
A Calculus

Giuseppe Castagna

for Overloaded Functions Ivith Subtyping

(extended abstract)

Giorgio Gl~elli Giuseppe Longo

Dipartimento d’Informatica - Piss Dipartimento d’Informatica LIENS(CNRS)-DMI

LIENS(CNRS)-DMI Corso Italia 40, Piss, ITAL}” 45 rue d’Ulm, Paris, FRANCE

e-mail: castagna@dmi.ens.fr e-mail: ghelli@di.unipi .it e-mail: longo@dmi.ens.fr

April 8, 1992

Abstract

If’e present a simple extension of typed ~-calculus

where functions can be overloaded by adding differ-

ent “pieces of code”. In short, the code of an over-

loaded function is formed by several branches of code;

the branch to execute is chosen, when the ftmction is

applied, according to a particular selection rule which

depends on the type of the argument. The crucial

feature of the present approach is that a subtyping re-

lation is defined among types, such that the type of a

term generally decreases during computation, and this

fact induces a distinction between the “compile-time”

type and the “run-time” type of a term. We study the

case of overloaded functions where the branch selec-

tion depends on the run-time type of the argument,

so that overloading cannot be eliminated by a static

analysis of code, but is an essential feature to be dealt

with during computation. We obtain in this way a

type-dependent calculus, which differs from the var-

ious A–calculi where types do not play, essentially,

any rble during computation. We prove Confluence

and Strong Normalization for this calculus as well as

a generalized Subject-Reduction theorem (but proofs

are omitted in this abstract, see [CGL92]).

The definition of this calculus is driven by the un-

derstanding of object-oriented features and the con-

nections between our calculus and object-orientedness

are extensively stressed. We show that this calculus

I~rovides a foundation for typed object-oriented lan-

(,uages which solves some of the problems of the stan-3

f lard record-based approach. It also provides a type-

discipline for a relevant fragment of the “core frame-

,vork” (see [Kee89]) of CLOS.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its data appear, and notice IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA
@ 1992 ACM 0.89791 -483 -x/92 /0006 /0182 .,, $1 .50

1 htmduction.

An important distinction has been extensively used

in language theory since a couple of decades, between

parame~tic (or universal) polymorphism and “ad hoc”

polymorphism (see [CJV85]). Both the Proof The-

ory and the semantics of the first kind of polymor-

phism have been widely and deeply investigated by

really authors (with some contribution also by two of

the authors of the present paper), on the grounds of

early ~voJk of Hindley, Girard, Reynolds and Milner

and developed into robust programming practice. The

second kind, with the notable exceptions of [WB89],

[iiIOh190] and [Rou90], has deserved little theoretical

attention and, consequently, its very wide use has been

little af~(cted by any comparable influence as the one

exerted 1]y implicit and explicit polymorphism in pro-

gramming. Probably, the name itself, “ad hoc”, has a

discouraging connotation for any mathematical inves-

tigation. lye believe though that time is mature for

a theoretical analysis, and thus a “uniform and gen-

eral’> one, also of this programming feature. It turns

out that tile challenges it poses are non trivial: in-

deed, this paper is just a preliminary step towards a

theoretical universe still to be discovered and which,

we claim, may also affect language design. We present

here a formalism where functions can be overloaded by

adding [i difrc LCIIt ‘(piece of code”. Thus the code of an

overloatlf:d function is formed by several branches of

code. llLC brauch to execute is chosen when the func-

tiou is al,pliedj according to a particular selection rule.

In gcner;i 1 this rule depends on the type of the argu-

meIIL tllc function is applied to. We do not present a

gellcral Lrca~l)~~llt for overloaded functions (this can be

pal dy f~uncl i} i [Ghe91]), but we develop a purely func-

tion al al~proacll that better suits the characteristics of

object-orieutccl programming. In fact, our main goal

is {lie de finitic II of a kernel functional language for the

study 01’ >onle features of object-orientedness, such as

suh{~ pi I I ~, inheri~ance and message-passing. Since the

approa t I I IS entirely novel, we first felt the need, by this

182

preliminary, proof-theoretic analysis, to develop the

uon trivial investigation of key functional properties.

\\le focus thus on normalization, Church-Rosser prop-

erty and “subject-reduction” (i.e. termination, consis-

t ency and “how types evolve during computation”), in

the setting of a truly type dependent calculus. Indeed,

“type dependency” (the fact that terms and values

may depend on types) is the key property of the cal-

c UIUS. The various (higher order) calculi, such as Gi-

1ard’s System F or its extensions, allow type variables,

abstraction w.r.t. type variables and the application of

terms to types, but the “value” of an expression does

not depend on the types which appear in it or, if pre-

ferred, they are compiled in the same machine-code.

