
Type Inference in

Subtyping

D. .

the Presence of Overloading,

and Recursive Types

Stefan Kaes

1 laktische Informatik

TH Darmstadt

D-6 100 Darmstadt, Magdalenenstr. 1 lC

E-mail: kaesflpi.informatik.th-darmstadt .de

ABSTRACT

We present a unified approach to type inference in the pres-

ence of overloading and coercions based on the concept of

constrained t~pes. We define a generic inference system,

show that subtyping and overloading can be treated as a

special instance of this system and develop a simple algo-

rithm to compute principal types. We prove the decidability

of type inference for the class of decomposable predicates and

develop a canonical representation for principal types based

on most accurate simplifications of constraint sets. Finally,

we investigate the extension of our techniques to recursive

types.

1 INTRODUCTION

Parametric polymorphism, as developed by Milner [14, 3],

has been used as the basic building block in the design of

type systems for various programming languages. A number

of extensions have been proposed to increase the expressive-

ness of the basic scheme. Among them are systems for struc-

tural subtyping [15, 5], extended subtyping [24, 11, 17, 19]

and overloading [12, 23, 20].

Polymorphism allows us to abstract over the types of

function arguments and thus supports the development of

reusable small scale software components. The abstraction is

uniform, i.e. every instance of the inferred parameter types is

allowed. Restrictions on function parameters like “+ : a +

a + a can be applied to integer or real numbers”, “=: CI +

IY + bool can be applied to any first order type” or “f : a -+

P + i~t can be applied to any pair of subtypes a, o of int”

cannot be expressed with pure parametric polymorphism.

At first sight, overloading may seem as a pure notational

convenience, but this is true only for overloaded operators

with a finite set of overloading instances. Examples for this

kind of overloading are arithmetic operators, which will typ-

ically be overloaded for every availabe number type of the

language in question.1

A more interesting example of an overloaded operator is

polymorphic equality as it is supported in the current version

1Nevertheless, the possibility to give semantically similar opera-
tions a common name must not be undervalued and should be supp-
orted by the type system.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA

@ 1992 ACM O-89791 -483 -X192 /000610193 . ..Sl .50

of Standard ML [9]. Equality of functions is undecidable in

general, hence the type system should limit the application

of computable equality to pure first order data. But the type

Vcr.cY + a + bool is clearly too general. This problem has

been solved in Standard ML by the introduction of a special

class of equality type variables, which are instantiable to non

function types only. With this extension, computable equal-

ity is given the type Vcr’. cr’ + a’ -+ booJ, where the prime

on type variable a restricts the set of possible instances to

types not built with the function type constructor.

In previous work [12] we have demonstrated that this ap-

proach can be generalized to a restricted form of overloading

which we have termed parametric overloading. The restric-

tions imposed on overloaded operators are (1) that the type

of each overloaded operator can described by a type scheme

over one distinguished type variable and (2) the possible in-

stances of this type variable can be defined inductively over

the structure of type expressions. In this case, type variables

can be annotated with sets of overloaded operator names, in

order to restrict the set of valid instantiations of such a type

variable CIX, to types admissible as arguments of all opera-

tors in X. The type of the equality operation would then be

Va{=}.a(=) + a{=) + bool.

Given the inductive definition of admissible argument

types, it is possible to adapt conventional unification algo-

rithms to deal with annotated type variables. In fact, the

unification algorithm described in [12] can be interpreted as

an unification algorithm for order sorted algebrw with over-

loaded type constructors, where the sort structure forms a

complete lattice. The connection between order sorted uni-

fication and type systems for overloading has recently been

investigated in [16].

In the presence of subtyping, types are expressed rela-

tive to a set of subtype constraints. The function twice z

Af.h.f (f z) for example, would be given the type

Vcr, P.(cI + /3) ~ cr + /3 I /3 < a, which states that twice

maps functions of type a + ~ to functions of type a + /3,

provided ,B is a subtype of a. The symbol ~ can be inter-

preted as a binary predicate on ground types, restricting the

poaaible instantiation of a and /3 to pairs (s, t) satisfying

sat.

Overloaded operators can be treated in a similar way:

For each overloaded function symbol o, we introduce a (n-

ary) predicate symbol p~ describing admissible arguments

for o. The type of o can then be given as a constrained type
9cheme Vcrl, . . . ,crn. r I po(al,. ... cm). Typical examples

193

are:

=:cr.-+ cy+boollp=(cr) computable equality

<:a+cr+boollp<(cr) total order relation

+:cr-+cv-+crlp+(;) addition

E:cr+p-+ boo/ lp~(cr, @ membership test

J :cr+p+ylpJ(a, p,-y) data structure indexing

Overloading and coercion constraints can be arbitrarily com-

bined as in

which tells us that inc applied to values of type a yields

values of type ~, whenever int and cr are subtypes of/3 and

/3 admits an addition operation.

The remainder of this paper is organized as follows:

First we define the notion of constrained types precisely and

present a generic type system which admits a simple algo-

rithm to compute principal types. However, principal types

computed by this algorithm are rather weak: they consist of

a type expression and a set of constraints which has to be

solved separately in order to prove typability. We introduce

the concept of simplifying substitutions and show that there

exists a most accurate simplification which can be used to ob-

tain a canonical principal type representation. Based on this

concept we modify our inference algorithm, obtaining Mil-

ner’s original algorithm as a special case. We then introduce

the class of decomposable predicates, for which constraint

solving is decidable and show that most accurate simplifi-

cations are computable for the subclass of structural simi-

larity enforcing predicates. Finally we sketch an algorithm

for constraint solving in the presence of recursive types as a

conservative extension of the finite case.

2 CONSTRAINED TYPES

We shall confine our investigation to the usual core-ML lan-

guage, which corresponds to basic lambda calculus, extended

by a let-construct to permit user defined polymorphism. The

expressions of core-ML are generated by the grammar

where z ranges over a countable alphabet of syntactic vari-

ables. As usual, we will denote the set of free variables of M

by FV (M).

Types are elements of the term algebra Z“F (V) generated

by a finite n-indexed family of constructors F = Uo<n<k F..

We define F+ as F \ FO. The set of type variables ~c~rring

in r is denoted by V(T) and root(~) denotes the outermost

symbol of r. Let P be a finite n-indexed family of predi-

cate symbols. The set of predicate constraints over TF (V)

is defined as {p(q, ..., ~~) I p E .Pn,~i E TF(V)}. We use

args(p(fi)) to denote {rl, r~}.

A substitution S G V + TF(V) is a mapping from type

variables to types, such that S(a) # a only for finitely

many type variables. Substitutions are extended canoni-

cally to types and constraint sets and will often be denoted

by {rl/ffl, rn/wn}. Substitutions form a quasi order

w.r.t. subsumption, where R subsumes S on W ~ V, writ-

ten R <w S, if 3R’ : Va E W : S(CY) = R’(R(a)). The set

of subs~itutions forms a complete lower semi lattice modulo

~ with the identity substitution as its least element, if we

define R ~w S H R SW SAS <w R. A set X of substi-

tutions is minimal, if S ~ R for all S, R in X. The greatest

lower bound of two substitutions is denoted by S AR.

