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Abstract

We propose a generalization to Haskell’s type classes where

a class can have type parameters besides the placeholder

variable. We show that this generalization is essential to

represent cent airier classes with overloaded data constructor

and selector operations. We also show that the resulting

type system has principal types and present unification and

type reconstruction algorithms.

1 Introduction

HaskelI’s type classes provide a structured way to introduce

overloaded functions, and are perhaps the most innovative

(and somewhat controversial) aspect of the language design

[HJW91]. Type classes permit the definition of overloaded

operators in a rigorous and (fairly) general manner that inte-

grates well with the underlying Hindley-Milner type system.

As a result, operators that are monomorphic in other typed

languages can be given a more general type. Examples in-

clude the numeric operators, reading and writing of arbi-

trary dat at ypes, and comparison operators such as equality,

ordering, etc.

Haskell’s type classes have proven to be quite useful. Most

not ably missing, however, are overloaded functions for data

selection and construction. Such overloaded functions are

quite useful, but the current Haskell type system is not ex-

pressive enough to support them (of course, no other lan-

guage that we know if is capable of supporting them in a

type-safe way either).

A Motivating Example

As a simple example, consider the concept of a sequence:

a linearly ordered collection of elements, all of the same

type. There are at least two reasonable implementations of

sequences, linked lists and vectors. There is an efficiency

tradeoff in choosing one of these representations: lists sup-

port the efficient addition of new elements, whereas vectors
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support efficient random (including parallel) access. Cur-

rently the choice between representations is made at the pro-

gramming language level. Most functional languages pro-

vide lists as the “core” data structure (often with special

syntax to support them), relegating arrays to somewhat of

a second-class status. Other languages, such as Sisal and

Nial, reverse this choice and provide special syntax for ar-

rays instead of lists (this often reflects their bias toward

parallel and/or scientific computation).

Of course, it is possible to design a language which places

equal emphasis on both “cent airier structures”. However,

a naive approach faces the problem that every function on

sequences has to be implemented twice, once for lists and

once for arrays. The obvious cure for this name-space pol-

lution and duplicated code is overloading. In our context,

that means specifying the notion of a sequence as a type

class with (at least) lists and vectors as instance types. Us-

ing H askell-like not ation, this would amount to the following

declarations:

class Sequence a s

where cons :: a –> s –> s

nt h :: s-> Int->a

len :: s->Int

instance Sequence a (List a)

where cons = (:)

nt h = (!)

len = (x)

instance Sequence a (Vector a)

where cons = vec Cons

nt h = vecNth

len = vecLen

This defines the overloaded constructor cons, overloaded in-

dexing selector nth, and a length function len. (Note the

resemblance to a “cont airier class” in object-oriented pro-

gramming. )

The only problem with this code is that it is not valid

Haskell, since Haskell’s type classes are permitted to con-

strain only one type, thus ruling out a declaration such as

“class Saquence a s“. In essence, this restriction forces

overloaded constructors and selectors to be

(which makes them fairly useless).

Even if this restriction did not exist, there is

lem with the current type class mechanism,

demonstrated through the typing of len:

monomorphic

another prob-

which can be
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Sequence a s => s -> Int

Even if multi-argument type classes were allowed, this qual-

ified type would still not be valid Haskell since it is am-

biguous: Type variable aoccursin the context (Sequence a

s), but not in the type-part proper (s-> Int). Ambiguous

types need to be rejected, since they have several, possibly

conflicting, implementations.

A related, but harder, problem arises ifweextend our exam-

ple to include an overloaded malfunction. Having such a

functions attractive, since together with join and filter,

it allows us to generalize (i.e. overload) the notion of a “list

comprehension” to include uIZ instances of Sequence, not

just lists. In Section ‘7 we elaborate on this, extending it

further to comprehensions for arbitrary instances of class

monad, such as bags and lists. This seems quite natural

since, after all, the domain of sets is where the “compre-

hension” notation came from. However, a problem becomes

evident as soon as we attempt to give a type for map.

map: (Sequence a sa, Sequence b sb)

=> (a -> b) -> sa -> sb.

This type is too general, since it would admit also imple-

mentations that take one sequence type (e.g. a list) and

return another (e.g. a vector). Generality is costly in this

context since it again leads to ambiguity. For instance, the

function composition (map f . map g) would be ambigu-

ous; the type of map g, which does not appear in the type

of the enclosing expression, can be either a list or a vector.

What isneeded issomeway to specify that map returns the

same kind of sequence as its argument, but with a possibly

different element type. Aniceway tonotate this type would

be:

map: Sequence (s a) => (a -> b) -> s a -> s b

where s is a variable which ranges over type constructors

instead of types. To accommodate this, Sequence should

now be viewed as a type constructor class instead of a type

class. However, because the instance relationships are now

expressed at the functor-level, there is the danger (as has

been conjectured in [Li1911) that second order unification

is needed to reconstruct

undecidable.

Our Contributions

To solve these problems,

t~pes, thus rendering the system

we introduce the notion of pam-
metric type ckwsesa sa significant generalization of Haskell’s

type classes. Our contributions can be summarized asfol-

10WS:

1. Parametric type classes can have type arguments in

addition to the constrained type variable, and thus

are able to express classes such as Sequence defined

earlier.

2. Through asimple encoding scheme, weshowthat para-
metric type classes are able to capture the notion of

“typeconstructor variables,” thus permitting thedef-

inition of overloaded operators such as map.

3.

4.

5.

Parametric type classes are a conservative extension of

Haskell’s type system: Ifall classes are parameterless,

the two systems are equivalent,

Weprove that oursystem is decidable, and provide an

effective type inference algorithm.

As a concrete demonstration of the Dower andmacti-. .
cality of the system, we formulate classes monad and

rnonadO that allow us to generalize the concept of list

comprehensions to monads. This is done using the

standard translation rules for list comprehensions; no

special syntax is needed.