Iudeed, this “type-erasure” property plays a crucial

role in the basic proof-theoretic property of these cal-

culi: the normalization (cut-elimination) theorem. In

the semantic interpretations, this essential type inde-

pendence of computations is understood by the fact

that the meaning of polymorphic functions is given by

essentially constant functions (see [AL91]). It is clear,

instead, that overloaded functions express computa-

tions which depend on types, as different codes may

be applied on the basis of input types. This is so in

various imperative as well as functional languages; our

luotivation, though, comes from considering overload-

ing as a key feature of object-oriented programming,

when methods are viewed as “global” functions. Let’s

try to be more specific. In object-oriented languages

[he computation evolves on objects. Objects are pro-

gramming items grouped in classes and possessing an

i llternal state that is modified by sending messages

(o the object. M’ben an object receives a message

it invokes the method (i.e., code or procedure) as-

sociated to that message. The association between

Jnethods and messages is described by the class the

object belongs to. Thus objects are implemented as

I)airs (intjernal stjate , classname). Now, there

are two possible ways to implement message-passing:

the first is to consider classes as arrays that associate

to each message a method. Therefore when a mes-

sage m is passed to an object obj then the method

associated to m in the class of obj is looked for. A

conceptual simplification can be made by substituting

the field classname in the implementation of an ob-

ject by the array of the corresponding class: in this

approach, an object has the form shown in Figure 1:

object 1

m

messagen method_n

Figure 1: Objects as records

‘1’’his implelnentation has been extensively studied

and corresponds to the “objects as records” analogy

of [CarS8] (see also [CL90]). The second way to im-

pleJneIJ(l message-passing, as shown in Figure 2, is

to consider messages as names of overloaded func-

tions: according to the class (or more generally, the

type) of the object the message is passed to, a dif-

ferent method is chosen (this is the approach used

in CLOS: see [DG87]). By this, in a sense, we in-

message.i

EXZl

Figure 2: Messages as overloaded functions

verse the previous situation: instead of passing mes-

sages to objects we now pass objects to messages. Ob-

jects are still implemented by pairs (internal state

class-name) and become in this way arguments of

~ve~loadccl functions. This different approach seems

to have, at the first sight, some advantages w.r.t. the

“objects as records” paradigm, at least in a proof-

theoretical study of the typed case. Indeed in the first

approach objects carry methods with them; thus the

types of the objects contain also the functionality of

the value. This causes some problems and requires

an excessive use of recursion. On the contrary, in

the overloading approach, the type of an object is no

longer blurred by functional types. The functional-

ity is fully expressed by methods as global, overloaded

fuuctious. Of course other problems arise, especially in

the modeling of the encapsulation of the state, though

they do not seem overwhelming. On the other hand,

the full expressiveness of records is recovered, as record

types and values are derivable notions in our approach.

Briefl), ill this paper we develop a simple extension

of the i~ped A–calculus meant to formalize the be-

havior of overloaded functions in a type discipline that

uses also subtyping. The basic idea is that an over-

loaded function consists of a finite collection of ordi-

nary functions that are stuck together to form the dif-

fereut branches. Its type will be the set of the types of

its branches. Therefore we add to ordinary A—terms,

new terms such as (Jf&IV) that represents the over-

loaded fu uction composed by two branches M and N

(more br;lnchcs can be added by iterating the & as

for (ML & ‘Uz(h . . . &M~)). In the following we will call

a te~m c~f the form (i14&lV) an “&-term”. The syn-

tax of (ypes will be enriched by finite sets of arrow

types { 1‘(+ l;” ,..., V; + V:} (sometimes denoted

by { ~’~ - ~\’’J,GJ), where every arrow designates the

type of a di[rcrent branch. Overloaded types, though,

must satisfy relevant consistency conditions, which,

among others, take care, in our view, of the long-

183

~tanding debate concerning the use of covariance or

contravariance of the arrow type in its left argument.

‘~he subtyping relation introduced is acomplex (but

expressive) feature of the calculus: it allows multiple

choices, as a type may be a subtype of several types

,~nd subtyping is used to chose branches of overloaded

terms.

In section 2 we describe the combination of over-

loading and subtyping and stress the advantages of

their interaction. Section 3 presents the syntax of the

system as well as the reduction rules. Sections 4 deals

with the crucial (and difficult) normalization theorem

and other syntactic properties. In section 5 we give

some more intuition on how our calculus fits object-

oriented programming, hinting how to implement sub-

~yping and message-passing by the constructs of our

calculus. In this abstract, proofs have been entirely

omitted.

2 Overloading and Subtyping

Overloading by itself (i.e. without subtyping), does

not increase the expressiveness of the language: an

overloaded function can be substituted by the appro-

priate code, at compile-time; in this case, overloading

seems more a notational trick than a programming

construct. If combined, though, with subtyping, it

lJecOmes a very flexible and powerful tool. The idea

is that if we have an overloaded function whose n

l.,~anches have respectively type 11~ + ~ (i = l..n)

and we pass it an argument of type U, the chosen

branch j is the one that “best approximates” U, that is

such that Uj = minic J{Ui IU ~ Ui}. Now it is known

[hat, in presence of a subtyping relation, the type of

a term is no longer the same during computation, but

it may decrease, see [CG92]. This “shrinking of the

run-time type” corresponds to the increase of infor-

lnation (better, of “understandability”) that charac-

terizes the evolving of computation. Thus the choice

of the branch can no longer be performed at compile

time since the type of the argument may change dur-

ing the computation and thus the designated branch

as well (and indeed we want the choice to be performed

on the most informative type of the argument, that is

the one of its normal form). For this purpose, we dis-

tinguish for a term two kinds of types: the static type

of a term i.e. the one which can be deduced looking

at the term before its computation, and its run-time

types i.e. these which it will possess looking at the

term at different phases of its computation. The run-

time types will be used in the selection of the branches

of overloaded functions, while the static typing of a

!,erm is enough to assure that the computation will be

type-error free as stated by theorem 4.1 (note though

Lhat the static type doesn’t suffice to figure out how

Lhe computation will evolve). To satisfy this condition

not every overloaded type should be accepted: indeed,

we must require a “consistency” condition and avoid

ambiguity, in case multiple choices are possible. In

short, au o~-mloaded type {Ui --+ Vi }iEr will be well-

formecl if and only if for all i, j E 1 it satisfies the

following conditions:

U~<Uj * X~Vj (1)

Ui JJ Uj * there exists a unique h E I (2)

such that uh = inf{ui, Uj }

where lr~ $ Uj means that Ui and Uj are downward

compatible, i.e. they have a common lower bound.

