
on Extending Computational Adequacy by Data Abstraction*

Val Breazu- Tannen Ramesh Subrahmanyam

Department of Computer and Information Science

University of Pennsylvania

200 South 33rd St., Philadelphia, PA 19104, USA

E-mail: valQcis.upenn.edu, ramesh@saul.cis .upenn.edu

Abstract: Given an abstract data type (ADT), an
algebra that specijies it, and an implementation of the

data type in a certain language, if the implementa-

tion is “correct”, a certain principle of modularity of

reasoning holds. Namely, one can safely reason about

programs in the language extended by the ADT, by

interpreting the ADT operation symbols according to

the specification algebra. The main point of this paper

is to formalize correctness as a local condition involving

only the specification and the implementation and to

prove the equivalence of such a condition to the modu-

larity principle. We conduct our study in the context of

a language without divergence (in subsection 2.1), and

for languages with divergence and general recursion (in

subsections 2.2 and 2.3). We also describe a sufficient

condition under which, given an implementation, there

may be a finite set of observational equivalences which

imply the local condition. Further, we illustrate a tech-
nique for proving in a practical situation that a given

implementation of an abstract data type is correct.

1 Introduction

This work belongs to a line of investigation ini-

tiated by Reynolds [Rey74, Rey83] and is a

*The authors are partially supported by ONR Grant

NOO014-88-K-0634, and by NSF Grant CCR-90-57570.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is givan

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
andlor epeeifie perrwissian.

1992 ACM LISP & F. P.-6l92lr2A
@l1992 ACM 0.89791 .483. x/92/0006 /0161 . ..$505O

natural continuation of that of Mitchell and

Meyer [MM85, Mit86]. (See also [Don79, Hay84].)

Their results support, in Reynolds’ words, “the

thesis that type structure is a syntactic dis-

cipline for maintaining levels of abstraction”.

Reynolds [Rey83] shows that programs inter-

preted using different semantic representations for

built-in datatypes have the same meaning pro-

vided the representations are suitably related.

Mitchell [Mit86] shows that programs using dif-

ferent implementations for user-defined datatypes

have the same meaning provided the semantics of

the representations are suitably related. “Suitably

related” refers to logica2 re/ations [P108O, Fri75,

Sta85]. We interpret these results as saying that

the levels of abstraction are properly maintained

in the semantics, in other words, these are semant-

ic modularity results.

The main point of our paper is that modular-

ity of reasoning also holds. The implementation

of a user-defined abstract data type is written as

the programmer has in mind an intended inter-

pretation (a specification) for the data items and

the operations on them. If the implementation is

correct with respect to the specification, then the

programmer expects that when reasoning about

programs containing ADT operations one can ig-

nore the implementation and use only the specifi-

cation. But what should we take as the definition

of “correct”?

For example, consider a datatype Sets-of-nats,

161

with operations including emp, ins, del and

mem, among others. The specification we have in

mind is the algebra whose elements are the finite

sets of natural numbers and in which the opera-

tions are the usual empty-set, insertion, deletion,

and membership test. Consider for example an

ADT implementation of this datatype in which

the sort Set is implemented by the type (nat ~

bool) x List. The idea is to “store” an element in

the function part if the element is less than 100,

and to store it in the list part otherwise. The

implementations of the operation symbols are:

● emp” = (Az. false, nil)

● ins*, given n and S(= (Sf, S’l)) does the fol-

lowing. If n >100 it returns (Sf, cons(n, S1);

otherwise it returns (S;, S1), where ST has

the same value at all points except at n where

its value is true.

● del* is defined as follows: given arguments

n and S, where S = (Sf, Sl), if n > 100,

it returns (Sf, S’–), where S1– is obtaimxl by

deleting all occurrences of n from S1. If n <

100 it returns S;, S1), where S; has the the

same value as Sf at all points except n where

its value is false.