We assume that we are given an interpretation of P, i.e.

a family of total computable functions (~)PcP, such that for

pEPn@:T~ -2. A constraint set C is satisfiable if

there exists a substitution S such that P(TI,. ... r~) E C +

j(s(rl),.. ., S(m)). Satisfiabdity will be denoted as S > C.

Definition 2.1 A constrained type is a pair TIC, consist-

ing of a type expression r and a set of constraints C. A

constrained type scheme is o} the form Val, Cr~.TIC.2

Type schemes are used to discriminate between type vari-

ables that depend on the cent ext, which are called spe-

cific, and those that can be instantiated arbitrarily, which

are called generic. Variables al, cr~ in type scheme

a = W.TIC (an abbreviation of Val, ..., cr~.rlC) are called

generic, whereas any other type variable free in rlC is called

specific.

Essential for the definition of the instance relation on

constrained types is the existence of a notion of entailment

on constraint sets, written Cl It- Cz, the exact definition

of which may depend on the particular predicate system.3

However, the results of this section can be proved if we re-

quire that the entailment relation is closed under substitu-

tion and that it satifies Cl Ii- CZ ~ VL : L ~ Cl +- L ~ C2.

We write Cl = C2 for Cl It- Cz A Cz Ii- Cl.

If u is a type scheme and S a substitution, then S(u) is

the type scheme obtained from u by replacing each variable

a ~ JW (a) by S(a), possibly renaming bound variables in

a to avoid name clashes. A type scheme a’ = V~.#lC’

is a generic instance of type scheme a = w.~lC, written

u’+u, ifr’={rl/crl, ..., rn/cr~}r, no /3, is free in TIC and

c’1+ s(c) .
Typability of an expression J4 is expressed as a judge-

ment C, r 1- M : r, called typing, which can be read as

‘M has type T under type assumption I’, provided C is sat-

isfiable”. A type assumption I’ is a finite mapping from

variables to type schemes. We use [z1 : al, Xn : an] to

denote the type assumption assigning a, to x, for i = 1..n

and 1’1 + 172 for the extension of I’1 with the assignments

of rz. The closure, or generalisation, of a constrained

type TIC in the context of a type assumption I’ is denoted

by gen(I’, TIC); it is the type scheme ~.TIC’ such that

{a,,..., a.} = V(~lC) – ~V(I’) and C’ = {P(T) c C I

V(P(7)) nmi # 0}.

Definition 2.2 A typing C, r F M : r is more general than

C’, I’” 1- M : r’ , if there exists a substitution S, such that

(1) s E ~om(r)+. r’(z) + s(r(z))

(2) gen(r’, T’IC’) + s(g~~(r, TIC))

One can think of a large number of different inference

systems involving constrained types. For example, there are

at least 3 different formulations for a pure subtype system:

Allow coercions everywhere, only at variable nodes or only

at application arguments. In order to avoid reproving ty-

pability for each of these systems, we introduce a generic

inference system for constrained types. The generic system,

which is given in figure 1, is parameterized w. r. t. three func-

tions Rvav, Rab, and RaPP. Each of these functions takes

as arguments the types derived for immediate subexpres-

sions of the corresponding syntactical rule, and maps them

into a constrained type scheme rl C. In this type scheme,

T rdways corresponds to the type of the composite expres-

sion, and C relates this type to the sub expression types.

Valid specifications for Rv.,, Rat,. and R.PP must satisfy

2Unless stated to the cent rary we shall use the following variable
convention: u, 0’, denote type schemes, r, T’, . . . denote types and
t, t’, will be used for monotypes.

3See e.g. [5]

194

[VAR]
~,lc, +r(~) T“pzl < I?..,(T,) Cll_Ci UCv

c,rkz:rv

[ABS]
c,r+[z:~.]EM:Tr rjlcf + &ba(Ta, rr) c 1- Cf

c,r t- Ax.M : Tf

[APP]
c,rl-Ml:rf c,rl-M2:ra ~rlcr + Rapp(~f j ~.) c it- c,

c,rt- M1M2: r,

[LET]
cl, rl-Ml:Tl C,r + [Z: gen(I’, rllCl)] t- M2 : r2 c 1- c1

C,ri-let z= Mlin Mz:rz

Figure 1: Generic Type Deduction with Constrained Types

XV(RX(?)) = V(?), i.e. the free type variables of the appli-

cation of such a function must consist of the type variables

occuring in the supplied arguments.

The inference rules are fairly obvious, with the exception

of rule [LET]. It is the only rule which is not parameterized.

It states that expression let z = Ml in M2 can be given the

constrained type rz IC, provided rl ICl is a constrained type

for MI in the context 17, rz IC is a constrained type for M2

in the context extended with the assumption z : a, where a

is the generahsation of rl ICl in the cent ext I’. Note that the

side condition C 1- Cl effectively forbids typable expressions

with untypable subexpressions. It is not difficult to see that

rule [LET] can be equivalently replaced by

C], I’I-M1:T1 C, r 1- M2 [MI/z]: rz cl- c1

C, I’Fletz=Mlin Mz:rz

A few examples should suffice to show the generality of

our generic system. Milners type deduction system for ML-

style polymorphism, or more accurately, its syntax oriented

variant, is just a special inst ante of a constraint based sys-

tem with equality as the only predicate symbol. It can be

obtained by instantiating Rv ~v, R~bS and R~Pp as

Rvar(ri) = r,10

Rab,(ra, r,) = r. ~ r,]O
R.pp(Tf, Ta) = Va. crl{rf=r. + a}

A subtype system, where coercions occur at function appli-

cations only, is given by

lt”~r(~:) = r,10

~ab.q(~a, r,) = r. + ~,10

‘app(~f~ ~a) = v~,~. ll{rf=~ + P, T. ~~}

whereas

Rvar(ri) = V@. ~l{~t 4 Cr}

&s(~a, ~,) = ~a + r~l$

R~pp(rf, r.) = Vcr. cvl{rf=r~ ~ cr}

describes a system where only variables are coerced. On the

other hand, if app(rf, ra, rr) states that values of type ~f

appplied to values of type ra yield values of type r,, then

Rear(r,) = r,10

&bs(ra,r,) = ra + 7,[0

Rapp(rf, r.) = Va. al{app(rf, ~a, cr)}

gives a system with an overloaded application primitive.
The generic inference system is syntax oriented: there is

one inference rule for every syntactic rule. Thus any instance

of our generic type system can be turned directly into a

type inference algorithm: simpiy traverse the expression and

collect all relevant constraints implied by the inference rules.