Condition (1) is a consistency condition, which as-

sures that during computation the type of a term may

only decrease. In a sense, this takes care of the com-

mon need for some sort of covariance of the arrow in

the practice of programming. More specifically if we

have a two-branched overloaded function IM of type

{U, -+ Ii, Uz + Vz} with Uz < U1 and we pass it a

term IV which has the compile-time type U1 then the

compile- time type of MN will be VI; but if the nor-

mal form of IV has type Uz then the run-time type of

i’vfJV will be V2 and therefore V2 < VI must hold. The

second condition concerns the selection of the correct

branch: we said before that if we apply an overloaded

function of type {U~ --+ ~}~~~ to a term of type U

then the selected branch has type Uj + Vj such that

Uj = minie~ { U, IU < Ui }; condition (2) assures the

existence and uniqueness of this branch.

l’hese rest, ~ictions have a surprisingly natural in-

terpretation when we consider the connection with

object-oriented programming (see section 5).

3 The M-calculus

In this section we define the extension of the typed

lambda calculus we will study in the rest of the paper.

We first define a set of Pretypes and then among them

we will select those that satisfy the conditions above

and that will constitute the types.

PreTypcs

b’ ::=A]V -+ Vl{v; +v(’,v. +v;}

where by .4 we denote an atomic type.

3.1 Subtyping rules.

We define a s ubt yping relation on the set of Pretypes.

This relation is used to defines the types. The idea is

that one may start from a partial order predefine on

atomic (pre)types and extend it to all Pretypes: the

relation is obtained by adding the rules of transitive

and reflexive closure to the following ones:

184

Intuitively if we consider two overloaded types U and

V as a set of functional types then the second rule

states that U < V if and only if for every type in V

there is one in U smaller than it.

3.2 Types

On the base of the previous definition we select those

Pretypes which satisfy the conditions of section 2:

1. A c Types

2. if VI, V2 c Types then V1 + VZ c Types

3. if for all i,j C 1

a. (Ui, W G Types) and

b. (Ui<Uj*K<~)and

c. (Ui J.Uj + there is a unique h c 1

such that uh = inf{ui, Uj })

then {Ui + ~}iE1 ETypes

The intuition on which overloaded types are based

is the following. An overloaded type is inhabited by

functions made out of different pieces of code. When

au overloaded function is applied to an argument, a

choice is made of the code that will be actually used

ill the computation. The choice is based on the type

of the argument aud the condition of 3 .C assures its

unicity.

3.3 Terms

Itoughly speaking terms correspond to terms of the

classical lambda calculus plus an operation which con-

catenates two different branches and forms an over-

loaded term. Since we want the branches of an over-

loaded function to be ordered, then we construct them

as customary with lists, i.e. we start by an empty

overloaded function and add branches, concatenated

by ampersands. We also distinguish the usual appli-

cation J4. J4 of lambda-calculus from the application

of an overloaded function M*M since they constitute

two completely different mechanisms: indeed to the

former is associated a notion of variable substitution

while in the latter there is the notion of selection of a

branch. This is stressed also by the proof-theoretical

viewpoint where these constructors correspond to two

different elimination rules. Finally, a further differ-

ence, specified in the reduction rules, is that over-

loaded application is associated to call by value, which

is not needed by the ordinary application. For the

same reason we must distinguish between the type

U + V and the overloaded function type wil,h just

one branch {U --+ V}.

The tyl>c which indexes the & is a technical trick to

allow t,hc reduction inside overloaded function, as ex-

plained in [CC; L92].

3.4 Type checking

The rule to type-check the calculus are shown in Table

1 in the next page.

As the reader will have noticed, we do not use the

subsurnpiion rule in our presentation of the type rules.

However our system enjoys the subsumption property,

i.e. for any U < V and for any context C[] and terms

M: Uand IV: V, if C’[M] is well-typed then C[N] is

well-typed too. This means that our system could be

presented using the subsumption rule. Notice, though,

that with the subsumption rule the run-time type of

a term (used only in the reduction rules, to perform

branch selection), should be defined as the minimum

type of a closed normal term,as terms would possess

many types. In our system instead one has:

Theorem 3.1 Every well-typed A&–term possesses a

unique tgpe

3.5 Reduction

In order to sinlplify the definition of the reduction, we

consider the types of overloaded functions as ordered

sets. The order corresponds to the order in which

brauches appear, i.e. in which they are “constructed”

according to the rules. Also, we will allow a reduction

of the al}l ,lica tion of an overloaded function only when

its argulllent is in normal form. This is a crucial point.

If the argumcut of an overloaded function is reduced,

its type Illay change (indeed, decrease by theorem 4. 1).