Related Work

Wadler and Blott [WB89] introduced type classes and pre-

sented an extension of the Hindley-Milner type system that

incorporates them. They proposed a new form of type,

called a predicated type, to specify the types of overloaded

functions. A quite similar notion was used under the name

of categoryin the Scratchpad IIsystem for symbolic compu-

tation [JT81]. Also related are Kaes’ work on parametric

overloading [Kae88], F-bounded polymorphism in object-

oriented programming [CCH+89], and [Rou90]. The type

class idea was quickly taken up in the design of Haskell. Its

theoretical foundation, however, took some time to develop.

The initial approach of [WB89] encoded Haskell’s source-

level syntax in a type system that was more powerful than

Haskell itself, since it could accommodate classes over multi-

ple types. This increased expressiveness can, however, lead

to undecidability, as has been investigated by Volpano and

Smith [VS91]. Indeed, the system published in [WB89] is

apparently undecidable.

The source-level syntax of Haskell, on the other hand, has

a sufficient number of static constraints to guarantee de-

citability. This was shown in [NS91], where Nipkow and

Snelting modeled type classes in a three-level system of val-

ues, types, and partially ordered sorts. In their system,

classes correspond to sorts and types are sorted accord-

ing the class hierarchy. Order-sorted unification [MGS89]

is used to resolve overloading in type reconstruction. The

use of an order-sorted approach is mathematically elegant,

yet we argue that the ordering relation between classes is a

syntactic mechanism and thus not necessary for developing

a type system for type classes. Furthermore, it is not obvi-

ous how to extend their system to incorporate our proposed

extensions.

Work was also done to extend the type class concept to pred-

icates over multiple types. Volpano and Smith [VS9 I] looked

into modifications of the original system in [WB89] to ensnre

decidability of type reconstruction and to get a sharper no-

tion of well-typed expressions. Jones [Jon91, Jon92b] gave

a general framework for qucdijied tgpes. His use of predicate

sets is at first sight quite similar to our context-constrained

instance theory. The main difference between the two ap-

proaches lies in our use of normal forms (Jones does not ad-

dress this issne) and our distinction between constrained and

dependent variables. This distinction allows us to solve the

ambiguity problems previously encountered in definitions of

container classes.

The rest of this paper is organized as follows: Section 2 in-

troduces parametric type classes. Section 3 presents them
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formally, in a non-deterministic type system. Section 4

presents an equivalent syntax-directed system that bridges

the gap between the non-deterministic system and a type

reconstruction algorithm. Section 5 discusses type recon-

struction and unification. Section 6 explains when a type

scheme is ambiguous. Section 7 applies our system in defin-

ing monads as parametric classes. Section 8 conches.

(tl . tl), where tl is typed (s :: Sequence a) => s

–> s, Without the consistency requirement, the most gen-

eral type for the composition would be (s :: Sequence

a, s:: Sequence b) => s -> s. Composing tl n times

would yield a type with n Sequence constraints, all but one

being superfluous.

3 The Type System of Parametric Classes
2 Parametric Type Classes

This section presents our type system formally. We first

A parametric type class is a class that has type parameters in

addition to the placeholder variable which is always present

in a class declaration. To distinguish between placeholder

and type parameters, we write the placeholder in front of

the class, separated by an infix (::). For instance:

class t :: Eq where

class s : : Sequence a where

The first definition introduces a class without parameters;

in Haskell this would be written class Eq t. The second

definition defines atypeclass sequencew ithoneparameter;

this cannot reexpressed instandard Haskell. The infix (::)

notation is also used in instance declarations and contexts.

Thetwo instance declarations of Sequence presented in the

last section would now be written:

inst List. a :: Sequence a where . . .

inst Vector a : : Sequence a where . . .

In an instance declaration, of form T :: Sequence a, say,

thetype Tmust not be a variable. Furthermore, iftwo types

T1 and T2 are both declared to be instances of Sequence,

then their top-level type constructors must be different. Thus,

the instance declarations given above are both valid. On the

other hand,

inst a :: Sequence (List a)

would violate the first restriction, and

inst List Int :: Sequence Int

inst List Char : : Sequence Char

would violate the second restriction. Effectively, these re-

strictions ensure that in a proof of an instance relationship

every step is determined by the class name and the type

in placeholder position. The class parameter types, on the

other hand, depend on the placeholder type.

One consequence of these restrictions is that there is at most

one way to deduce that atypeis an instance of a class. This

is necessary to guarantee coherence. It is not sufficient, since

types might be ambiguous; see Section 6 for a discussion.

Another consequence is that sets of instance predicates are

now subject to a consistence criterion: Ifwehaveboth T ::

Sequence aandT :: Sequence b then we must have a =

b. That is, a = bisalogical consequenceof the two instance

predicates andtherestrictions oninstance declarations. The

type reconstruction algorithm enforces consistency in this

situation by unifying a and b.

Enforcing consistency early helps in keeping types small.

Otherwise, we could get many superfluous instance con-

straints in types. As an example, consider the composition

define the abstract syntax of classes and types in the context

of a small example language. We then explain formally what

it means for a type to be an instance of a class. Based on

these definitions, we define anon-deterministic type system

with the same six rules as in [DM82], but with parametric

type classes added. We claim that, in spite of its added

generality, the system is actually simpler than previously

published type systems for standard Haskell.

For lack of space, we refer the reader to [COH92] for detailed

proofs of the results presented in this and the following sec-

tions.