The algorithm, which we call C, is given in figure 2. It makes

use of an auxiliary function inst, which takes a constrained

type scheme ~.rlC and consistently replaces each ~i in

TIC by a “new” type variable.

C,[z]l? = rllCO u Cl where

~olco = ind(r(~))

rl IC1 = inst(R”~, (m)).

c[Az.M]r = Tllco Ucl

where a “new” and

rolco=c[M] (r-t [z:4)

rl II% = ~7Mt(&,(Lv, ro)).

CIMl M2]r=r31Clu C2u C3

where

rllCl =CIMl]r

r21C2 =C[M2]I’

r31C3 = inst(R~pp(rl, rz)).

C[let x = Ml in M2]I’= r21Cl UCZ

where

rllC1 = CIM1]r and

mlC2 = C[M2] (r + [z: gen(I’, rllCl)]).

Figure 2: Algorithm C

Theorem 2.3 Let an instance of a constraint based injer-

ence system be given, M be an expression, r be a type as-

sumption and TIC = C[M] J7. Ij I“ + S(r) and C’, 17 1-

M : r’ is a valid typing, then C, r 1- M : r is valid and more

general than C’, I“ 1- M : r’.

As an immediate consequence we obtain that an expres-

sion is typable under r iff the constraint set computed by

algorithm C is satisfiable. Moreover, since TF and the set of

substitutions with domain V(r 1C) is recursively enumerable,

type inference with constrained types is semi-decidable.

3 CANONICAL PRINCIPAL TYPES

Algorithm C cannot be used in practice, since satisfiability

of the resulting constraint set is not guaranteed. But even

if this were the case, one would not obtain a particular

compact representation of the principal type. As an exam-

ple, cosinder the constraint based Damas-Milner system and

the expression ~~.k .~(fz) for which algorithm C computes

the principal type a + /3 + yl{a = ,8 + e,a = c + y}.
B.t (@+/3)+/3+ PI{ } ~ an equivalent, yet shorter

representation of the same type. This type can be ob

tained from the first one through the use of an unification

algorithm to solve the constrai~ts,

tion of the most general unifier U

followed by the applica-

= {/3/% 9/7, B + P/a},

195

which enables the elimination of the redundant equations

{P+ P= P-+ P> P+ P= P+P}
The most general unifier solves the given constraint set:

any substitution of types for type variables in U(C) satisfies

the original problem.

Definition 3.1 A substitution S is a solution of C, if S’ o

S+cforallS’Ev+TF.

At this point, most of the definitional machinery of uni-

fication in nonernpty equational theories [21] can be carried

over to our problem. For a given constraint set C, let LP (C)
denote its set of solutions for a given predicate system P.

Definition 3.2 A set L of solutions of C is complete, if

L G J5P(C) and VR c ,CP(C) : 3S c L : S ~vtc) R. L is

a complete set of minimal solutions of C, if each element of

L is minimal w.r. t. subsumption on V(C), i.e., if S # R ~

,CP(C) +- S <v(c) R.

A complete set of minimal solutions need not exist for

a given predicate system, but is unique if it does. In cor-

respondence with unification theory, we may classify con-

straint solving as follows: Let p,CP(C) denote an arbitrary

set of minimal solutions. Constraint solving is

unitary if IPLP(C)l ~ 1 for all finite C

finitary if l@ P(C)l < co for all finite C

infinitary if lpLp(C)l = 00 for some finite C

decidable if ZP (C) = 0 is decidable for all finite C

nullary if @P(C) does not exist for some finite C

Unfortunately, even for the simple caae of structural sub-

typing, or overloading with unary predicates, complete sets

of minimal solutions are infinitary. It is therefore impossible

to take complete sets of minimal solutions as the canonical

representation of a principal constrained type.

However, there are two mgu properties which can form a

basis for a principal type representation: First, every solu-

tion of the original constraint set can be represented as the

composition of U and a solution to the simplified constraint

set (which happens to be empty in the example above). Sec-

ond, the most general unifier is the best way to simplify the

given constraint set: it determines the maximal amount of

information common to all solutions.

Definition 3.3 A substitution S is called simplification of

C, ifi for every solution L # C there exists a substitution

L’, such that L = L’ o S. If in addition for every other

simplification S’ there exists a substitution S“, such that S =

S“ o S’ then S is called most accurate simplification of C.

In general, a large number of simplifying substitutions

will exist for a given constraint set C. For example, the

identity substitution is a simplification of every constraint

set and the same holds for arbitrary variable renamings.

The set of simplifications of C is partially ordered w .r.t.
subsumption, it is even a lower semilattice with the identity

substitution as its least element.

Computability of most accurate simplifications clearly

depends on the interpretation of the predicate symbols in

C. The notions of most general unifier and most accurate

simplification coincide if C consists of equational constraints

only.4

Repeated simplification is itself a simplification, i.e. S’ o

S simplifies C, iff S simplifies C and S’ simplifies S(C).

More interesting is the diamond property of simplifications,

4 Provided the equational theory is unitary unifying.

which allows the application of simplifying substitutions in

arbitrary order: Given that S1 simplifies C and sz simplifies

C, one can always find simplifications RI of SI (C) and RZ

of Sz (C), such that RI o SI = RZ o S2. In fact, one can show

that R1 o S1 is a least upper bound of S1 and SZ.

Since substitutions already form a lower semilattice w.r.t.

subsumption, this implies that the set of simplifications of a

solvable constraint set C forms a lattice w .r.t. subsumption

on V(C): since C is solvable, the size of types in the range

of a simplification is bounded, which implies that the set of

simplifications is finite (modulo ~) and thus has a largest

element.

Lemma 3.4 A{L I L + C} is a most accurate simplifica-

tion for every solvable constraint set C.

In general, a given constraint set will have an infinite

number of solutions and thus prohibits the obvious naive

method of computing most accurate simplifications. In these

cases we can use the following lemma to our advantage.

Lemma 3.5 Let C be a set of constraints and S1,..., S.

be substitutions such that (1) Vi ~ 1..Tz : 1= S,(C) and (2)

+C ~ % E l..n : *S,(C). If R~,..., Rn aremostaccu-

rate simplifications of S1 (C), S~(C) then A,=l,,n R: o S’i
is a most accurate simplification of C.

Sometimes it is necessary to prove that a given simplifi-

cation is most accurate. This can be done as follows: First,

note that the composition of a most accurate simplification

and a simplification is itself most accurate: If S simplifies

C, and S’ is a most accurate simplification of S(C), then

S’ o S is a most accurate simplification of C. This implies

that S is a most accurate simplification of C, if the identity

substitution is a most accurate simplification of S(C).