Therefole a different branch of the overloaded func-

tiou might be chosen. As a matter of fact, in object

oriented languages one can send messages only to ob-

jects in uormal form. For example, in Smalltalk the

expression

object lnessage~ messagez . . . message~

is evaluakd as

(.. . ((object messagel) messagez) . . . message~)

since the first message is passed to the object object

the second to the object which is the result of the

previous message-passing (in SmallTalk the result of

every message is another object) an so on, but the

message is sent afler that the previous object has been

calculated

In short, we define the reduction relation D :

/3&) If N: U is closed and in normal form and Uj =

mi~l{[~~ IU < 11~} then

((lII,UU’
{

M1+N forj < n
-+”,}. =1. .~2),~) p

Mz. N forj=n

185

[TAUT]

[--+ INTRO]

[.+ ELIM~~~]

[TAUT.]

[{} INTRo]

[{} ELIM]

t ~v:\r

t M:v

1- AX[’.M: u -+ v

tll’!l: u-iv I-N:IJ’<U
tM. N:V –

tM.N:~

Table 1: Type checking rules for the M-calculus

con-teat) If Ml D M2 then

(A1lN) D (MzN)

(iVM1) D (IVkfZ)

(h”. M1) D (iz”.M,)

(M1&N) D (M,&N)

(N&M1) D (N& M,)

‘Jle reasons of the two restrictions in the (@&) is that,

in our approach, two operations may change the type

of a term: namely, reduction and substitution. Since

we want the type of the argument of an overloaded

function to be fixed, we require that it is in normal

form in order to avoid reductions and that it is closed

in order to avoid substitutions.

The intuitive operational meaning of (/3&) is easily

understood when looking at the simple case, i.e. when

there are as many branches as arrows in the overloaded

type. In this case, under the assumptions (and the

typing) in the rule, one has

(A418.L . . .& M.)(N) D* MjN

The nested formalization above of (~&) is needed as

Ml may be an application PIQ1, i.e. the “external

operation” in MI is application, instead of an &.

3.6 Deriving records

In various approaches to object-oriented programming

records play a very important role. In particular,

current functional treatments of object-oriented fea-

tures formalize objects directly as records. Moreover,

if lecords are not included in a calculus, the subtyp-

illg relation may turn out to be quite trivial. In our

system, records can be encoded in a straightforward

way. Let L1, LZ, . . . be an infinite list of atomic types.

Assume that they are isolated (i.e., for any type V,

if Li < 1“ or Iz s L~ ~ then Li = V), and introduce

for each Li a constant J&: L~. It is now possible to en-

code record types, record values and record selection,

respectively, as follows:

Since L1 . . . Ln are isolated, then the subtyping rule

for records is a special case of the corresponding rule

for overloaded types:

Vl<ul . ..vJ<uk
((t,: v,;tk. v,,;.. .;t’k+j:vj+j)) < ((~~:u~;...;~~:uk))

The type-checking rules are similarly derivable:

t- M1:V1. .. FMn:Vn

t (I? I=M1 ;.. .;l?n=Mn): ((f?l:vl;. . ..ln. vn))

Finally, the rewriting rules (p) and (reed) below are

just special cases of (f3a) and (context) respectively.

P) (f, =AI,; . . ;l.n=Mn).&DMi (O<i <n)

reed) zII D .kf’ +

~{.~ D M’.l

(.../= M.,.) D (...p= M’...)

186

4 Main Theorems

In this section we present the main theoretical results

for our calculus. We omit the proofs of the theorems

even if they would deserve a wider treatment in view

of the insight they can give in the understanding of

the system; in fact the crucial properties of the over-

loaded types are heavily used in these proofs which ac-

tually suggested some of the latest features we added

to our calculus. Though, to this further insight of the

system correspond many technical difficulties whose

treatment requires at least twice the space at our dis-

l~osal here. The interested reader can refer to [CGL92]

Trhere, besides the proofs, she/he can also find an ex-

tensive discussion on the key features of our approach

such as the distinction between run-time types and

compile-time types, the dualism covariance vs. con-

travariance and some proof-theoretical aspects with

hints to the semantics of type dependencies.

We start with a generalization of the subject reduc-

tion theorem which states that if a term is typeable

then it can reduce only to typeable terms and these

terms have a type lesser than or equal to the type of

the redex.

Theorem 4.1 (Generalized Sub ject Reduction)

Let M:U. IfiVl D* N then N: U’, where U’ < U.

This theorem is important because it states that the

computation well-behaves w.r.t. to types.

Next we have the Strong Normalization therorem.

As well known, strong normalization cannot be proved

by induction on terms, since ~-reduction potentially

incleases the size of the reduced term. For this reason

we introduce, along the lines of [Mit86], a different

liotion of induction on typed terms, called typed zn-

Aciion, proving that every typed-inductive property

is satisfied by any typed term. This notion is shaped

over reduction, so that some reduction related prop-

erties, like strong normalization or confluence, can be

easily proved to be typed-inductive. We entirely omit

the proof and just note that the main lemma for it,

which proves that every typed-inductive property is

satisfied by any typed term, is related to the normal-

ization proofs due to Tait, Girard, Mitchell and others.

lVe had to avoid, though, the notions of saturated set

and of logical relation, which do not seem to generalize

easily to our setting. This new methodology required

some original technical insight.

Theorem 4.2 Terms strongly normalize.

Finally we can also prove the (syntactical) consis-

tency of the calculus

Theorem 4.3 (Church-Rosser) If AI D P and

M D Q then there exists N such that P D* N Q D* N.