● mem”, on arguments n and S(S (Sf, Sl))

checks to see if n > 100; if it is then it re-

turns true if n is in S1, and false otherwise. If

n <100 it returns Sf(n).

According to the specification, the insertion op-

eration is idempotent

(1) ins($, ins(z, .s)) = ins(z, s)

while in the implementation, the cons part is not

idempotent. What then, is the basis for the pro-

grammer’s intuition that programs that differ ac-

cording to the equation (1) evaluate to the same

result? (That is, (1) is an observational equiv-

alence.) Clearly, well-typing is necessary, other-

wise we can put expressions of ADT type in con-

texts that process lists and therefore we can op-

erationally detect the failure of idempotence. But

this is not enough. Consider an implementation

of del(x, s) as the function that on the list part

eliminates only the first occurrence of z it finds.

Clearly this implementation should not be consid-

ered correct, and in fact we can see that the equa-

tion (1) fails to be an observational equivalence as

mem(100, del(100, ins(100, ins(lOO, emp))))

and mem(100, del(100, ins(100, emp))) evalu-

ate to different observable results. We will show

in Section 3 that the implementation described

above is correct.

Let L be a base language in which we imple-

ment an ADT given by a many-sorted algebraic

signature X. In this paper we will stay away from

the issue of choosing between ADT specification

paradigms (initial, final, etc.) and take specifi-

cations to be algebras. Let d be a specification

algebra for the ADT, that is, a E-algebra. To give

meaning to programs “according to the specifica-

tion” we take models oft+ X in which A is fully

and faithfully embeddedl. This is justified by the

fact that the Z+ X-equational theory of such mod-

els is a conservative extension of the X-equational

theory of A. Now, whatever definition we take for

correctness of implementations wrt specifications,

we want the following to hold:

Modularity of Reasoning Principle. Any

(,C + E)-model in which the specification algebra

is fully and faithfully embedded is sound for rwa-

soning about (,C + X)-observational equivalence.

This principle relates two important concepts in

programming languages: that of data abstraction

and that of computational adequacy. Computa-

tional adequacy (see for example [MC88]) is a cri-

terion of good fit between denotational and opera-

tional semantics, and it allows reasoning about ob-

servational equivalence by checking denotational

equality. The principle above insists that with

data abstraction there be an adequate denota-

tional semantics in which the abstract data type

i~ interpreted as a prescribed specification. This

cannot happen if the base language L does not

have an adequate denotational semantics as well.

Thus, we should be able to eztend the adequate

semantics of L using the specification and get an

adequate semantics for L + E.

] See subsection 2.1.

162

All this will not be possible, of course, if the

implementation is arbitrary. Going back to the

definition of correctness of implementations wrt

specifications, it is natural to ask: why not take

the modularity of reasoning principle itself as the

definition of correctness? The philosophical ob-

jection to this, in view of the discussion above on

extension of adequacy, is that it appears to be

too global a condition since it refers to the whole

language L+ Z. This objection is overcome by the

first version of our main result, Theorem 1, which

establishes that this global principle is equivalent

to a local condition that relates only the speci-

fication algebra and the operational behavior of

the implementation of the ADT (subsection 2.1).

The condition states that any equation between

closed E-terms that holds at observable sorts in

the specification algebra must hold operationally

in the implementation. Therefore, we feel justified

in taking the modularity of reasoning principle (or

the equivalent local condition) as the definition of

correctness of implementations wrt specifications.

This local condition is the basis for a verifica-

tion technique that we illustrate on an example

in section 3. The local condition, however, re-

quires us to verify an infinite set of closed equa-

tions. We describe, therefore, a sufficient condi-

tion under which, given an implementation, there

is a finite set of observational equivalences, and

verifying these guarantees that the local condition

is satisfied.