Lemma 3.6 The identity substitution is a most accurate

simplification of C, iff

(a) Vcr,~ 6 V(C) : 3L ~ C : L(a) # L(,8)

(b) Va E V(C) : 3L1, Lz > C : root(Ll(cr)) # root(Lz(a))

Not only can simplifying substitutions be applied to a

principal type computed by algorithm C, they also provide

a means to improve algorithm C: Let simplify be an algo-

rithm, which, given a constrained type r! C, either detects

nonsatisfiability of C or returns a simplifying substitution S

and a simplified constrained type r’ IC’, such that r’ = S(r)

and C’ - S(C). Then algorithm D given in figure 3 com-

putes a more compact representation of the principal type,

if it exists. The main idea used in this algorithm is to sim-

plify constraint sets as soon aa new constraints are added.

This strategy tends to decrease the number of generic vari-

ables and constraints that occur in type schemes of let-bound

identifiers, avoiding duplicate work when these types are in-

stantiated at variable usages. Thus, algorithm D will in most
cases be faater then algorithm C followed by simplify.

Itis not difficult to see that for the constraint baaed ML-

system of section 2 algorithm D specializes to Milners orig-

inal algorithm if simphfy(rlC) = (rngu(C), rngu(C)(r) 10).

Correctness and completeness of D are derived from the fol-

lowing

Theorem 3.7 Let (S, TIC) = P[M] r and TOICO =
C[M] r, then there erists a simplification SO of CO such

that r = SO(rO) and C s SO(CO). If D fails, then M is not

typable.

196

qzlr = (S, TIC)

if there exists a substitution S, such that

~olcos kd(r(z))
rlpl =inst(lzv.r(ro))

(S, rlC’) = simpli~y(rl lCo U C,).

D[kkf]r = (s2 o Sl, TIc)
if there exist substitutions S1, S2 and a “new”, such

that

(sl, T1lcl)= DIM](r+[z: a])
T21cz = k9~(&b.(s10’, ~1))
(S2, TIC)= 8itnp/ify(r2 ICI U C2).

qkf1M2]r=(s3 0s2 Osl, rlc)

if there exist substitutions S1, S2, S3, such that

(sl, Tllcl)=D[kfl]r,

(Sz,r,lCz) = D[Mz]S,r and

T31C3 = in3t(Rapp(S2n, r2))
(S3, TIC)= simp/ify(r~lS~C~ U C’2 U C’3).

D[let Z=ikfl in J42]r=(S30 S20Sl, ~lC)

if there exist substitntions S1 ,S2 ,S3, such that

(SI, rIICI) =DIMI]I’ and

(s2, ~21c2) = qM2] (r + [z, ~en(r, rllcl)])

(S3, TIC)= simpli~y(rzlSzC~ U C,).

The algorithm fails in all other cases.

Figure 3: Algorithm ‘D

4 DECIDABLE PREDICATE SYSTEMS

In order to get a handle on constraint solving, we must

choose a formalism for the specification of validity of pred-

icates on ground terms. In this presentation, we will use

constraint set rewrite rules, although a suitable restriction

of the first order predicate calulus might serve as well. The

choice of formalism is of subsidiary importance, as long as

it enables us to isolate interesting classes of predicates for

which satisfiabilit y is decidable.

Let us sssume that we are given a rewrite relation +,

such that L ~ C u L(C) -“ 0. A natural require-

ment is that +*, the reflexive and transitive closure of +,

should be canonical, i.e. confluent and terminating. Entail-

ment can then be defined m C 11-D ~ 3C’ G C.Ct **

D, with ++’ denoting the reflexive, transitive and symmet-

ric closure of +. This definition implies that entailment

and equivalence of constraint sets is decidable and that en-

tailment is indeed substitution closed.

In the sequel, we assume that the rewrite relation is spec-

ified by a finite set R of rules 1 + r, where 1 and r are sets

of constraints and V(r) ~ V(l). The rewrite relation + is

then defined as the set of pairs (CUD, C U S(r)), such that

D = S(/) for some 1 + r c R.

Figure 4 gives as an example a set of rewrite rules for sub-

typing and the overloaded operators mentioned in the intro-

duction. Some of its consequences are: coercion of functions

is anti monotonic in argument types, references can not be

coerced, functions are not comparable, reference cells can be

compared for equality, regardless of their contents and pairs

can be ordered if the first component admits equality and

both components can be ordered.

The simplest class of constraint set rewrite systems with

solvable constraint problems are those corresponding to “tra-

ditional” overloading, where we are given a finite set of over-

loading instances in addition to syntactic term equality. The

constraint solving procedure for this class of rewrite systems

consists of computing the most general unifier U(C) of all

equational constraints in a given constraint set C and enu-

merating a set of minimal substitutions S such that S(U(C))

rewrites to 0. By lemma 3.5, the most accurate simplifica-

tion is then obtained as the composition of U and the join

of all these substitutions.

In order to enumerate a set of minimal solutions, we de-

fine a transformation relation -l on constraint problems,

such that any normal form of C under ==$-1 is either un-

solvable or in solved form, which determines a solution of

c.

Definition 4.1 A constraint problem C =

{s1 = tl,..., sn = tn} U {pl(til),...,pt(til)} is in clued
atomic form, if

1. Si E V for alli

2. s, # S3 A s, # ~(tj) for all i #j

3. Si ~ V(ujk) for all i, j, k

4. ~~kC FO U V for all j, k

5.?ilfl V#Ofor alli

It is in solved form, if 1 = O.

Lemma 4.2 If C is in atomic solved form, then ~ =

{t, /sl,..., t~/s~} is idernpotent and ~(C) has the same set

of solutions as {pl (ml), . . . ,p/(Zl)}.

For predicates describing the possible instances of over-

loaded operators, we may assume that the left hand sides of

the corresponding rewrite rules consist of a single constraint

and that these constraints are pairwise nonunifiable. If all

predicates are non-recursi~e, i.e. for no constraint p(x) ex-

ists a set D containing p(tn), such that p(7@ ++ D, then

the transformation relation -1, given in figure 5, is termi-

nating and yields a complete set of minimal solutions.

Definition 4.3 A transformation relation =+- on constraint

problems is

1. sound, if C =+ C’+- L(C’) ~ Z(C),

2. complete, if C not in solved form implies

401V(C) G u C(c’)lv(c).
C=*C1

Theorem 4.4 -l is sound and complete. If all predicates

are non-recursive, then +1 is terminating. Moreover, any

normal form under +1 is either unsolvable or in solved

form.

Proofl Delete, Compose and Eliminate are just the usual

rules for syntactic unification. Rule Match is clearly sound,

since any solution of C U {~} U {71 = 11, Tn = /n} is

a solution of C U {p(~)} as well, provided p(~) + R.
Completeness follows from the fact, that all solutions must

enable rewriting via some rule.

Since all predicates are non-recursive, there is an up-

per bound to the number of Match-steps in any transfor-

mation sequence, regardless of the size of arguments of con-

straints in C. Let B(C) denote this bound and take the

triple (B(C), U(C), S(C)) as a complexity measure for con-

straint sets, where U(C) is the number of variables which

occur not only once on the left hand side of an equation

a = r, and S(C) is the number of symbols of C. Termina-

tion then follows by well founded induction over the usual

ordering of natural number triples.