The proof of tl,is theorem is technically the easiest

of the t]iree since it is not difficult to show that the

calculus is weakly Church-Rosser. Then, by the New-

mann’s lemma, one directly derives the Church-Rosser

property for i~. This theorem is important since as-

sures that no matter how the calculus is implemented

it always re~ums the same result. Thus it behaves in

a deterministic way.

5 Overloading and Object-

Oriented Programming

We already explained in the introduction the relation

betweeu object-oriented languages and our investiga-

tion of overloading. We discuss here some more this

relation: by now, it should be clear that we represent

class-names as types, and methods as overloaded func-

tions that, according to the type (class-name) of their

argument (the object the message is sent to), execute

a certaiu code.

There exist many techniques to represent the inter-

nal state of objects in this overloading-based approach

to object oriented programming. Since this is not the

main concern of this research, we follow a rather primi-

tive technique: we suppose that a program (A&-term)

may be preceded by a declaration of class types: a

class type is an atomic type, which is associated to

a unique representation type, which is a record type.

Two class types are in subtyping relation if this rela-

tion has been explicitly declared and it is feasibie, in

the sense that the respective representation types are

in subtypiug relation too. In other words class types

play the role of the atomic types from which we start

up, but in addition we can select fields from a value

in a class type as if it belonged to its representation

record type, and we have an operation -c~ass~vpe to

transform a record value r: R into a class type value
#aSaTYP~ of type c~assType, provided that the repre-

sentation type of class Type is R, Class types can be

represented iu our system generalizing the technique

used to represent record types, but we will not show

this fact in detail. We use italics to distinguish class

types f~om the usual types, and = to declare a class

type and to give it a name; we will use = to associate a

name to a value (e.g. to a function). Thus for example

we can declare the following class types:

gDPoinf + ((z : Int; y : Int))

3DPoint = ((z : Int; y : Int; z : Int))

and impo~e that on the types 3DPoa’nt and 2DPoint we

have the following relation 3DPoint < 2DPoint (which

is feasible since it respects the orde~lng of the record

types these class types are associated to). A simple

example of a method for these class types is Norm.

187

This will be implemented by the following overloaded

function:

Norm z (Aself 2Dp0ini. self. z2 + self. y2

& AseZf3Dp0int.~ selJx2 + sel~y2 + self.z2

)

whose type is {2DPoint -+ Real, 3DPoint -+ Real}.

Indeed, this is how we implement methods, as

branches of global overloaded functions. Let us now

carry on with our example and add some more meth-

ods to have a look at what the restrictions in the for-

mation of the types (see section 2), become in this

context.

The first condition, i.e. covariance inside overloaded

types, expresses the fact that a version of a method

which receives a more informative input returns a

more informative output. Consider for example a

method that updates the internal state of an object,

like the method Erase which sets to zero the x com-

ponent of a point:

Erase G

(Aself 2DP”’”’ .(X = O; y = selJy)2Dp0’”’

& Aself3DP0’”’ .(x = O; y = self.y; z = self.z)3DP”’”’

)

whose type is { .2DPoint + 2DPoint, 3DPoint -+

3DPoint}. Here covariance arises quite naturally.

Of course in the example the notation we used is

quite cumbersome and redundant since we do not

possess, in this core system, powerful operations on

records (here, the update of a field) as for example in

[CK191] or [Wan89].

As for the second restriction it simply says that in

case of multiple inheritance the methods which are

in common to ancestors not related by <, must be

explicitly redefined. For example suppose to have also

these definitions

Color ~ ((c : String))

2DColPoznt + ((x : Int; y : Int; c : String))

and that we extend the ordering on the newly de-

fined atomic types in the following (feasible) way:

2DColPoint< Color and 2DColPoznt< 2i9Point. Then

the following function is not legal, as formation rule

3 .C in section 3.2 is violated:

Erase G

(Aself2Dp0’n’ .(x = O; y = selJy)2DP”””’

/2 Aself 3Dp0’n’ .(x = O; y = setf.y; z = self.3)3D’’0’”’

k Aseif CO’O”.(C = white,,)~~l.~

)

III object oriented terms, this happens since 2DCOL

Poiut, as a subtype of both 2DPoint and Color, heirs

the Erusc me[hocl from both classes. Since there is

nO reasou to choose one of the two methods and no

gel]cral way of defining a notion of “merging” for in-

herited methods, we ask that this multiply inherited

method is explicitly redefined for 2DColPoint. Notice

that some object oriented languages do not force this

redefinition but use some different criterion to choose

among inherited methods, usually related to the order

in which class definitions appear in the source code.

As discussed in [Ghe91], our rule 3 .C in section 3.2

can be easily substituted to model these different ap-

proaches to the problem of choosing between inherited

methods, allowing a formalization and a comparison of

these approches in a unique framework. The approach

we have chosen in this foundational study is just the

cleaner and the simpler one in a context where the set

of atomic types is fixed.

In our approach, a correct redefinition of the Erase

method would be:

Erase z

(klf2D’’0’”i .(X = O; y = seZf.y)2DP0’”’

& Aself3Dp0”t .(x = O; y = se?fy; z = self. z)3Dp0’”’

& Aselfc ”’”” .(c = “white’’) co’or

k Aself ’DcO’pO’”’.