Syntax

Theexample language is a variant of Mini-Haskell [NS91],

augmented with parameterized type classes. Its abstract

syntax and types are shown in Figure 1. A parametric type

class y in this syntax has the form CT, where c is a class

constructor, corresponding to a class in Haskell, and T is

a type. Classes with several parameters are encoded using

tuple types, e.g. c(a, ~). Parameterless classes are encoded

using the unit type, e.g. Ego. The instance relationship

between atypeand atypeclass isdenotedby an infix (::);

the predicate r’:: CT reads # is an instance of c r.

One simplification with respect tostandard Haskell concerns

theabsence ofahierarchy on classes. Thesubclass/superclass

relationship is instead modeled by class sets r. Consider for

instance the class Ego of equality types in Haskell and its

subclass Or-do of ordered types. We can always represent

Or-do as a set of two classes, {EqojOrd’( )}, where Oral’

contains only operations (<,<), which are defined in Ord

but not in Eg. Translating all classes in a program in this

way, we end up with sets over a flat domain of classes. This

shows that we can without loss of generality disregard class

hierarchy in the abstract syntax.

instance Theories

In this section, we make precise when atyperis an instance

of a class set 17, a fact which we will express ~:: 1’. Clearly,
the instance relation depends on the instance declarations

Dsin aprogram. Weletthese declarations generate a theory

whose sentences areinstance judgments of the form C H- r::

y. An instance judgment is true in the theory iff it can be

deduced using the inference rulesin Figure 2.

Context

Inthese rules the contezt C’is a set of instance assumptions

a::17 (all a’sin C are disjoint). Where convenient, we will
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Type variables a

Type constructors K

Class constructors c

Types T ::= 011 C7-ICY{TIXT2]TI+T2

Type schemes Cr ::= Va::r.a I T

Type classes -7
..—..— CT

Class sets r ::= {Cite,..., CnTn} (n >0, c, pairwise disjoint)

Contexts c ::= {al:: rl,..., an::rn} (n ~ o)

Expressions e ..—..— x[eet~~r.e]letx=e~ine

Programs P ::= class ff::-y where X:U inp

[ inst C~~::-ywherez=einp

Ie

Figure 1: Abstract Syntax of Mini-Haskell+

Ctt-a::y (a::{ . .. Y...} cc)

~cK’=C~ (r inst C’+- r:: -y’ C Ds)

Ctl-T::-yl . . . Ctl-r::-yrl

c t+ T::{yl, . . ..?n}
(n> 0)

ctkrl::rl ,.. cttrn::rn

ct+{rl:: rl,..., ~n::rn}
(n> o)

Figure 2: Inference Rules for Entailment

also regard a context as a finite mapping from type variables

to class sets, i.e. Ca = r iff a:: r c C. Thus the domain of

C, dorn( C) , is defined as the set of type variables a such

that a:: r c C. As type classes can now contain parameters,

we define the region of a context C,

reg( C) = u fv(c~)

acdorn(C)

and the closure of C over a set of type variables, A, written

C*(A), as the least fixpoint of the equation

C*(A) = AU C(C*(A)).

We say Cl is contained in C2, written Cl ~ Cz, if dom(C1) c

dom(C2) and Cly $ Cza for each a G dom(Cl). We write

CI w CZ for the disjoint union of two contexts and ~a for

restriction of a context C to all type variables in its domain

other than cr. A context C is called closed if C* ( dorn( C)) =

dom ( C), or, equivalently, reg( C) ~ dorn( C). A context C

is called acyclic if all the type variables a, a G dom( C),

can be topologically sorted according to the order: a <,6 if

a c fv ( Cp). We shall restrict our discussion to only closed

acyclic contexts in the remainder of the paper.

Constrained Substitution

In the following, we will apply variable substitutions not

only to types, but also to (sets of) classes and (sets of) in-

stance predicates. On all of these, substitution is defined

pointwise, i.e. it is a homomorphism on sets, class construc-

tor application and (::). Since a context is a special form

of an instance predicate set, substitutions can be applied to

contexts. However, the result of such a substitution is in

general not a context, as the left hand side a of an instance

predicate a:: r can be mapped to a non-variable type. Our

typing rules, on the other hand, require contexts instead of

general predicate sets. Thus, we need a means to find a

context that is a conservative approximation to a predicate

set. We use the following definitions:

Definition. A constr-ained substitution is a pair (S, C) where

S is a substitution and C is a context such that C = SC.

Definition. A constrained substitution (S, C) preserves a

constrained substitution (SO, CO) if there is a substitution R

such that S = R o So and C k RCO. We write in this case

(s, c)< (so, co).

It is easy to show that f is a preorder.

Definition. A constrained substitution (S, C) is most gen-

eral among those constrained substitutions that satisfy some

requirement %? if (S, C) satisfies 72., and, for any (S’, C’)

that satisfies ‘R, (S’, C’) < (S, C).

Definition. A constrained substitution (S, C) is a normal-

izer of an instance predicate set P if C H- SP.
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To ensure the principal type property of our type system

with parametric classes, we have to place the foUowing re-

quirements on the entailment relation H-:

*

a

●

monotonicity: for any contexts C and (7’, if C’ ~ C

then Ctt C’.

transitivity under substitution: for any substitu-

tion S, contexts C and C’, predicate set P, if C l+ S0’

and C’ tt- P then C tt SP.

most general normalizers: If a ~redicate set P has

a norm-dizer then it has a most general normahzer.

From the viewpoint of type reconstruction, the first two re-

quirements are needed to ensure that once established en-

tailments are not falsified by later substitutions or additions

to cant exts. They follow directly from the inference rules in

Figure 2. The last requirement ensures that there is a most

general solution to an entailment constraint. To establish

existence of most general normalizers, we have to place two

restrictions on the instance declarations in a program:

(a)

(b)

There is no instance declaration of the form

inst C+-a:: cr.