The third part of the theorem follows by case analysis of
the transformation rules. !3

Adding subtyping or parametric overloading requires

that predicates can be defined recursively, which implies that

197

int 4 int + 0

real 4 real 4 0

int a real -0
a+ bac+d+caa, bqd

ax bqcxd+aqc, bqd

ref(a) 4 ref(b) + a = b

list(a) 4 list(b) + a 4 b

p= (int) + 0

p= (reaJ) --+ 0

p= (ref(a)) ---+ @

p=(list(a)) _ p=(a)

pe(a x b) + p= (a), p= (b)

pe(a, 2ist(a)) - p=(a)

pc(a, set(a)) - p=(a)
pe(b, arrav(a, b)) -P= (b)

p<(d) -0

p~(reai) + 0

p~(iist(a)) + p<(a), p= (a)

p~(a x b) + p<ca), p=(a), p<(b)

Pl(lid(a), id, a) -+ 0

pl(am-ay(a, b), a, b) + p=(a)

pj(a-+ b,a, b) ~ 0

Figure 4: A rewrite system for structural subtyping and overloaded operators

Delete Cu{r-=r} +1 c

Decompose CU {~(~) = ~(~)} *I CU {TI = ~~,...,rn = r:}

Eliminate Cu{a=r} =+, {r/a}(c) u {a = ,}

ifa~V(C) –V(r),7EV+r EV(C)

Match c u {P(=)} S1 cu~u{rl =ll,. ... rn=ln}

if p(z) A ~ is a rewrite rule away from V(C) U V(=)

Figure 5: Solving constraint problems

there may be infinitely many solutions to a given constraint

set. In [15, 5] it was shown that for the special case of %t ruc-

tural” subtyping, one can find algorithms to transform any

constraint set into an equivalent one containing only type

variables and base types and that these “atomic” constraint

sets have a solution, iff they have a solution substituting

base types for the remaining type variables.

Two properties of structural subtyping are essential for

the derivation of this result: that it is inductively defined

and that it enforces structural equivalence on its arguments,

where two types are structurally equiualetat (r .% ~’) if they

are equal under identification of zero-ary constructor sym-

bols and type variables.

Definition 4.5 A predicate p G P. is inductively defined, if

forall(fl,..., f~) G F+’, ei{her p is no_t satisfiable for argu-

ment vectors of the for-m fl(i!l), fn(tn), _or ther: exists an

index set 1(P, .fl, fn). such that foralltl,..., tn~T&:

P(fl@l), fn(in))- IJ P,(z)

~cNP,jl,...,fm)

where s,, G {tll, . . ., t~~}. We say thatp enforces structural

equivalence, if for all ~ E T;

p(t], . . . ,tn)++* @*t1xt2x. ..Rtn ,

The requirement that p enforces structural equivalence

can be slightly generalized to structural simi~arity, where

two terms are structurally similar (~ % r’) if they have the

same tree skeleton. This enables the definition of subtyping

rules between structured types, such as

list(a) 4 set(b) + a 4 b,ps (b) .

which permits the coercion of lists of type a to sets of type

b, provided a is a subtype of b and b admits equality.

Note that structural similarity is itself an inductively de-

fined structural similarity enforcing predicate, whereas stru-

tural equivalence and syntactic equality enforce structural

equivalence.

Theorem 4.6 Let C be a constraint set over structural sim-

ilarity enforcing, inductively defined predicates. Then there

exists a computable, complete set of minimal structural sim-

ilarity enforcing substitutions ~SS(C), such that

● Vs E pss(c) :

p(rl, ..., rn)cs(c)+rlfi~z=. . . ~ Tn

●L+ C+.3S~pSS(C):L= L’o S

If all predicates enforce structural equivalence instead, then

pSS(C) is either empty or consists of a simplifying substi-

tution.

Solvable constraint sets satisfying P(T) c C + r, K rj

can be easily transformed into equivalent atomic constraint

sets computing the normal form under -. If the normal

form contains non-atomic constraints, then C is unsolvable.

Corollary 4.7 If P is a system of inductively defined

structural equivalence enforcing predicates, then every ty-

pable expression M has a principal type with an atomic con-

straint set component.

Computing pSS(C) followed by rewriting is of course

rather inefficient, since many substitutions in pSS(C) will

lead to unsatisfiable constraint sets. Fortunately, it is pos-

sible to interleave the computation of structural similarity

enforcing substitutions with rewriting.

Figure 6 presents a transformation relation =+2 for si-
multaneous computation of @’,S(C) and normal forms under

-. The definition makes use of the notion of a template

for a given type expression r, which is obtained by replacing

each occurence of a type variable or type constant f 6 Fo in

r by a fresh type variable and renaming occurrences of con-

structors f G F+ arbitrarily. Note that rule Match of =+1

has been split into two new rules: Match and Rewrite.

Lemma 4.8 *Z is sound and complete. Moreover, if C is

a normal form under -z, then C is either in solved atomic

~orm, or unsolvable.

198

Delete CU{T=T} +2 c

Decompose C U {~(~) = j(~} +2 Cu{rl=r; ,... ,rn= r;}

Eliminate Cu{cr=r} -2 {r/cr}(c) u {a = r}

ifae V(C) –V(r), rEV+-r EV(C)

Rewrite c u {p(jl (71), fn(?”))} -2 CUS(TJ
if p(fl(?il), fn(zG))+m ER

and S={ TII/al I,..., rnml~.~}

Match C“ u {P(%)} +2 {T’/cr}(cu {p(R)}) u {a= r’}
if a, T E args(p(~)), root(r) E F’+

where r’ is a template for ~ away from V(C) U V(=)