The language we consider for the first version

of our main result (Theorem 1) is quite simple,

namely a simply typed lambda calculus with prod-

ucts and first-order constants. We prove however

(Theorem 2 in subsection 2.2) that essentially the

same result holds if we consider a simply typed

lambda calculus with recursion and with a call-by-

name evaluator, and we continue to observe values

of base type (this is a language similar to Plotkin’s

PCF [P1077]). Moreover, we sketch how to prove

yet another version of our main result, this time

for a call-by-value evaluator, and observing termi-

nation at all types (subsection 2.3). This attests

to the robustness of the concepts examined.

2 Data Abstraction and Modu-

larity of Reasoning

2.1 Data Abstraction in a Language

without Recursion

Observable. We fix a many-sorted signature 0

whose sorts and operation symbols we call ‘obs-

ervable”. We also fix an 0-algebra as a standard

interpretation for the observable. and we assume

that 0 contains distinct ground constants denot-

ing each element of the standard interpretation (so

called numerals).

Base language. We fix a language Z which is a

simply typed lambda calculus with products and

which extends 0, that is, the observable sorts are

the base types and the observable operations are

the constants of various types (hence we have only

first-order constants).

By an L-model we mean a type-frame model in

the sense of Friedman [Fri75] which is moreover

such that the interpretation of the base types (ob-

servable sorts) and that of the constants (observ-

able operation symbols) is the same as the stan-

dard interpretation of 0.

Moreover, we fix an evaluator (a total function

on closed terms) for Z, EvaJL, assuming only that

there exists an L-model in which the evaluator is

sound (~EvaJL(M)~ = ~Mn for any closed term,

ill, of observable type).

ADT extension. We fix an AllT-signature, that

is, a many-sorted algebraic signature Z and, for

simplicity, we assume that Z contains 02.

We fix a specification algebra A, that is, a X-

algebra about which we only require that the in-

terpretation of the observable sorts and that of the

observable operation symbols is also the same as

the standard interpretation of 0.

We will be interested in the extended language

L + E, which is also a simply typed lambda calcu-

lus with products and first-order constants. L + S

extends 0, since it extends S and E contains 0.

2At the expense of additional complexity in the presen-

tation, we could have 2 contain only part of the observ-

able, as well as give L more base types and first-order

constants than the observable. We could also ask that the

numerals be just closed terms of the observable signature

rather than distinct ground constants, and thus avoid infi-

nite signatures.

163

L + X-models are Friedman models in which the

interpretation of the observable is again the same

as the standard one.

We fix an implementation of E in the base lan-

guage L, that is, a mapping that associates

-to every sort s of Z an implementation type s* of

L (not necessarily a base type) such that for any

observable sort o* = o, and

-to every operation symbol .f : S1 x “ 00x sk + s in

E an implementation term which is a closed term

Ofz, f”:syx . . . x s; * s*, such that for any

observable operation symbol q* = q.

The implementation, together with the evalua-

tor of ,C, gives an evaluator for L + X, namely,

we extend the implementation translation to a

translation L + S + ,C, ~ * r“ on types and

ill ~ M* on terms and then put EvalL+x(M) ~f

EvalL(M*). Note that in general M : ~ while

EvalL+x(M) : T*. However, if ~ is observable then

M and Eva2z+x(M) have the same type.

Theorelm 1 The following are equivalent:

(a : Modularity of Reasoning) Any (L + X)-

model M in which the specification algebra d

is fully and faithfully embedded, is sound for

reasoning about (L + X)-observational equiv-

alence, that is, for any (1 + X)-terms M, N

M~M=N * MZL+EN

(b : Local Condition for Correctness)

For any closed algebraic E-terms of observ-

able sort tl, t2, if A ~ tl = t2 then t? QiL t;

(equivalently, EvalC(t~) = Evalc(t;),).

Remarks.

1. By full and faithful embedding of a E-algebra

A in an L + X-model M we mean that in M the

base types are interpreted as the corresponding

carriers of A and the first-order constants are in-

terpreted as the corresponding operations in A.

Crucial property: an equation between algebraic

Z-terms holds in d iff it holds in M.