For every pair of type and class constructor (K, c),

there is at most one inst ante declaration of the form

inst C + Kr’:: c I-. Furthermore! # must be the unit

type, or a possible empty tupIe of distinct type vari-

ables and both dorn ( C) and ~u(r) are cant ained in

fv(r’).

Restriction (a) is part of current Haskell, and restriction (b)

is a direct generalization of current H askell’s restriction to

incorporate parametric type classes.

Theorem 3.1 If the instance declarations Ds of a program

satisfy the restrictions (a) and (b), then tt admits most

general normalizers.

Typing Rules

Given an entailment relation H- between contexts and in-

st ante predicates, we now formalize a theory of typing judg-

ments. Typing judgments are of the form A, C E e : u,

where A is an assumption set of type predicates x : a (al

x disjoint), C is a cant ext, and e is an expression or a pro-

gram. A typing judgment A, C E e : a holds in the theory

iff it can be deduced using the inference rules in Figures 3

and 4.

The rules in Figure 3 form a non-deterministic type sys-

tem for expressions, along the lines of of the standard Hind-

ley/Milner system [DM82]. One notable difference between

this system and the standard Hindley/Milner system is that

the bound variable in a type scheme Vcr:: r.cr can be instan-

tiated to a type T only if we know from the context that

r :: r (de V— elim). The second difference concerns rule

(V– intro), where the instance predicate on the generalized

variable a is “discharged” from the context and moved into

the type scheme ‘da:: 17.cr.

The rules in Figure 4 extend this system from expressions

to programs. In rule (class), the overloaded identifier z

is added to the assumption set. Rule (inst) expresses a

compatibility requirement between an overloaded identifier

and its inst ante expressions. These rules have to be taken

in conjunction with the requirements (a), (b) on inst ante

declarations listed in the last subsection. We say a pro-

gram p = Ds e has type scheme a, if Ds satisfies these

requirements and generates an entailment relation H-, and

AO, {} E p : CT, for some given closed initial assumption set

’40.

The Instance Relation and Principal Type Schemes

A useful fact about Hindlev/Milner type system is that when., . .
an expression e has a type, there is a principal type scheme

which captures the set of alf other types derivable for e

thruogh the notion of generic instances. The remainder of

this section introduces the definitions of generic inst ante and

principal type schemes in our system.

Definition. A type scheme u’ = ‘da; :: l?; r’ is a generic

instance of a type scheme u = Vat :: rt.r under a context C,

if there exists a substitution S on {aZ }, such that ST = r’,

a; is not free in a, and C u {cr~ ::r;} It s~t ::sri. We

write in this case, a’ s c a.

The definiton of s c is an extension of the ordering relation

defined in [DM82]. The only new requirement on instance

entailment is needed for the extension with parametric type

classes. It is easy to see that s c defines a preorder on the

set of type schemes.

The following property is a direct consequence of the defini-

tion.

Lemma 3.2 If a’ <c a and C s C’ then a’ <C, u.

The next lemma shows that the ordering on type schemes is

preserved by constrained substitutions.

Lemma 3.3 If a’ SC a and C’ tt SC then Sa’ ~c, Sa.

With the definiton of ordering on type schemes, we can de-

fine the notion of principal type schemes in our system.

Definition. Given A, C, and e, we call u a princtpal type

scheme for e under A and C iff A, C E e : CT, and for every

u’, if A,C E e:a’ then a’ <C a.

We shall develop an algorithm to compute principal type

schemes in the following sections.

4 A Deterministic Type Inference System

We present a deterministic type inference system in this sec-

tion. Compared to the typing rules in Section 3, the rules

here are so formulated that the typing derivation for a given

term e is uniquely detrmined by the syntactic structure of

e, and hence are better suited to use in a type inference

algorithm. We show that the system is equivalent to the

previous one in terms of expressiveness and, in addition,

has all the nice properties toward the construction of a type

reconstruction algorithm.
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(m) A, CI-X:U (Z: CTCA)

(V-elim)
A,C E e: ’v’a::r.u ct+r::r

A, C1-e:[a*r]a

(V-intro)
A, C.m::r E e:u

A,C k e: Va::r.u
(a@ fr.IAuftJC)

(A-elifn)
A, C1-e:r’+r A, Ct-e’:r’

A, Ckee’:r

(J-intro)
A. X: T’)C 1- e:r

A, CFAx. e:r’+r

(let)
A, Ci-e’:a A.x:u, C 1- e:r

A, C1-letx=e’ine:~

Figure 3; Typing Rules for Expressions

A.x:Vjv7Va::{y}.u, C E p ; ~
(class)

A,C 1- class a::-ywherex:ginp:r

(inst)
A,C + x:’dff::{~}.a A,C + e:[ai+r’]a A, C!-p:T

A,C 1- inst C’+. r’::ywherex=einp:r

Figure 4: Typing Rules for Declarations

Deterministic Typing Rules

The typings rules for the deterministic system are given in

Figure 5. The rules V–intro and V–elim have been removed

and typing judgments are now of the form A, C +’ e : T

where ~ ranges over the set of type expressions as opposed to

type schemes in the typing judgments of Section 3. Other

major differences are that rule (war’) instantiates a type

scheme to a type according to the definition of generic in-

stance and rule (let’) use the generalization function, gen,

to introduce type schemes.

The function gen takes as arguments a type scheme, an as-

sumption set, and a context, and returns a generalized type

scheme and a discharged context. It is defined by

gen (a, A, C) =

if =a E dom(C)\(fv A U reg C) then

gen (Va:: Ca.u, A, ~~)

else (a, C)

In other words, inst ante assumptions in the given context,

except those constraining type variables in the assumption

set, are discharged and moved to form a more general type

scheme in an order so that type variables are properly quan-

tified.

Equivalence of the two Systems

We now present a number of useful properties of the deter-

ministic type system. They are useful not only in estab-

lishing the congruence of the two type systems, but also in

investigating the relation between the type system and the

type reconstruction algorithm.