Figure 6: Transformation into atomic constraint sets

Proofi Soundness is easily established. For completeness

note that rules Rewrite and Match are mutually disjoint and

together capture all possible rewriting path’s. ❑

However, *2 is not terminating, M the following simple

example shows. The problem a d /($), /3 ~ a inevitably leads

to an infinite transformation sequence, like

Crd l(p), @<a

‘~h l(al) 4 l(~), /3a Z(ai), a = I(cr,)

~~~ cri a/3, P<l(cr,), ff = ~(cvi)

- al d 1(~1), i(~l) a l(al), a = J(al), ,6 = 1(~1)

‘== al ~1(~1), /31 aal, a = Z(al), ~ = {(/31)

The above problem is unsolvable, since any solution L must

satisfy L(cr) ~ L(/3) as well as L(a) ~ L(Z(@)), and by tran-

sitivity of ~: L(/3) N L(i(/3)), which is impossible for finite

terms.

In order to detect unsolvable constraint problems, one

needs to add an equivalent of the normal occur check to

the transformation rules.5 Every constraint problem C over

structural similarity enforcing predicates induces an equiva-

lence relation ~ on V(C), defined as the reflexive. transitive

and symmetric

EQ(C) =

u

where

Sirn(r, r’) =

{

\ ,,

It is eaay to see that S ~ C+- S(cr) ~ S(o) for alla ~ ,!3.

Moreover, we have

Lemma 4.9 Let ~ be an equivalence relation such that

Va,~EV(C):a-~~(L+C~L(a) ~L(@). (*)

Let[cr]=={/31a ~/3} and[r]a ={[cr]=]ag V(r)}. IfC

contains a constraint p(~) or T1 = 73, such that [a]= ~ [r]=

for some cr, T c {71,..., r~}, then C has no solution.

5This has already been observed in previous work on subtype in.
ference. Our presentation differs slightly from [15, 5], due to the
generalization to arbitrary predicates.

We are now ready to introduce -3 (see figure 7). The

principal difference between -z and =%, is that we al-

ways replace complete structural similarity classes, as in-

dicated by the equivalence class component EC, instead of

a single variable. This is necessary to ensure termination.

For simplicity we have split Rule Eliminate in two parts:

Eliminatel replaces variable a by /3 if both appear in the

constraint set C. Eliminate leads to a replacement of all

variables in the equivalence class of a by a fresh template

structurally similar to ~. This turns all variables in the class

into solved variables. We let SS(T, {al, . . . . an}, W) denote

a complete set of minimal substitutions away from W, such

that for each S G SS(~, {crl, . . . . cr~}, W), S(a, ) is a tem-

plate for r and V’(S(~i)) # V(S(cr3)) for all i # j c l..n. We

have also introduced a special constraint problem T for the

class of all unsolvable constraint problems, in order to speed

up the detection of blind alleys in transformation sequences.

Theorem 4.10 -s is sound, complete and terminating if

the equivalence relation E satisfies equation *. A normal

form under -s is either T or in solved atomic form.

Proofi Note that if E satisfies equation * and E, C -3

E’, C’, then E’ satisfies equation * as well. Soundness is

inherited from -2, since each transformation sequence in

-s not involving Clash or Cycle rules can be mapped into

=$-z by ignoring the equivalence relation component and ex-

panding Eliminate and Match rules into sequences of Elim-

inate and Match rules of *2. Completeness is based on

lemma 4.9. Termination follows by well founded induction

over the triple (l El, U(C), S(C)), where IEI is the number of

equivalence classes of E, U(C) and S(C) are defined as for

*1. El

Transformation relations =1 and =3 can be com-

bined, if the predicate symbols can be separated into two

disjoint sets: PN for non-recursively defined predicates, and

PSI for structural similarity enforcing inductively defined

predicates. Rewrite rules for predicates in PN may use pred-

icates in PsI on their right hand side, but not vice versa.

Typical examples for such predicates are pc and pl of fig-

ure 4.

Let ~n, be the set of rewrite rules obtained by adding

6we u5ethe fOllO~ing nOtation for equivalence relation OperatiOns:

E- is E with the equivalence class of a removed, {p/cr}E is E with all
occurrences of a renamed to ~, and E + R is the reflexive, transitive
and symmetric closure of E U R.

199



Delete

Decompose

Rewrite

Eliminate

Eliminate

Match

Clashl

Clashz

Cyclel

Cycle2

E,cu{r=r} ~s E, C

E, C U {j(~) = ~(z)} -3 E, CU{~l=~l, . . ..7_n=d}

E, c u {P(fl(~l)) . . ..~n(~n))} =3 E, CUs(fi)

if p(~I(@l), ..., ~n(fi.)) +~ E R

and S = {~11/all, ..,rnmlffnm}

E,cu{a=p} =+3 {P/~}(~+ {(a, P)}), {P/~}(c)u {a = P} if ~jp 6 V(C), a # 8

E, C U {p(R)} ==+-3 E’, S U .?(C U {P(R)})

if a’, r E a~g~(p(fi)), ~oot(~) E ~+, [@]E @ [~]E

and ~ E SS(r, [a]E, V(C U {P(=)}))

where E’ = E= + EQ({ T = ~(P) I P ~ [~lE })

E, C U {~(~) = g(z)} =+3 E, T

E, CU{cr=T} =+3 E, T if r @ V, [a]E ~ [~]E

E, C U {p(zJ} =+3 E,T if 3a, r E args(p(=)), ~ @ V, [~].z E [~]E

Figure 7: Terminating transformation into atomic constraint sets

the rule

Matchn E, C U {P(R)} -n,

E, CUKU{rl =ll,..., rn=ln}

if p E PI./, p(~) ~ ~

is a rewrite rule away from V(C) U V(R)

and rest ricting the use of =%-rules to predicates in P.sr.

Theorem 4.11 =%. is sound, complete and terminating.

Normal forms under ti~, are either T Or solved atomic

forms.

Proofi Soundness and completeness are trivial Ter-

mination is established by the complexity measure

(B(C), IEl, V(C), S(C)). The second part is obvious. ❑

It remains to be shown that it is decidable whether an

atomic constraint set can be solved. First, if C cent ains un-

satisfiable ground constraints, then C has no solution. Solv-

able variable free constraints can be removed from C without

changing the set of possible solutions. Second, note that the

equivalence relation ~ induces a partition of C into disjoint

subsets. We write
s,

C= ~ Ci

i=l, .n

if C= CI U... M C., where n = l{[cr]~ I a E V(C)}] and

V(C, ) = [cr]~ for some a E V(C). Each of the Ci can be

solved independently and the solutions can be composed to

yield a solution for C. This leaves us with two sorts of con-

straint sets: those that contain base types and those that

don’t. Due to structural similarity, the former kind has a

solution iff there is a base type solution L E V ~ FO. The

latter kind poses a problem: it may have a solution but not

a base type one! 7

As an example for thw phenomenon, consider structural

subtyping enriched with predicates for two overloaded oper-

ators p and g, such that p(ax b) + q(a), q(b) and q(int) -

0. Although the constraint problem {a ~ /3, /3a y, q(y)} has

the solution {ant x int/cr, int x int/fi, int x int/-y}, ithas

no base type solution in this system.

Due to structural similarity and the inductive nature of

predicates, any solution can be described as a composition

of partial solutions.

Definition 4.12 A substitution S is a partial solution of CO

with root constructors fl, . . . , fk ~ Fn, iff

1. dorn(S) = V(CO) = {~l,. ... ~k}

2.vff, :3p; ,. ... /3i : s(~i) = .fi(D~,..., D!a),

9. VP(CY,l,...j~i~)=CO :

P(fal (71))...) f,k(~k)) - G G R

If S is a partial solution for CO, then S(CO ) can be rewrit-
*S

ten as~~=l ~ Ct. Moreover, if there exist solutions L1, . . . . L/

for Cl,..., Clthen So L1 o... o LI is a solution for CO.