2. The notion of observational equivalence =L is

the usual one, namely that two terms are obser-

vationally equivalent if whenever put in the same

program (closed term of observable type) context,

the resulting programs evaluate to the same ob-

servable result.

Proof of Theorem 1. Clearly (a) implies (b).

To show that (b) implies (c), we proceed along

by the following steps:

1. Given an implementation Z and a model M

of the C + Z, we define an Z + X-model M’

as follows:

(a)

(b)

(c)

It is

Consider the translation ()* of Z + X-

types into ~-types mentioned before.

Given an Z + S-type T, it substitutes
every occurence of a sort symbol s in ~

by the implementation of that sort using

Z. The interpretation of type ~ in M’,

D; is the set that is the interpretation

of ~“ in M, that is Dr..

The application relation .M1 for M’ is

defined as follows: ford ~ DJ+T and e ~

D:, d ‘Ml e = d ‘M e. This makes sense

because, by construction, d E Da+, and

e E Do.

The meaning function for Z + Z-terms

in M’ when given Z + X-term M re-

turns lJM*ll~, where M* is obtained by

replacing every E-symbol in M by its

translation given by Z (the translation

of L + X-terms mentioned earlier).

routine to verify that the above defines

2.

3.

a L + X-model.

The next thing to prove is that if M is a L+ X-

term of type ~ then [MIMI, [M*IM c D; =

D* and furthermore [M~MI = [M*IM.

T~i~ is proved by induction on the structure

of M.

We can define a logical relation R between M

and M’ by defining the relation on the base

types. On observable base types the relation

is identity. On a base type that is the inter-

pretation of sort symbol s, define the relation

as follows:

d G D,Rd’ G D: % %. d = [tjMAd’ = [t]Ml

where t above is a closed X-term.

164

4.

5.

1

2.2

If condition (b) of the theorem holds then

R relates the meanings of the constants in

Z in the the two models. To show this

we have to show that for every f c Z,

Ydl,.., dn, d;,.., d;. dlRdj,.., dnRd~ *

[fk(dl> . . . dn)R[f]M~(dj, .. . d;)
By definition, for each i there is a closed X-

term t; such that [t~]w = di and [ti]M, = dj.

Therefore, [f]w(dl, . . . d~) = [.f(tl, . . . fw)]M

and [f]w~(dj, .. . d;) = [f(tl, . . . tm)~wl. So

[f]M(dl, . . . dn)R[.fl/w(dj, .. . d;).

If the result sort off is an observable sort, say

nat, and [fjw(dl, .. . dn) = n, then by defini-

tion A /= ~(tl, . . . tn) = n. Using condition

(b), (f(tl, ... tn))* s ~ n. Using the adequacy

of M for L, and hence the adequacy of M’, it

follows that M’ ~ (f (tl, ,., tn))* = n. There-

fore [f]M/(dj, ... d~) = n.

Given condition (b) R is a logical relation

that relates constants in E. By the funda-

mental theorem of logical relations [St a85],

for any .C + ~-term, its meanings in the two

models are related.

To complete the proof of the theorem, sup-

pose M ~ M = N. Given any L + Z con-

text C[] of observable type, M & C[M] =

C’[N]. Since R is an identity at observ-

able types, and relates the meanings of terms

in the two models, M’ 1= C’[M] = C[N].

SO M ~ (C[M])* = (C[N])*, and so

Eva/L+ x(C[M]) = EvalL+x(CIN]). Since

this is the case for an arbitrary context C[],

M %L+E N.

CaI1-by-Name Language with Re-

cursion

In this subsection we consider implementations in

a language with general recursion. This requires

us to redefine specification algebras to be contin-

uous algebras, that is to have cpo’s for their car-

riers, so that we can give meanings to general re-

cursive computations over the specification alge-

bra. In such algebras the strictness information of

the various operations is also present. We find it

convenient to explicitly talk about the “divergent

element” in the algebra, and so we require the sig-

nature of the algebra to include a constant L~ for

each sort s. Another major difference is that we

will want to work with models in which not only is

the evaluator sound, but which are also adequate

that is, divergent terms mean bottom.