(~= O; Y = self.y; ~ = “white)z*G.,P.,.*

)

which has type:

{ 2DPoint --+ 2DPoint,

3DPoint -+ 3DPoint,

Color + Color,

,?DColPoint + 2DColPoint }

l-he way we have written these methods may seem

complicated with respect to the simplicity and modu-

larity of object-oriented languages. Indeed the terms

above can be regarded as the result of a compilation

(or translation) of the following higher-level object-

orientecl program:

class 2DPoint

state

x: Int;

y: Int

methods

Norm = sqrt(self

Erase = x <- O;;

interface

Iiorm: Real;

Erase: Likes elf

endclass

x’2 + self .y”2); ;

class 3DPoint is 2DPoint and

state

z: Int

188

methods

Norm = sqrt(self.x-2+self.y-2+self z);;

interface

Norm: Real

endclass

class Color

state

c:String

methods

Erase = c z- “white”;;

interface

Erase: Likeself

endclass

class 2DColPoint is Color, 2DPoint and

methods

Erase = x <- O; c <- “Wh~te”; ;

endclass

AS for inheritance, note that this crucial feature of

object-oriented programming is implemented here by

the use of b-unch selection and code reusing. Recall

now that, in our approach, the code of methods is

cc nimlized in the overloaded functions, as “global”

functions, instead of being duplicated in every object,

as the “objects as records” analogy seems to suggest.

Tlen, when a message is sent to a receiver (in our

language: an overloaded function is applied toanar-

gument)ex actlythecode (the branch) defined in the

superclass (supertype) of the class (the type) of the

input, is executed.

Thus)inheritance relies first on the fact that, when

an overloaded function is applied toan argument, the

branch selected is the min{U; IU < Ui}, where U is

the class (type) of the argument. If this minimum

is exactly U, this means that the receiver uses the

method that has been defined in its class; otherwise,

i.e. if this minimum is strictly greater, then the re-

ceiver uses the method that its class, U, has inher-

itcdfrom this minimum (a superclass); in other terms,

the code written for the class which resulted to be

t,he minimum, is reused by the objects of the class

U1. Consider, say, the type 2DCo/Point and send the

message Normto it. Then the branch selected is the

one defined for 2DPoint. Indeed, Nor=m:{2DPoint+

lleal,3DPoint+ Real} and the minimum type among

those types greater than 2DCo[orPoint is 2DPoint;

thus the branch selected is exactly theone which has

been defined for 2DPoini’s.

10f course, real code-sharing depends on the implementa-

tion; in the previous exzunple, when definin~ the claas 2D COL

Point, the overloaded function Erase does not need to be com-

I>lctely redefined, as the new two branches are appended to the

esis(ilig code

BY this, we may say that inheritance is branch se-

lec~ion u I) d code-reusing.

It is well known that problems arise when, in ex-

amples as the ones above, one tries to define a bi-

nary method like Equal. Let us see what happens in

the “objects as records” analogy: ifweadd a method

Equulto 2DPoint and 3DPoint then, in the notation

typical of formalisms built around this analogy, we ob-

tain the following recursive record types (we forget the

other mcdlods):

2DEPoint z

((z : Il,t; y: Int; Equal : 2DEPoint + Bool))

3DEPoi?lt E

((x : h]t;y : Int; z : Int; Equal : 3DEPoint + Bool))

and in this case the two types are not comparable be-

cause of the coutravariance of the arrow type in Equal:

since oue would expect 2DEPoint to be larger, as

record, than 3DEPoint, the type at the left of the

outer arrow in 2DEPoint should be larger, impossi-

ble by contravariance.2 By the way, this is not to be

considered a flaw in the system but a desirable prop-

erty, since a subtyping relation between the two types

could cause a run-time type error (see [CL91] for an

example). The problem with the “object as record”

analogy is that there is no way to write a method as

Equal and compare, by subtyping, the two classes.

Our system is essentially more flexible, in this case.

Indeed if we set 3DPoint< 2DPoint then an equality

fuuction,with type:

Equul: {.2DPoint + (2DPoint + Bool),

3DPoznt + (3DPoint + Bool)}

would not be well-typed in our system either, since

3DPoint < 2DPoint while 2DPoint + Booi <

3DPoint --+ Bool. This expresses the fact that a com-

parison function cannot be chosen only on the basis of

the type of the first argument. In our system instead

we can write an equality function where the code is

chosen OIL the basis of both arguments

Equal > (A(p, q)2Dp0intx2Dp0in’. (p.z = q.z)AND

(P.v = !l.Y)

& A(p, q) 3Dp0in$x3Dp0in’. (p.x = q.x)AND

(P.Y = qY)AND
(p..z = q.z)

)

the functiou above has type:

2 Recursive t ~pe~ &oUld be considered as denotations fOr

their infiuite expansion, and an infinite type is a subtype of

another one when all the finite approximation of the first one

are subtypes of the corresponding finite approximation of the

second onc; see [AC’90].

A better notation for the types above would have been

2DEPoint s @((x : Int; y : Int; Equal : t + Bool)) and

3DEPoint = u.((x : Int; u : Int; z : Int; Equal : s + Bool))

189

{(2DPoi7zt x 2DPoznt) --+ Bool,

(3DPoznt x 3DPoinf) + Bool}

which is well formed3.