Partial solutions can be conveniently drawn as trees con-

sisting of constraint sets and two sorts of branches: substi-

tutions and rewrites. The general scheme is

7This distinguishes our system from a pure structural subtype
system.

200



ccl

0’s

S(C(J)

/\

cl ““””””” Cn

and the tree in figure 8 describes a solution of the example

above.

A careful look at this example shows, that with theex-

ception of leaf nodes and those obtained by substitution ap-

plication, all constraint sets involve exactly the same number

of variables! This property can be captured in the following

definition:

Definition 4.13 A system of inductively defined predicates

iscalled decomposable iffsatisfiability can expressed with lefi

linear rewrite rules of the form

I@(m), . . . ,.fn(mz))-+m

such that the set of equivalence classes of the equivalence

m.
relation w :s { {a I:,.. . ,~ni}li =l..m}, Whe~jl,..., ~nc

F m.

Note that decomposability, in contrast to structural sim-

ilarity, is a purely syntactic criterion and thus can be en-

forced by the typechecker, e.g. if user defined overloading

and subt yping are allowed.

Theorem 4.14 Let C be an atomic constraint set, the vari-

ables of which form a single ~-equivalence class. It is decid-

able whether C can be soJved.

Proofi Decomposability implies, that the number of con-

straint sets which can actually occur in a solution tree is

finite (modulo variable renamings): any application of a par-

tial solution with root constructors -f~ E Fm to a constraint

set C with n variables forming a single ~-equivalence class,

will lead to m new constraint sets with n variables each.

Thus any solution tree for C can be pruned to reduce its

height to be less than the number h(n) of constraint sets

over n variables. ❑

It is also decidable whether C has an infinite number of

solutions, only base type solutions or whether some substi-

tution is a most accurate simplification of a given constraint

set.

Theorem 4.15 Given a solvable constraint set over decom-

posable predicates, a most accurate simplification can be ef-

fectively computed.

Proofi By lemma 3.5, lemma 3.6 and the preceding discus-

sion, it suffices to show that most accurate simplifications

can be computed for atomic constraint sets C, such that

V(C) forms a single ~-equivalence class. Therefore, let C be

atomic. If C contains a base type, it has only a finite set of

solutions, the join of which is a most accurate simplification

for C. If C consists of variable constraints only, we need to

check for condition (a) and (b) of lemma 3.6,
If condition (a) is violated, i.e. there exist two variables

a and /3, such that L ~ C ~ L(a) = L(o), then {a/~}

is a simplification for C. This simplification leads to a new

constraint set with strictly fewer variables, and thus can be

applied at most n times. But how do we check for (a)?

Consider a solution tree for C = C:, such that L(a) #

L(/3). W .l.o.g. we assume variables in distinct constraint set

nodes to be distinct. There must be a shortest path w =

jl, . . . , jk, for which root(L(a)/w) # root(L(,8)/w). There

exist substitutions S1, . . . . sk, constraint SdS c: for i E l..k!,

j E l..ni and solutions R~ 1= C; for i G l..k, j G l..~i,

j#ji Vi=ksuch that L= S1 o.. .O ‘k Oui,j#j; Vi=k R; and

Si (C~~l, ) -*c ;&J... & C~i (see figure 9). The solution

trees for c;, j # ji v i = k can be pruned to height h(n) and

the path from Cl to C:, can be shortened to length h(n)

as well. Thus the total height can be constrained to 2h(n)

which enables us to restrict our search for a violation of (a)

to a finite search space.

/7’\
ii”””C[““””L
/-kF\
A-”-A--”-A

Figure 9: A solution tree violating (b)

Condition (b) is checked for in the following way: For

each variable a E V(C) and constructor ~ E Fm we ap-

ply a substitution replacing a by ~(~), where ~ are

new type variables, and check for solvability of the result-

ing constraint sets. This enables us to determine a sub-

stitution S = {~il (~1)/~1, . . . . fin(~l)/an}j such that

L # C s root(L(crk)) = .fi~. S is obviously a simplification

of C. If S is the identity, then C cannot be simplified further.

If the ~i are base types (m = O), then C has only base type

solutions and S is already a most accurate simplification of

C. Otherwise, if m > 1, we apply S to C, compute the

normal forms of S(C) under -s and recursively apply the

procedure to the solvable subset Cl,..., Cl of the resulting

constraint sets. This gives us most accurate simplifications

AI,..., Alof Cl,..., Cl and by lemma 3.5, Ai=l,,l Ai o S is

a most accurate simplification of C.

The whole process must terminate, since solvability of C

puts an upper bound on the size of S(a) for any simplifica-

tion S of C: Let H(C) be the smallest number mo, such that

there exists a solution L + C satisfying height(L(a)) < mo

for all a c V(C). If H(C) = 1, C must have a base type

solution, which implies that the substitution S above, will

either be the identity or C has only base type solutions. If
II(C) >1, all solvable normal forms C’ of S(C) under ==!-3

satisfy If(C’) < H(C) – 1. li

The complexity of the computation of both solutions and

most accurate simplifications of atomic constraint sets seems

201



/\

int a int, q(int)

I

rswrits

a2 a P2,P2a 72, d-72)

J

{int/a2,int/~2, int/--y2}

int a int, q(int)

I

rewrite

0 0

Figure 8: A solution tree for {a< /3, ,f3 ~ y, q(~)}

to be prohibitive. However, note that in most cases con-

straint sets will have base type solutions, which cuts down

the search space enormously. Moreover, for special predi-

cate systems, like e.g. parametric overloading or structural

subtyping, more efficient algorithms are possible.

5 REGULAR TYPES

Recursive types arise naturally as solutions of unification

problems having no finite solution, for example cr = ~(a)

where I- cent ains a as a proper subt erm. If we allow infi-

nite terms then {r(r(r(. . .)))/iY} is a unique most general

unifier for this problem. There are at least two reasons

why we would like to be able to deal with regular types:

First, regular types allow the typing of self application and

therefore enable us do define various fixpoint combinators

directly, without resort to special recursive language con-

structs. Second, recursive types provide direct means to

define recursive data structures such as the disjoint union

type tree a = a @ (t~ee a x tree a), without the otherwise

necessary introduction of a new type constructor tree.

The set of regular trees forms a complete metric space,

such that boolean functions on finite trees can be uniquely

extended to regular trees (see e.g. [2]), thus the semantics

of decomposable predicates on regular trees is completely

defined. Since unification and matching of regular trees are

decidable too, it is natural to ask whether our constraint

solving algorithm can be adapted as well. Unfortunately,

the results of the previous sections seem to have no straight-

forward extension to recursive types. To see why, note that

the crucial idea behind the constraint solving algorithm for

finite types, is that the set of types structurally equivalent