We will describe the language, the observable

and the abstract data types in this subsection by

mentioning merely those aspects that are new or

different from those in subsection 2.1.

Observable For each sort s we have a distin-

guished nullary constant symbol of that sort, 1,.

The standard interpretation for the algebra of ob-

servable has as its carriers flat CPO ‘s, and the

interpretation of the operation symbols are con-

tinuous. The constant 1, denotes the bottom el-

ement of the carrier of sort s.

Base Language The language also has the fix-

point recursion operator Y. We only consider one

model C for the language, namely, the full contin-

uous type hierarchy over observable types, with

product interpreted as the (non-smash) product.

We fix a call-by-name evaluator for this language.

The evaluator does not evaluate under the pairing

constructor. We do not specify how the evaluator

evaluates the rest of the language; we require that

soundness and adequacy at base types holds with

respect to C.

ADT Extension We fix an ADT signature, en-

suring that there is a constant -1-s : s for every sort

s. We will call it X4 to remind the presence of J-8

in the signature.

We are now interested in the extended language

Z Y+ Xl. Its models have as observable types the

carriers of the standard observable algebra, and

cpo’s as interpretations for the sorts in Xl. The

rest of the model consists of the continuous type

hierarchy over these cpo’s.

The notion of an implementation is identical

to that described in subsection 2.1, barring the

fact that the implementation of 1 : s has to be

Y(kc:s.z).

A specification algebra is now a continuous Zl-

algebra d (given signature El),(i. e.) it has cpo’s

for its carriers, interprets the operator symbols in

Xl as continuous functions, and -1$ as the bottom

element of the carrier ofs.

165

Let D and 8 be cpo’s and R ~ D x & be a rela-

tio~. Due to the presence of 1 in the signature, ev-

ery Xl-homomorphic relation will be strict, that

is, LD R 1s. R is said to be continuous if and

only if for any two directed subsets D and E of D

and & respectively, if Vd ~ D.3e E E. d R e and

Ve E E.3d G D. dRe, then (l-lDD) R(USE) 3.

Theorem 2 The following are equivalent:

(a) Any (L Y+ El,)-model M in which the specifi-

cation algebra A is fully and faithfully embed-

ded is sound for reasoning about (L Y + Z1)-

observational equivalence, that is, for any

(L Y + ~~)-terms M, N

M~M=N ~ M=-CY+XLN

(b) For any closed algebraic ~~-terms tl, tz, of

observable sort if A ~ tl = t2 then t! =L y t?j.

2.3 Call-by-Value Language with Re-

cursion

We have considered implementations in a call-by-

name language C Y. Let us consider a call-by-

value language (i .e) a language with syntax iden-

tical to L Y, and whose evaluator differs from the

evaluator for L Y in the fact that application is

evaJuated in a call-by-value style. The analysis of

data abstraction in this setting is very similar to

that for L Y, excepting in a few points. We will

not present the theorem corresponding to Theo-

rem 2, but make a few technical points.

● The model that we consider is the standard

call-by-value model with lifted function types.

This model is actually computationally ade-

quate for the evaluator at all types. In this

setting, therefore, we are looking to extend

this stronger notion of adequacy.

● As in the case of the call-by-name languages,

when we define the notion of a model of the

strict language extended with additional op-

erations, we need to define the notion of the

specification algebra fully and faithfully em-

bedded in the model of the extended language

3This is similar to definitions in [Abr90, Ama88].

3

3.1

(or even the notion of sameness of the inter-

pretations of the observable sorts and opera-

tions in the model and the standard interpre-

tation). This means that the carriers of the

various sorts in the algebra are the same par-

tial orders as the interpretation of those sorts

in the model.