Lemma 4.1 (Substitution lemma) If A, C E’ e : T and

C’ H- SC then SA, C’ i-’ e: Sr.

This result assures us that typing derivations are preserved

under constrained substitution.

The next two lemmas express a form of monotonicity of

typing derivations with respect to the context and the as-

sumption set.

Lemma 4.2 If A, C l-’ e : T and C < C’ then A, C’ +’

e:r.

Lemma 4.3 If A.x : a, C t-’ e : T and a <C a’ then

A.x:u’, C K’ e:r.

Now we can show that the deterministic system l-’ is equiv-

alent to the non-deterministic system 1- in the following

sense.

Theorem 4.4 If A, C l-’ e:r then A, C t- e:r.

Theorem 4.5 If A, C k e : u then there is a context C’,

and a type rsuch that C ~ C’, A,C’ t-’ e:r and u ~c u’

where (a’, C“) = gen(~, A, C’).

5 Unification and Type Reconstruction

This section discusses type reconstruction. As usual, type

reconstruction relies on unification, and we will first work
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(Wlr’) A, CF’X:T (z:ac A, T< Cm)

(A-elirn’)
A, Ck’e:r’+r A, Ck’e’:#

A, Ct-’ee’:~

(A-intro’)
A.x:T’, C l-’ e:r

A, CE’Ax. e: T’_+r

(let’)
A, C’ k’ e’ : / A.x; u,C k’ e:r

A, Ct-’letx=e’ine:~
(u, c’” = gen(r’, A, C’), C“ ~ C

Figure 5: Deterministic Typing Rules for Expressions

out what kind of unification is needed for parametric type

classes. We then go on to present a typ~ reconstruc;;n

algorithm, and state its soundness and completeness with

respect to the inference rules given in Section 3 using those

rules in the last section and the equivalence result estab-

lished therein. As a corollary of these results, we obtain

a prinicpal type scheme property of our system analogous

to the one in [DM82]. The type reconstruction algorithm

has been implemented in the Yale HaskelI compiler. Its size

and complexity compare favorably to the type reconstruc-

tion parts of our prior Haskell compiler.

Context- Preserving Unification

Type reconstruction usually relies on unification to compute

most general types. One consequence of rule (V–elirn) is that

the well-known syntactic unification algorithm of Robinson

[Rob65] cannot be used since not every substitution of vari-

ables to types satisfies the given instance constraints. Nip-

kow and Snelting have shown that order-sorted unification

can be used for reconstructing of types in Haskell [NS91], but

it is not clear how to extend their result to parametric type

classes. We show in this section that algorithm nzgu, shown

in Figure 6, yields the most general context-preserving uni-

fier of two types.

Function rngu takes two types and returns a transformer on

constrained substitutions. The application mgu rl rz (So, Co)

returns a most general constrained substitution that unifies

the types -rI and -rZ and preserves (SO, Co), if such a substitu-

tion exists. The algorithm is similar to the one of Robinson,

except for the case mgu a -r (SO, CO), where a may be sub-

stituted to T only if ~ can be shown to be an instance of Co cr.

This constraint translates to an application of the subsidary

function rngn to ~ and Ccr. The call mgn r r (SO, CO) com-

putes a most general normalizer of Co U {r :: 17}, provided

one exists.

Theorem 5.1 Given a constrained substitution (SO, Co) and

types ~1, 72, if there is a (SO, Co )-preserving unifier of ~1 and

m then mgu rl TZ (SO, CO) returns a most general such uni-

fier. If there is no such unifier then rngu 71 rz (SO, Co) fails

in a finite number of steps.

Type Reconstruction

An algorithm for type reconstruction is shown in Figure 7.1

Function tp takesas arguments an expression, an assump-

tion set, and an initial constrained substitution, and returns

a type and a final constrained substitution. The function is

straightforwardly extended to programs. The remainder of

this section establishes the correspondence between tp and

the type system of Section 4 and, thereby, that of Section 3.

We need the following lemmas to establish the soundness

and completeness of our algorithm. We begin by showing

that tp is indeed a constrained substitution transformer.

Lemma 5.2 Let (S, C) be a constrained substitution and

(~, S’, C’) = tp(e, A, S, C), then (S’, C’) is a constrained

substitution.

Hence we will omit the requirement of constrained substitu-

tion from now on.

Lemma 5.3 If tp(e, A, S, C) = (r, S’, C’) then (S’, C’) s

(s, c).

This result can be established by a straightforward induc-

tion except in the let –case. Recall the typing rule (let’)

presented in Section 4. There are two contexts used in the

antecedent part of that rule : one for deriving the type of the

let-definition and one for the type of the let-body. But only

the second one appears in the conclusion part and it is those

instance assumptions contained in the first one that are gen-

eralized by the gen function. While in tp, we maintain a

single context and pass it through the whole algorithm. If

we were to use the gen function in the let —case in tp we

would overgeneralize those inst ante assumptions generated

in the previous stages and passed to tp as part of the initial

context.

To avoid such overgeneralization, we need to confine the do-

main of generalization to only those instance assumptions

generated while reconstructing the type of the let-definition.

We define a new generalization function, tpgen, which, com-

pared to gen, takes an extra context parameter, C’, whose

inst ante assumptions will be excluded from generalization.

1 Th,s IS actually a simplification of the real algorithm becuase we

can get a cyclic context after the call to unification function and thus

violate our restriction on contexts, So what is missing here is a cllque-

detection algorithm, which IS simply a variant of occur checking. We

omit it here for simplicity.