In presence of a subtyping relation, the covariance

versus the contravariance of the arrow type, w.r. t.

the left argument (domain), is a delicate and classical

debate. Semantically (categorically) oriented people

have no doubt: the hom-functor is contravariant in the

first argument. Moreover, this nicely fits with typed

models constructed over type-free universes, where

types are subsets or subrelations of the type-free struc-

ture and type-free terms model runtime computations.

Also the common sense of the type-checking suggests

cent ravariance: if we consider one type subtype of

another if and only if all expressions of the former

type can be used in the place of expressions of the

latter, then type-error free computations can be ob-

t ained only if cent ravariance is used for arrow types.

However, practitioners often have a different attitude.

In 00P, in particular, the “overriding” of a method

by one, say, with a smaller domain (input type) leads

to a smaller codomain (output type), in the spirit of

a “preservation of information”. Indeed, in our aP-

proach, we take care of both view points, as they are

both correct, when viewed in the “right” frame.

As a matter of fact, our general arrow types (the

types of ordinary functions) are contravariant in the

first argument, as required by common sense and

mathematical meaning. However, the families of ar-

row types which are glued together in overloaded types

form covariant collections, by our conditions on the

formation of these types (see 3.2). Besides the justi-

fication of this at the end of section 2, consider, say,

the practice of overriding. Roughly, the implementa-

tion of a method in a superclass is substituted with

a more specific implementation in a subclass. For ex-

ample, the “+” operation, on different types, may be

given by two different implementations: one imple-

mentation of type Int x Int + Int , the other of type

Realx Real --+ Real. In our approach, we can glue these

implementations together in a unique global method,

exactly because their types satisfy the required covari-

ance condition.

MTe have already noticed that part of the expres-

sive power of our system derives from the ability of

choosing one implementation on the basis of the types

of many arguments. This ability makes it possible

even to decide explicitly how to implement “mixed

binary operations”. For example, besides implement-

ing “pure)’ equality between 2DPomt’s and between

3DPoint ‘s, we can also decide how we should compare

3 This is not surprising as, even if the types of the twO versiOns

of equal are componentwise isomorphic, in general isomorphkms

of types do not preserve subtyping: an iso may be a rather

involved operation which has nothing to do with inheritance or

related matters

a 2DPui/~1 and a 3L?Point, as below:

Equal =(A(p, q)2Dp0in’xzDpOin’. . . .

& A(P, q)3Dp0intx3DPoint

& A(p, q) ‘Dp”i~tX3Dp”’~’j(P.X ~“q.z)AND

(PY = !lY)
& ~(p, q)3~Point X2 DPoint .(p.~ = q.~)AND

$; ~ ~~)AND

)

The ability to choose a method on the basis of more

object parameters is called, in object oriented jargon,

multiple dispatch.

We conclude this brief excursion in the object ori-

ented world with a hint on the use of coercions. In

object oriented programming a mechanism is often of-

fered to choose a specific implementation for a method;

the super identifier can be used inside method defini-

tions to refer to the implementation of a method in an

ancestor. “r. allow choosing a specific implementation

for a method we offer a “run-time coercion” operator

which changes the run-time type of an object, so that

to get the Norm of a three-dimensional point Al as if it

where a two-dimensional one, the following expression

can be used:

Norm* (coerce, DPOi.t (M))

These run-time coercions are different from the ones

used in [BL90, CG92] since they are not used only

to change the type of expressions but their run-time

behavior too. Note that the use of coercions is more

flexible than super as modelled in [CHC90, Mit90]

since it is possible to remount farther than the direct

ancestor, and it can be used everywhere and not only

inside method definitions 4. Furthermore, in a forth-

coming paper we will show how, by using coercions,

it is possible to encode the powerful calculi on record

values preseuted in [CM91] and [Wan87].

Finally a pointer must be given to CLOS since

our system provides a possible type-discipline for

a fragment of this language including generic func-

tions formed by primary multi-methods and whose

dispatch never uses the Class Precedence List (see

[DG87’, Kee89]).

6 Conclllsion: intersect ions,

products and their semantics

This work is just the starting point of a new type dis-

cipline to be more extensively explored. We tried to

4This is not the exact behavior of super in object oriented

languages, since in oo-languages the branch selected by super

works on the object which received the message, while in our

case it works on a coercion of that object. This topic indeed

deserves further work

190

present our motivations in the introduction, by stress-

ing the need to found also the so called “ad hoc” poly-

morphism onto decent mathematical grounds, in par-

ticular in view of its role in the understanding of some

object-oriented feat ures. Reference has been given to

the work we are aware of in the subject, which, by

the way, has an entirely different perspective, One

should also quote possible connections to other type

disciplines, in particular the intersection types, origi-

nated in [CDCV8 1]. Indeed, at first glance, an over-

loaded type, in our sense, may seem an intersection

of types: recent applications of intersection types in

[Pie90] and in the programming language Forsythe,

may suggest this analog y. However, this is not so. A

term living in an intersection type loses the type in-

formation: semantically, from an intersection of types

(sets), one cannot recover the collection of types (sets)

which form the intersection nor the value of a term in

an intersection may depend on a specific (input) type.

This is a crucial point for our approach, where values

depend on types (of inputs), and makes its semantics

challenging and worth exploring. Note that “terms de-

pending on types” is a novel and entirely different con-

cept from “types depending on terms”, as described in

the (first order) types of Martin-Lof type theory or of

the Calculus of Constructions.