Verifying Correctness

Sufficient Condition for Verifying

Finitely Many Equations

Given an algebra and an implementation, condi-

tion (b) of Theorem 1 involves checking an infi-

nite set of observational congruences. For certain

algebras we can come up with finitely many equa-

tions, such that verifying that these equations are

observational congruences would be equivalent to

verifying condition (b). We state a sufficient con-

dition that will guarantee this property.

Consider given an observable signature 0 and

a standard interpretation, that is an 0-algebra,

for the observable signature. Let every element

in this algebra be the denotation of some closed

term over 0. Let E be an extension of 0. A set,

E, of equations over the signature Z is said to be

suficient complete if and only if given any closed

Z-term, t, of observable sort, there is a closed term

t’over Cl satisfying E 1- t = t’.

Theorem 3 Let A be a reachable X-algebra in

which the interpretation of the sorts and symbols

in O is as in the standard algebra. Let E be a suf-

ficient complete set of equations, each of which is

of observable sort, that are valid in A. Any given

implementation satisfies condition(b) provided for

every equation tl = t2 E E, t: %L tj.

Proof: Let tl = t2 be any equation of observ-

able type that is valid in ~, Since ~ is suffi-

cient complete there exist terms tj and tj over

the observable signature such that E 1- tl = tj

and E 1- t2 = t;. clearly A ~ tj = tj and since

t~ and tj are terms over the observable signature,

(t!)” QL (tj)”.It follows from the hypothesis of

the theorem and by induction on the length of the

equational proof of tl = t! that (tl)* %L (t{)”.

166

Likewise (tz)* ~c (t;)”. Piecing the chain to-

gether:

(t,)* =~ (t;)” =C (t;)” =,C (t,)”

I

Remark: This theorem also extends to the sit-

uation where the ADT is given by a continuous

~-algebra and the implementation is done in a lan-

guage that features general recursion. In this case

it is assumed that Z contains a constant -1~ for

each sort s which denotes the bottom element of

that sort. Sufficient completeness is the same as

before, modulo the fact that -L may appear in 0.

[

3.2 An Example

We will illustrate how one might prove that an

implementation of an ADT is proved correct us-

ing this sufficient condition. We will consider the

ADT of finite sets with the interpretation of emp,

ins, del, and mem being the empty set, the stan-

dard insertion, deletion and membership test op-

erations, respectively. As mentioned before, there

will be a constant -1-~ for each sort s which will

denote the bottom element of that sort.

The following equations are valid in this alge-

bra:

(1) mem(z, emp) = false

(2) mem(z, ins(y, s))= or(eq(z, y), mem(z, s))

(3) mem(~, del(y, s)) =

and(not(eq(z, y)), mem(z, s))

These equations can be shown to be sufficient

complete: when oriented left to right they are

Church-Rosser and strongly normalizing. Fur-

thermore, any normal form of observable type is

easily proved to be a numeral (if the type is nat),

or true or false if the type is bool. This can be

shown by an induction on the structure of terms;

however, we need a hypothesis for terms of type

Set. We can show that every normal-form term of

type Set is in the langua

mar below:

C ::= emp [ins(n, C)

Remarks:

:e defined by the gram-

del(n, C)

1. In general, in carrying out such a a proof,

one isolates a subset of the signature consisting

of the constants in the observable signature, and

constants from the rest of the signature whose re-

sult sort is a non-observable sort: let us call them

constructors. One then shows that every normal-

form of observable sort is generated by the ob-

servable signature, and every normal form of non-

observable sort is generated from constructors.

2. There is a sense in which the equations above

were “systematically discovered”. We first identi-

fied the constructors, (emp, ins,and del) and then

tried to discover defining equations for the remain-

ing operations (mem) which were primitive recur-

sive definitions over the constructors. I

If we consider the implementation of finite sets

described in the introduction, we can verify that

for each equation tl = t2 above, the expression t?

is observationally equivalent to the expression t;.