176



mgu:rhi--SxC*Sx C

mgn;rh~+SXC~S XC

Yngu r] T2 (s, c) = rngu’ (s71) (s72) (s, c)

mgu’ a Q —. ids ~ c

mgu’ ckr (S, C) / a ~~v(r) = mgn T (Ca) ([a++ T]o S, [a++ r]~.)

mgu’ T a (S, C) = mgu a T (S, C)

mgu’ () () . ids ~ c

mgu’ KT KT’ (S, C) = mgu T T’ (S, C)

mgu’ (TI x T2) (r; x T;) = (mgu TI Tj) o (mgu r, Tj)

mgu’ (I-I + TZ) (I-{ --+ rj) = (mgu TI r{) o (mgu T2 Tj)

mgn T {} —— ids ~ G

mgn T {-f} (S, C’) = mgn’ (Sr) (Sy) (S, C)

mgn T (rl u r2) = (mgn ~rl)O (mgn T r,)

mgn’ a CT (S, C) = if 3r’. (c# c Ca) then mgu r r’ (S, C)

else (S, C[a * Ca U {c r)])

mgn)K#cr(S, C) ~ 3rinstC’*it?’;:c?q E Ds

= let S’ = match ?’ r’

(S”, C“) = mgu r (S’;) (S, C)

{rl::rl,..., Tn::rn} = S’c’

in(mgn~l~l (... (mgn rn rn (S”, C“))))

(and similarly for ~, x, ())

Figure 6: Unification and Normalization Algorithms

Then in the algorithm, when doing generalization, we pass

the initial context to tpgen as the second context argument

to restrict the domain of generalization. Thus only those

newly generated instance assumptions will be generalized.

Now we can proceed to state the soundness of our algorithm.

Theorem 5.4 If tp(e, A, S, C) = (r, S’, C’) then S’A, C’ +’

e:r.

Together with Theorem 4.4, we have the following soundness

result.

Corollary 5.5 (Soundness of tp)If tp(e, A, S, C) = (T, S’, C’)

then S’A, C’ E e : r.

Ultimately, we will state the principal typing result.

Theorem 5.6 Suppose that S’A, C’ +’ e : r’ and (S’, C’) s

(SO, CO). Then tp(e, A, SO, CO) succeeds with (r, S, C), and

there is a substitution R such that

S’A = RSA, C’ + RC, and T’ = RT.

Together with Theorem 4.5, we have the completeness re-

sult .

Corollary 5.7 (Completeness of tp)Suppose that S’A, C’ t-

e : u’ and (S’, C’) ~ (SO, CO). Then tp(e, A, SO, CO) succeeds

with (~, S, C), and there is a substitution R such that

S’A = RSA, and a’ ~ct Ru

where (u, I?’) = gen(r, SA, C).

As a corollary, we have the following result for principal type

schemes.

Corollary 5.8 Suppose that tp(e, A, SO, CO) = (r, S, C) and

gen(r, SA, C) = (a, C’). Then a is a principal type scheme

for e under SA and C’.

6 Ambiguity Revisited

As we have seen in the int reduction, parametric type classes

share with standard type classes the problem that type

schemes might be ambiguous.

Definition. Given a type scheme u = Vat :: I’,. r, let Cm =

{a,:: 1’$} be the generic context of CT.

Definition. A generic type variable a in a type scheme a =

Vat :: r$.r is (weakly) ambiguous if (1) Co a # 0, and (2)

a @ C:(fzl T).

Ambiguous type variables pose an implementation prob-

lem. The usual approach to implement overloading poly-

morphism is to pass extra dictionary arguments for every

type class in the context of a function signature. Since the

constraints on ambiguous variables are non-empty (1), dic-

tionaries need to be passed. But since the ambiguous vari-

able does not occur free in the type (2), it is never instanti-

ated, hence we do not know which dictionaries to pass. Seen

from another perspective, any dictionary of an appropriate
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tp (x, A,S, C) = inst (s(h), s, c)

tp (el e2, A,S, C’) = let (~I,S~, Cl) = tp (e~, A,S, C)

(72, S2, C2) = tp (e2, A,Sl, Cl)

a a fresh type variable

(s,, c,) = mgu ‘r, (T, --i a) (s,, C,.a:: {})

in (S3a, S3, C3)

tp (kz. e,.4, S, C) = let a a fresh type variable

(~1, S1, Cl) = tp (e~,.4.z:a, S, C.a:: {})

in(slcr+T], sl, cl)

tp (let x = e] in ez, A, S, C) = let (rI, SI, Cl) = tp (el, A,S, C)

(cr, Cz) = tpgen (-rI, SIA, CI, C)

in tp (e2, A.z:a, Sl, CZ)

where

in$t (va::r.a, s, C) = let /3 a fresh type variable

in znst ([a ~ ~] a, S, c.p::r)

imt (T, s, c) = (T, s, c)

tpgen (a, A, C, C’) = if ~a c dom(C)\(fo(A) U reg(C) U dorn(C’))then

tpgen (VcY:: Ca.u, A, ~~, C’)

else (a, C)

Figure 7: Type Reconstruction Algorithm

instance type would do, but we have a problem of coher-

ence: There are several implementations of an expression

with possibly different semantics [Jon92a].

The problem is avoided by requiring that the programmer

disambiguate expressions if needed, by using explicit type

signatures. Conceptually, the ambiguity check takes place

after type reconstruction; would it be part of type recon-

struction then the principal type property would be lost. In

a way, the ambiguity problem shows that sometimes recon-

structed types are too general. Every ambiguous type has

a substitution inst ante which is unambiguous (just inst an-

tiate ambiguous variables). The trouble is that there is not

always a most general, unambiguous type.

Compared to multi-argument type classes, our type system

often produces types with less ambiguity. Consider:

len :: (sa :: Sequence a) => sa –> Int

Seen as a multi-argument type class, a would be ambiguous,

since it occurs in a predicate but not in the type itself. Seen

as a parametric type class, however, a is not ambiguous: Al-

though it does not occur in the type, it both unconstrained

and dependent on sa through (sa :: Sequence a). Hence

both (1) and (2) fail.

