tel-rn (Theoleln ?)

As In the compder case, the second part of the ploof is

Independent of the assemblel algorithm. and tl~at is the palt

Ive have sllo~vn hele: \vllat Ielnalns is the Iilst. assemblel-

dependent palt. \~;e hope to report on tliat clse~vlle~e

158

Stored-Program machine:

~(@, ~P, 3P> .%! ~) =+ E(ip, A!f(ip), up, Sp, !q7, o’)

E(zp, fetch, up, Spj kp, c) =+ F(iP+2, ZSP,Sp+l, kp, u[(kmkzLP -k~(tp + 1) t4p~)/ sp+l])

E(ip, add, up, sp, kp, u) ==+ F(tp+l, up, sp–l, kp)a[(tnt-addsp(sp–l)a)/ sj]–1])

E(zp, brz, ~p, Sp, kp, a) =+ F((choose(a(sp))(tp+2)(M(/1}+ 1))), ~p, sp–l, kp, m)

E(zp, save-cent, up, sp, kp, a) =+ F(M(zp+l), .sp+l, sp+5, .sp+5, (ext-cp(ip+2) upspkpa))

E(zp, throw, up, Spj kp, u) =+ F((~(Sp). ,kp), U(~(Sp).kp – 1), CT(SP). kp–.i,

~(~(Sp). kP – 2), a[a(sp– l)/a(.sp). k~] – 4])

E(tp, close, up, sp, kp, a) ~ F(zP+~, up, SP+l, kp, a[(proc, closure up Jkf(zp+l))/ SI, +l])

E(zP, r-ts, up, SP, kp, a) =+ F(c(kp), a(kp-1), kp-4, a(kp-2), cr[rr(sp)/kP - 4])

E(ip, jsr, ?JP, Sp, kp, a) - F(~(SP – 1). tp, Sp, Sp+~, Sp+~, (push-cont(zp+l) vpspkpa))

Auxiliaries:

(lookup(n, m) Zlpa) = a(find(rl, m) Upr)

(find(n, rrr) ?Jp~) = (n = O) - (up-m), (fir?d(?t -1, m)(cr(,,p).up)a)

(,nt-addpp’a) = (int, (a(p) .,nt) + (a(p’).tnt)}

(choose v tp’ *p)= (u = (int, O)) – ipi tp’

(push-cent tp upsp kp u) = u[kp / sp +1, vp/ sp +2, zp / sp +3]

(ezt-cp Zp wp sp kp a) = (push-cent tp rrp sp +2 kp cr)[op/ sp +1, (cont. sp +s)/ sp +2]

Figure 4: The fetch/execute cycle of the stored-plogl am machine

9 Partial Correctness and Untagged Rep-

resentations

The stack machine derivation that we have presented is only

one application of these proof strategies. In this section we

will sketch another such application.

Our implementation still differs from an “ordinary” im-

plementation of a stack-based language such as C or Pascal

in that, data values in C or Pascal do not include tags like OU1

int or proc. Tags like these would impose a considerable

run-time penalty in both time and space.1

In languages hke C or Pascal, the compiler typically uses

some form of type-checking to ascertain that primitive op-

erations like procedure call or arithmetic are invoked only

on legal quantities. For languages that, are not type-safe,

such as C, these compile-time checks are of course less than

foolproof, and may lead to unpredictable consequences (e.g.

core dumps).

Here we ha,,e a semantic mismatch. the semantics is

given using disjoint sums, with specified error behavior (con-

tinuations of the form (error .)), but the implementation

uses non-disjoint sums and has unspecified error behavior.

In what sense can we say that an implementation of such a

language is correct’?

VYe can model this situation by using untagged storage

layout Ielations and weakening the requirements on the im-

plementation To get a storage layout relation for an un-

tagged implementation, we replace l>atterll-r~latcl~illg in tf~e

definition of the storage relation by field selection. Thus we

‘The benefits of tag elimlnat]on are less clear for languages that

requ]re garbage cullect]uu, though eYeII In th]s case It may be poss Il>le

to remove all tags [1, 6]

might replace

r~l.p~t!e

ei the] u = (int, 17) = a(p)

or L! = (proc, (closure u ml))

and m(p) = (procl (closure up ml))

and up < p and a :U up H u

by

lIJe ca]~ rveaken the requirement on the implementation

by saying that if the abstract machine p~oceeds without i] L-

},oking an error, then the concrete machine must do so also

If the abstract machine intokes the erl or continuation, then

the belia\,ior of the conctete machine is unspecified, This

contlact co] Iesponds to the Scheme notion [4] of “is an er-
ror. ” IVit,ll this contract, the correctness theolern becomes.

Theorem 5 LeI .41 and .,12 be states <)~ the abstract n/a-

chine and L’l and C’? be states of the concrttr n~ach{rle.

If CI Y .41, .41 ~ .42, JIZ 1s not an error stote, and

C’1 * C’?, then C’j Y .c+z.

The only change flom Theorem .1 is the addition of the

phrase “ .42 IS not an error state. ” The proof goes as befo]e.