This verification can be done either by hand, or

by using a theorem-prover.

We can complicate the situation above by con-

sidering as the ADT the algebra of finite sets with

a bottom element, with operations ins, del and

mem interpreted by the standard set insertion,

deletion and membership test operations (which

are strict in their arguments), As for the observ-

able algebra, all operations are taken to be the

standard ones which are strict in their arguments.

The equations that we wrote down for the previ-

ous case do not apply anymore: in particular the

equation

mem(x, emp) = false

is not valid in the algebra. Every instance of the

above equation where x is replaced by a numeral is

valid however. The infinite set of instances of this

equation, equations (2), (3) and (4) above, and the

following equations can be shown to constitute a

sufficient complete set of equations.

● rnem(l-,s) = 1

● mem(z, l) = 1

In this case it would suffice to verify the equa-

tion mem*(O, emp”) = false, and the con-

ditional equation mem”(z, emp”) = false *

mem”~s(z), emp”) = false.

167

4 Comparison with Related

Work

Among all the earlier work we mentioned in

the introduction [Rey74, Rey83] [MM85, Mit86]

[Don79, Hay84] our paper comes closest in spirit

to Mit chell’s [Mit86]. However, Mit chell’s paper is

about relating the denotational semantics of dif-

ferent implementations of the same ADT signa-

ture such that the semantics of programs of ob-

servable type doesn’t change. Our paper is about

relating the operational behavior of an implemen-

tation to denotations in a specification algebra

such that the specification can form a basis for

reasoning about observational equivalence in the

extended language. The two papers have in com-

mon the technique of logical relations, though in

our paper logical relations do not seem to play a

conceptual role; they are merely a tool.

We present in some detail a technique for veri-

fying correctness of an implementation for a given

specification. Mitchell states the desirability of

techniques for verifying that two given implemen-

tations of an ADT are suitably related (and hence

interchangeable). Since the paper uses SOL, a

language based on the Girard-Reynolds polymor-

phic lambda calculus [MP85], the issue comes

down to the existence of second-order logical re-

lations [MM85] which is still problematic. We be-

lieve that the idea of our verification technique

can in fact be adapted to show relatedness of im-

plementations, provided we consider predicative

versions of the language.

Most importantly, our goal is an extension

of computational adequacy and we consider lan-

guages with recursion and languages in which the

evaluation order makes a difference. This requires

new techniques beyond the standard logical rela-

tions.

5 Directions for Future Re-

search

It will be useful to carry out this research pro-

gram in other settings: one candidate is non-

deterministic abstract data types. A more chal-

lenging setting is languages with state: the

paradigm of specifications/implementations as al-

gebras is not sufficient.

Another issue that needs to be studied is that

of nested abstract data types. It will be useful to

have a facility in the language to ensure the check-

ing of type correctness of programs in the presence

of such nested abstract data types. Plotkin and

Mitchell’s language SOL [MP85] is an example of

one such language. Carrying out a program oft his

nature for full Girard-Reynolds polymorphism is

an interesting challenge. One could also consider

related but predicative languages [Mac86], and

deal only essentially with ML-style polymorphism.

Many abstract data types that arise in prac-

tice are parameterized: as an example consider

the data type of finite sets over a data type that

has an operation of equality on it. Semantically

such a data type may be regarded as a functor

from a category of algebras of a certain signature

(parameter algebras), to a category of algebras of

a larger signature. An implementation of a pa-

rametrized data type thus has to be a functor

(as in XML [HMM90]) which takes a structure

as an argument and returns a structure as result.

The study here would involve developing a notion

of logical relations for this system. We can then

carry out a program similar to the one in this pa-

per, for parameterized data types.