Ambiguity problems can be further reduced by making use

of the following observation: Because of restriction (b) in

Section 3, the top-level type constructor of a type uniquely

determines the dictionary that needs to be passed. Hence,

if two types have the same top-level type constructor (but

possibly different type arguments), their dictionaries share

the same data constructor (but have possibly different pa-

rameters). We can recognize equality of top-level type con-

structors statically, using the following technique:

We introduce a special “root” class Z’C, with one type pa-

rameter but no operations. Every type is an instance of TC

by virtue of the folIowing instance declaration (which can be

thought of being implicitly generated for every type K ~).

inst K r:: TC (K ())

Effectively, TC is used to “isolate” the top-level type con-

structor of a type. That is, if two types are related by a TC

constraint, we know that they have the same top-level type

constructor. The two types are then called similar

Definition. Given a context C, let szmilarzty in C, (We),

be the smallest transitive and symmetric relation such that

C H- T1 :: TC rz implies rl NC T2.

TC is treated like every other type class during type re-

construction. It is treated specially in the ambiguity check,

allowing us to strengthen the ambiguity criterion:

Definition. A generic type variable a in a type scheme u is

strongly ambiguous if cr is weakly ambiguous in u, and, for

every type r, a w c. r implies that r is a strongly ambiguous

type variable in u.

The TC technique enables us to type map precisely2

map : Va.Vb.Vt.

Vsa::{Seguence a, TC t}.

Vsb::{Seguence b, TC t}. (a + b) + s-a -+ sb

This states that sa and sb are instance types of Sequence

with element types a and b, and that sa and sb share the

same type constructor.

2Previously, it has been conjectured that this requ]red second-

order unification
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The knowledge that sa and sb have the same type construc-

tor is initially on the meta-level, derived from the form of the

compiler-generated instance declarations. We can formalize

it in the type system as follows:

Definition. A type scheme o = Vat :: r, .7’ is in reduced

form if none of the r, contains a class TC (K r), for arbitrary

constructor K and type r. We use a~ for type schemes in

reduced form.

Definition. Two type schemes al, U2 are equivalent under

a context C, al = c az, iff for all reduced type schemes

uR >

We extend the definition of generic instance to include equiv-

alence: A type scheme c1 is a generic instance of a type

scheme az under a context C if there is a type scheme u’

s.t. al & c af, and u’ ~ c uz according to the definition of

f c in Section 3. This stronger notion of generic instance is

important to check user-defined type signatures.

Example: After substituting Lz.st a for sa, the type sigua-

ture of map would become:

Vsb:: {Sequence b, TC (List ())}. (a + b) + List a + sb

The usual definition of map for lists, on the other hand,

would have type:

(a -+ b) + Lista + List b

Equivalence is necessesary to verify that the first type is an

instance of the second.

To keep contexts short, we will use in the next section the

similarity relation (W) directly, instead of its definition in

terms of TC.

7 From Monads to Lists

In this section, we show how to use parametric type classes

to generalize many of the operations and concepts which

were previously restricted to lists. As sketched in the in-

troduction, a first step overloads operations that are com-

mon to all implementations of sequence. Some important

operations can even be applied in the more general Moand

cent ext [Wad9 O]; hence it makes sense to have “Monad” and

“Monad with zero” as superclasses of “Sequence”. The fol-

lowing enumeration shows on which levels in the hierarchy

some familiar list operations are defined.

Monad: unit, join, map, monad comprehensions.

MonadO: nil, filter, comprehensions with filters.

Sequence: cons, hd, tl, reverse, f oldl, f oldr, (++).

The use of monads in functional programming was explored

in [Wad90, Wad91 ]; for a motivation of the concept we refer

the reader to the examples given there. The point we want

to explore here is how to express monads (and their special-

izations) in the type system of a programing language such

that we can abstract from their concrete implementations.

We show how the monad operations can be overloaded, us-

ing parametric type classes. This is useful since it allows to

define functions over arbitrary Monads, to reuse the same

names for operations on different monads, and to generalize

list comprehensions without changing their present syntax.

We formulate class Monad as follows:

class ma : : Monad a where

unit : : a -> rna

bind :: (mb :: Monad b, ma - mb)

=> ma -> (a -> mb) -> mb

map :: (mb :: Monad b, ma - mb)

=> (a -> b] -> raa -> mb

join :: (mma :: Monad ma, mma - ma)

.> mma -> ma

-– Default definitions:

map f xs = xs ‘bind (unit . f)

join xss = xss ‘bind’ id

bind xs f = join (map f XS)

This introduces two equivalent formulations of a monad, one

in terms of unit and bind, the other in terms of unit, map

and j o in. The default definitions in the class express one

formulation in terms of the other; hence instances can al-

ternatively define bind or map and join. To qualify for a

monad, an instance has to satisfy three laws, which are not

enforced by the type system. bind must be associative, with

unit as left and right unit:

(m ‘bind’ f) ‘bind’ g = m ‘bind’ \x -> f x ‘bind’ g

\x -> unit x ‘bind’ f = f

m ‘bind’ unit =m

Lists form a monad, as witnessed by the following instance

declaration, and a check that monad laws hold:

inst List a z: Monad a where

unit x = [x]

map f [1 xs = [1
map f (x:xs) =fx : map f xs

join [1 = [1
join (xs :: XSS) = xs ++ join xss

Another example ofamonad are’’reply’’-ty pes, as witnessed

by:

data Maybe a = Some a I None

inst Maybe a :: Monad a where

unit x = Some x

bind (Some x) f =fx

bind None f = None

As a consequence, code can now be written that works on

lists as well ason reply types or any other monad instance.