10 Conclusions and Further Work

J,Ve hale shown the col[c,ctnew of a stacl~ irl][>lelllell(atio]l

of a prcgra]]l]nill: l,illg~lage. Tlie s(,ack \va,s shown to be a

159

data structure that represented three different terms in the

bytecode machine. The techmques generalize those intro-

duced by Hannan [7]. We believe that these techniques will

generalize to other crucial rep~esentation strategies, such as

caching portions of the local stack (in registers, representing

mutable entities with dynamic extent on the stack, and mod-

elling program loops by circular storage structures. These

techniques, especially the valiant m Section 9, should also

be adaptable to model the finite wo~d size of teal machines.

Acknowledgements

Paul Hndak originally suggested the correctness of a stack-

discipline language as a useful exercise. Joshua Guttman,

John Ramsdell, Vipin Swarup, Larry Monk, and Bill Farmel

of the MITRE Corporation provided useful feedback on our

Pure PreScheme compilel, lvhicll lecl us to the questions

considered in this paper.

References

[1]

[’2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Appel, A. W,, “Rnntime Tags Alen’t Necessary,” Lisp

and Symbol/c Computation 2 (1989), 153–162.

C16ment, D , Despeyroux, J., Despeyroux, T , and

Kahn, G. “A Simple .Applicatlve Language: Min-ML”

Proc. 1986 ACM Symp. on L?sp and Fanctzorrcd Pr-o-

grammmg, 13–27.

Clinge~, W’, “The Scheme 311 Compder An Exelc~se in

Denotational Semantics,” Conf. Rec. 1984 A Chf Synl -

pOS2t6m on Lzsp and Ftmcftonal progrnmrnzng (August,

1984), 356-364

Clinger, \,V., and Rees, J., eels. “Revlsed4 Report, on

the Algorithmic Languase Scheme”, Indiana Univel-

slty Computer Science Department Tech] lical Report

No. 341, hTowmlheI, 1991, to appeal in LISP Pozrrters.

1992 See also “Revised3 Report on the Algorlthmlc

Language Scheme”, ,SICPL.4 !V NotJces 21,1? (Decenl-

ber, 1986), 37-79.

F~lednlan, D.P . LVand, M., and Haynes, C. T.. Es-

sent~als of Pr-ogramm~ng Languagtis, MIT Press, Cam-

blidge, MA, and McGraw-Hill, Chicago, 1992.

Goldberg, B. ‘:Tag-Free Garbage Collection for Strong-

ly Typed Programming Languages,” Prac. .4 CA1 SIG-

PLAN ’91 Symp. Cm Progtrrnlmzng Lunguoqe DeszgT~

and Imp/e mentat~on, Tune, 1991, 165--176.

Hannan, J. “Making Abstr~ct Lfaclnnes Less Ab-

stract,” Functzonol F’rogmmmzng Languages and Conl-

puter Archttecturc: 5th At3Jf Con frrencc (J. Hng]les,

cd.) Springel Lecture Notes in Computel Science,

Vol. 523 (1991), 618-635.

Lee, P. Top/es in .4duorrced Lnnguagc I?l?/~letlzerzt[lt~or~

LfIT Press, C!amblidge, MA, 1991

Farmel, IJT.M , Gnttman, J, I),, Monk, LG., R,amfi-

clell, J D., and .Swarup. V. “\~I,ISP. A I;ellfied LaIL-

guage Implementation. FY 91 Year-End Repolt, ” The

hfITRE Colpolatloli Techmcal Report ilITRl123’2, Oc-

tober. 1991.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Oliva, D. P., and Wand, M., “A Verified Compiler for

Pure PreScheme,” Final Report fol MITRE Contract

Number F19628-89-C-001. Included in [9].

McCarthy, J. and Painter, J. “Correctness of a Com-

piler for Arithmetic Expressions, ” in Proc. Syrzp. m

Appl. Math., Vol. 19, hlathemat~cal Aspects of Com-

puter Science (J. T. Schwartz, cd.) Amer. Math, Sot.,

Providence, RI, 1967, 33-41.

Milne, R. and Strachey C. .4 Theory of Programming

Language sernantzcs, Chapman & Hall, London, and

lViley, New York, 1976

Plotkin, G.D. “Call-by-Name, Call-by-Value and the Y

Calculus,” Theoret. Comp Sc~. I (1975) 125-159.

Raoult, J.-C. and Sethl, R. “The Global Storage Needs

of a Subcomputation, ” Conf. Rec. 11 tll A CA! Symp. on

Prtncaples O! Programming Langaoges (1984), 148-157.

Reynolds, J .C. The Craft of Programmmg, Prentice-

Hall International, 1981.

Schmidt, D A. Denotutzonal Semant7cs: .4 Methodology

for Langrirtge Derre/opment Boston: Allyn and Bacon,

1986.

Stoy, J.E. Denofatzor~aJ Semanttcs. The Scott-Struchey

Approach to Programming Language Theory, MIT

Press, Cambridge, MA.] 1977.

IVand, M. “Semant,ics-Di Iected L4 achine Architecture’>

C’onf. Rec. 9th ACilf Symp. on Prznczples of Prog. Lang.

(1!)82), 234-241

Wand, hi. “LOOPS in ColnlJillator-Basecl Compilers,”

l,~jo. and Cor2trol .57’, 2-3 (May/Jnne, 1983), 148-164.

Wand, M. “On the Correctness of Procedure Repre-

sentations in Highe~--O1del Assembly Language” Proc.

MFPS ‘.9f (S. }3rookes, ed) Springer Lect,tlle Notes Ln

Computer Science, to appeal

160