This work is attempting to discover practical

verification techniques for the correctness of im-

plementations, and this is a continuing effort. We

have indicated one technique, and we have also

indicated a sufficient condition to ensure that ver-

ifying finitely many observational equivalences is

enough, to verify that a given implementation is

a valid implementation (we have formalized this

notion by the modularity principle). However ab-

stract data types are specified using a finite set of

formulae (equations, Horn Clauses etc.) in some

specification paradigm, and sufficient conditions

are best stated for these finite specifications (as

opposed to stating conditions on the algebra it-

self).

References

[Abr90] S. Abramsky. Abstract Interpretation,

168

[Ama88]

[Don79]

[Fri75]

[Hay84]

[HMM90]

[Mac86]

[MC88]

[Mit86]

Logical Relations, and Kan Extensions.

J. Logic and Computation, 1, 1990.

R. M. Amadio. A Fixed Point Ex-

tension of the Second-Order Lambda

Calculus: Observable Equivalences and

Models. In Proceedings of the Sym-

posium on Logic in Computer Science,

pages 51-60. IEEE, July 1988.

J. Donahue. On the Semantics of Data

Type. SIAM J. Computing, 8:546-560,

1979.

H. Friedman. Equality between Func-

tional. In R. Parikh, editor, Proceed-

ings of the Logic C’olloqzkm ’73, pages

22–37. Lecture Notes in Mathematics,

Vol. 453, Springer-Verlag, 1975.

C. T. Haynes. A Theory of Data

Type Representation Independence. In

G. Kahn, D. B. MacQueen, and

G. Plotkin, editors, Proceedings of

the Conference on Semantics of Data

Types, Sophia-Antipolis, June 1984,

pages 157–1 76. Lecture Notes in C’om-

puter Science, Vol. 173, Springer-

Verlag, 1984.

R. Harper, J. C. Mitchell, and

E. Moggi. Higher-order Modules and

the Phase Distinction. In Principles

of Programming Languages, pages 341–

354, January 1990.

D. B. MacQueen. Using Dependent

Types to Express Modular Structure.

In C’onf. Record Thirteenth Ann. Symp.

Principles of Programming Languages,

pages 277–286. ACM, January 1986.

A. R. Meyer and S. S. Cosmadakis. Se-

mantical Paradigms: Notes for an In-

vited Lecture. In Proceedings of the

Symposium on Logic in Computer Sci-

ence, pages 236–255. IEEE, July 1988.

J. C. Mitchell. Represent ation Inde-

pendence and Data Abstraction. In

Proceedings of the 13th Symposium on

[MM85]

[MP85]

[P1077]

[P108O]

[Rey74]

[Rey83]

Principles of Programming Languages,

pages 263-276. ACM, January 1986.

J. C. Mitchell and A. R. Meyer. Second-

order logical relations (extended ab-

stract). In R. Parikh, editor, Pro-

ceedings of the Conference on Logics of

Programs, Brooklyn, June 1985, pages

225–236. Lecture Notes in Computer

Science, Vol. 193, Springer-Verlag,

1985.

J. C. Mitchell and G, D. Plotkin. Ab-

stract Types have Existential Type. In

Proceedings of the 12th Symposium on

Principles of Progmmming Languages,

pages 37–51. ACM, January 1985.

G. D. Plotkin. LCF Considered as a

Programming Language. Theoretical

Computer Science, 5(3):223-256, De-

cember 1977.

G. D. Plotkin. Lambda Definability in

the Full Type Hierarchy. In To H.B.

Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, pages

363-373. Academic Press, 1980.

J. C. Reynolds. Towards a Theory of

Type Structure. In B. Robinet, editor,

Programming Symposium, pages 408–

425. Springer Lecture Notes in Com-

puter Science, Vol. 19, Springer-Verlag,

1974.

J. C. Reynolds. Types, Abstraction,

and Parametric Polymorphism. In

R, E. A. Mason, editor, Information

Processing ’83, pages 513-523. North-

Holland, 1983.

[Sta85] R. Statman. Logical Relations and

the Typed A-calculus. Information and

Control, 65:85-97, 1985.

169