In particular, we can use the list comprehension notation

in each case, by applying the standard translation to unit,

map and join:

[t] = tmitt

[t191,921 + join [[t I g2] I 91]

[tlz+e] ~ map (k. t) e

179



Here, t and e are terms, x is a variable, and gl and gz are

generators .2 + e.

MonadO is a subclass of Monad. It adds a zero monad, nil,

and a filter function.

class (ma :: Monad a) => ma :: MonadO a where

nll ::ura

filter :: (a -> Bool) -> ma -> ma

Monads with zero are the most general type class on which

list comprehensions with filters can be defined. The stan-

dard translation functions are (yJ is a filter, i.e. a Boolean

term):

[1 A ~~~
[tIp] + jilter p(unitt)

Lists and reply types both have zeros, as witnessed by:

instance List a :: MonadO a where

nil = [1

filterp [1 = [1

filterp (x:xs) = if p x then

x: filter p xs

else filter p xs

instance Maybe a : MonadO a where

nil = None

filter p None = None

filter p (Some x) = if p x then Some x

else None

As an example of programming with Monads we discuss

abstract parsers, adapting and extending an example from

[Wad90]. Aparser isafunction that maps asequence of in-

put symbols tosomeoutput, or to afailure value, ifnolegal

parse exists. If a parse exists, thenit will consist of theun-

used portion of the input stream, plus some application de-

pendent result value, such as a parse tree. Ifthe parser uses

backtracking, there might exist several such parses, whereas

if it is deterministic, there will be zero or one. We construct

in the following a library for deterministic parsers. Such

parsers all have type signature:

data Parser a = P (String -> Maybe (a, String))

The constructor tag P is necessary because of the restriction

that instances may only be formed of datatypes. Parsers

form themselves a monad with zero, as witnessed by the

following instance declarations.

inst Parser a

unit x

map f (P p)

join (P pp)

inst Parser a

nil

filter b (P

:: Monad a where

= P (\i -> [(x, i)])

= P (\i ->

[(f x, i’) I (x, i’) c-p i])

= P (\i ->

[(x, i“) I (P p, i’) <-pp i,

(x, i“) f-p i’])

:: MonadO a where

=P (\i-> [])

p)

= P (\i ->

[(x, i’) 1 (x, i’) <-p i,

b x])

Note that we have overloaded the comprehension notation.

The monad comprehensions in the previous two instance

declarations work on option types, not lists.

We need two primitive parsers and onemore parser combi-

nator:

s ym ::

s ym .

lookahead ::

Iookahead =

(Ill) ::

Pplll Pq=

Parser Char

Pp

where p Nil

p (Cons

Parser Char

Pp

where p Nil =

pcs=

= [1
c Cs) = [(c, Cs)l

[1
[(hdcs, cs)]

Parser a -> Parser a -> Parser a

P (\i -> case p i of

None =>qi

I Sonre x => Some x)

A deterministic parser for lambda terms can then be written

as follows:

data Term =

I

I

term ::

term =

Ill

at erm ::

aterm =

Ill

aterm 7 ::
aterm> =

aterms ::

aterms x =

Ill

ident ::

ident =

Ill

Lambda Term Term

Apply Term Term

Id Ghar

Error

Parser Term

[Lambdaxy I ‘\’ <- sym,

x <- ident, y <- term]

[y I x <- aterm, y <- aterms xl

Parser Term

[x I ‘(’ <- sym, x <- aterm’]

ident

Parser Term

[x I x <- term, ‘)’ <- sym]

[Error]

Term -> Parser Term

[z I c <- lookahead,

‘a)<= c&&c <=’z’ llc=>(~,

y <- aterm,

z <– aterms (Apply x Y)]

[xl

Parser Term

[Idc I c <- sym, ‘a’ <= c && c <= ‘z)]

[Error]

The defined parser is deterministic; it never backtracks.

Therefore, parse failure hastobe treated differently accord-

ing to whether it occurs at the start of a production, or in

the middle. If failure occurs at the start of a production,

it signals that another alternative should be tried. Failure

in the middle of a production signals a syntax error that is

reported by returning an Error node.

Note that most of the productions areexpressed in terms of

monad comprehensions. This time, comprehensions refer to

parsers instead of option types or lists. Urdikein [Wad90],
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monad comprehensions need not be labelled with the monad

they refer to; we rely instead on the type system for disam-

biguation (including programmer defined typingsifambigu-

ities arise otherwise). The monad style gives us a flexible

interface between parsing and abstract tree generation. The

resulting parser resembles an attribute grammar with both

synthesized and inherited attributes (see the definition of

at erm).

8 Conclusion

We have proposed a generalization of Haskell’s type classes

to support container classes with overloaded data construc-

tors and selectors. The underlying type system is an ex-

tension of the Hindley/Milner system with parametric type

classes. This extension preserves two important properties

of the original system, namely decidable typability andprin-

cipal types. Its type scheme uses bounded quantification

whose introduction and elimination depend on a separate

context-constrained instance theory. The decoupling of the

instance theory from the type inference system makes our

system more modular than previous work. We believe that

the gained modularity can also be a great aid to implemen-

tors.

A point we have not discussed so far is how to implement

parametric type classes at run-time. Essentially, a trans-

lation scheme into Haskell along the lines of [WB89] can

be employed. Additional parameters for type classes trans-

late then into parameters for run-time dictionaries. Such a

translation can provide a (transformational) semantics for

parametric type classes. Whether it can also provide a good

run-time model is debatable. Existing implementations that

are based on this translation scheme have been criticized for

their run-time performance. We argue that, in principle,

the run-time performance of a program with type classes

should not be any worse than the performance of a program

written in an object-oriented language. Moreover, similar

optimization techniques can be used [CU90].
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