Further work should also lead to a detailed investi-

gation of “compile-time vs. run-time” types. In the

complete version of this paper, [CGL92], we propose

a simple view of this “dualism”, which fits our ap-

proach. More should be said, though, in particular

in connection with subtyping, coercions etc., i.e. with

the various ways of dealing with “types evolving dur-

ing computations”.

As for the use of recursion, surely a very important

tool for smooth programming practice, we believe that

the theoretic investigation of complex issues, like this,

should be made into two steps, if possible. First, ana-

lyze type disciplines were some “unshakable grounds”

can be set: following the analogy “types as propo-

sitions” in ~-calculus, this means consistency proofs,

via normalization, say, and related facts, as we tried

to do here. Then, if everything works fine, add recur-

sion, when really needed for computations, both for

types and terms. This is another “methodological”

point which distinguishes our approach to the current

theoretical treatments of object-oriented features.

Acknowledgments. G. Castagna would like to

thank Maribel Ferniudez for her comments on an early

draft and Roberto Di Cosmo for his help in the work

and patience in sharing an ofice. A very special thank

to J?ranca and Nice, too.

[AC90]

[AL91]

[BL90]

[Car88]

R. Amadio and L. Cardelli. Subtyping Re-

cursive Types. Technical Report, Digital

System Research Center, August 1990.

A. Asperti and G. Longo. Categories,

Types and Structures: An Introduction to

Category Theory for the Working Com-

puter Scientist. MIT-Press, 1991.

K.B. Bruce and G. Longo. A modest

model of records, inheritance and bounded

quantification. Information and Computa-

tion, 87(1/2):196–240, 1990. A first ver-

sion can be found in 3rd Ann. Symp. on

Logic in Computer Science, 1988.

Luca Cardelli. A semantics of multiple in-

heritance. Information and Computation,

76:138–164, 1988. A first version can be

found in Semantics of Data Types, LNCS

173, 51-67, Springer-Verlag, 1984.

[CDCV81] M. Coppo, M. Denzani-Ciancaglini, and B.

[CG92]

[CGL92]

[CIIC90]

[CL90]

[CL91]

[CM91]

Venneri. Functional characters of solvable

terms. Zeit. Math. Logik, 27:45-58, 1981.

P. L. Curien and G. Ghelli. Coherence of

subsumption. Mathematical Structures in

Computer Science, 2(l), 1992.

G. Castagna, G. Ghelli, and G. Longo.

A calculus for overloaded functions with

subtyping. Technical Report 92-4, Lab-

oratoire d’Informatique, Ecole Normale

Sup&ieure - Paris, February 1992.

W.R. Cook, W.L. Hill, and P.S. Canning.

Inheritance is not subtyping. 17th Ann.

A Chl Symp. on Principles of Program-

ming Languages, January 1990.

L. Cardelli and G. Longo. A semantic ba-

sis for Quest. Technical Report, Digital

System Research Center, February 1990.

LISP and FP, Nice, July 1990; Journal of

Functional Programming, 1(4):417-458 (to

appear).

G. Castagna and G. Longo. From in-

heritance to Quest’s type theory. In

Eco!e Jeunes Chercheurs du GRECO de

Programmation, Sophia-Antipolis (Nice),

April 1991.

L. Cardelli and J .C. Mitchell. Operations

on records. Mathematical Structures in

Computer Science, 1(1):3-48, 1991.

191

[C’IT785] L. Carclelli and P. Wegner. On un-

derstancliug types, data abstraction and

polymorphism. Computing Surveys,

17(4):471-522, December 1985.

[DG87] L .G. DeMichiel and R.P. Gabriel. Com-

mon lisp object system overview. In Proc.

of ECOOP ’87 European Conference on

Object Oriented Programming, 1987.

[Ghe91] G. Ghelli. A static type system for mes-

sage passing. In Proc. of 00PSLA ’91,

1991.

[Kee89] S.K. Keene. Object Oriented Programming

in COMMON LISP: A Programming Guide

to CL OS. Addison-Wesley, 1989.

[Mit86] J. C. Mitchell. A type inference approach

to reduction properties and semantics of

polymorphic expressions. In ACM Con-

ference on LISP and Functional Program-

ming (LFP,), pages 308–319, 1986.

[hfit90] J .C. Mitchell. Toward a typed foundation

for method specialization and inheritance.

17th Ann. ACM Symp. on Principles of

Programming Languages, January 1990.

[ilIOM90] N. Marti-Oliet and J. Meseguer. Incis-

ions and Subtypes. Technical Report, SRI

International, Computer Science Labora-

tory, December 1990.

[Pie90] B. Pierce. Intersection and Union Types.

Technical Report, Carnegie hlellon Uni-

versity, 1990.

[Rou90] F. Rouaix. ALCOOL-90, Typage de la

surcharge clans un !angage fonctionnel.

PhD thesis, University PARIS VII, Decem-

ber 1990.

[IVan87] Mitchell Wand. Complete type inference

for simple objects. In 2nd Ann. Symp. on

Logic in Computer Science, 1987.

[J\Tan89] Mitchell Wand. Type inference for record

concatenation and multiple inheritance. In

dth Ann. Symp. on Logic in Computer Sci-

ence, 1989.

[IVB89] Philip Mradler and Stephen Blott. How

to make “ad-hoc” polymorphism less “ad-

hoc”. In 16th Ann. ACM Symp. on Princi-

ples of Programming Languages, pages 60–
76, 1989.

192