resp. similar to a given term t, can be represented by a single

type expression resp. a finite set of type expressions. How-

ever, this is no longer true for regular trees!

Consider the constraint problem o ~ t, where t is the

regular tree

3/-
int

In order to reduce this problem to an equivalent atomic one,

we need to replace a by a representation of all trees struc-

turally eqivalent to t. This set contains the strictly increas-

ing tree sequence

ff3

which converges to the infinite, non-regular tree tm:

202



/“\
“1 /-\

“2 /-’”%
‘.

Q3 ........

Thus any complete constraint solving algorithm would have

to deal with matching and unification of non-regular infinite

trees, for which no solution is currently known. Moreover,

since the reduction to atomic constraint sets is the first step

in proving typabfity, it is far from clear, whether typability

is decidable for decomposable predicates and regular trees.

On the other hand, if we don’t require completeness, then

we can simply select some approximation of t~, say the first

element of the chain above, replace a with it and obtain,

due to cent ravariance, the atomic constraint set a a al, ala

a. This approach, combined with a suitable adaption of

constraint set rewriting, leads to a sound constraint solving

heuristic.

Lemma 5.1 Let tl ~ . . . ~ t. be infinite trees and p

be a decomposable predicate. The constraint p(tl,..., t~)

is equivalent to an infinite conjunct of atomic constraints

~:e~Pi(ail,... ,a:ni), where the al occur as leaves of

. . ..tn. Ijthei!i are regular, I is finite.

Proofi The first part is obvious. The finiteness of 1 for

regular trees follows from the finiteness of P and the fact

that a regular tree haa only finitely many subtrees. ❑

Regular trees can reobtained as unique solutions of ex-

tended regular systems, i.e. sets of equations E = (xl =

tl, . . . ,zn = t~), such that ~i # Zj for i #j, and ti @ V
or ~i occurs only once in E. An alternative method for de-

noting regular trees are rational tree expressions of the form

pcr.r. In this case the tree is defined as the unique least

fixed point of the expansion r[pcv.r/cr]. Yet a third char-

acterization is given by cyclic graphs of nodes labelled with

constructor and variable names. In the following presenta-

tion of our constraint solving algorithm we will be somewhat

informal and use the usual term notation for matching and

tree formation to apply to regular trees.

The following two rules specify an abstract algorithm for

transformation of matching constraint sets into equivalent

atomic ones.

H, CU{C}-4H, C ifce H

H,CU {p(fl(?l),..., fn(?n))} =+-4
Hu{p(fl(%),... , fn(?n))}, c u s(m)

if p(fl (=1), . . .. f.(zl))-ficl?

s = {711/all,..., rn@nm}m}
and p(fl(?l), . . . . fn(?n)) @ H

Lemma 5.2 +4 is a terminating transformation relation.

If g, C *4 H, C’, and H, C’ is a normal form under ~~,

then C’ is an atomic constraint set equivalent to C or C is

unsolvable.

The complete transformation system is obtained by

dropping the Cycle rules and changing rules Decompose,

Eliminate and Match. Rule Decompose is now

H, E, C U {~(m) = ~(z)} +4

Hu{f(R) =f(~)}, E, CU{n =r; ,..., Tn =T:}

if ~(z) = j(~) @ H

in order to prevent infinite looping. Rule Eliminate

changed into

H, E,cu{cr =r}+4sH, E’, su3(cu{a =T})

if a E V(C), r @ V,

and ~ e SS(p[cr]E.r, [~]E – {cK}, V(C U {~ = r}))

is

where E’=Ea+EQ({p[a]-E.r = ~(/3) I /3 G [a]E – {a}})

and rule Match is replaced by

H, E, C U {p(~)} -4 EH, E’, S LJ3(C u {P(m)})

if a, T G args(p(~)), root(r) G F+

and ~ E SS(p[a]E.r, [a]E, V(C U {p(~)}))

where E’ = E. + EQ({ p[cv]~.r = t?(/3) I @ E [cr]E })

We use pS.T as a shorthand for pal. 0.0 .pa~.r, where

S= {m,..., an} and p{}. r is equivalent to r. Note that

,aa.r = r if a is not free in r. Due to space limitations, we

have omitted the algorithms for generating similarity enforc-

ing substitutions and computing EQ(C). Both are simple

extensions of the finite case, augmented by appropriate ter-

mination conditions.

A small example should help to clarify the interpre-

tation of the rules. Consider the constraint problem
~ = ~(~, ~), @ 4 ~, 6 a ~, which haa no finite solution. Sup-

pose that cr, ,8 and 8 already form an equivalence class in

E. An application of the modified rule Eliminate will then

replace each of a, /3 and 6 by a fresh template structurally

similar to the regular tree denoted by p[(r]E .f(~, y). Since

P[dE.f(~,7) = P@.P~@.f(~,~) = P@.f(~,~)

one possible similarity enforcing substitution is

{PD. f(P) Yl)/@, l13J(P,72)/P, l@.m,’r3)/~}

The transformational system for decomposable predi-

cates can be efficiently implemented if we restrict ourselves

to structural similarity enforcing predicates. In this case,

we can use a term representation based on cyclic graphs,

which is destructively updated during the transformational

process.

6 RELATED WORK

Constrained types have been implicitly used in a number

of investigations about extensions of parametric polymor-

phism. The algorithm to compute structural similarity en- ‘

forcing substitutions can be seen aa an extension of similar

algorithms for structural subtyping in [15, 5].

Our approach to overloading is similar in spirit to

Haskell, which allows the grouping of related operators into

type classes. Type classes can be arranged to form arbitrary

non circular subclass hierarchies. This allows the definition

of default implementations of overloaded operators based on

other operators in the same class or any of its superclasses.

The complexity of type systems for Haakell-style over-

loading haa been investigated in [22], where it was shown to

be undecidable for arbitrary recursively defined predicates

and NEXPTIM E-hard when restricted to parametric over-

loading.

Semantic foundations of subtyping in the presence of re-

cursive types for structural subtyping extended with a small-

est and a largest type can be found in [1]. However, the

authors do not treat the question “3S : S(r) a S(r’)?” but

rather the simpler one “ta t’?” for V(t)= V(t’)= o.

203



7 CONCLUSIONS

We have sketched the first type system incorporating para-

met ric polymorphism, overloading, implicit coercions and re-

cursive types. A typechecker based on this system has been

implemented as part of an interactive programming environ-

ment [8] for the functional programming language SAMPAE
[10]. The current version of the typechecker handles struc-

tural subtyping, parametric overloading and recursive types.

Our constraint solving algorithm for the class of decom-

posable predicates significantly extends previous solutions

for subtyping and overloading. Although this algorithm is

not complete for recursive types, we have not found this to

be of practical importance. The main reason for this is the

fact that most programs can be typed either without recur-

sive types or whithout coercions. Our algorithm is complete

for this csse. Moreover, the prorammer can always guide the

inference process using type annotations at the appropriate

program subexpressions. Nevertheless, it is important to

know whether constraint solving with decomposable predi-

cates of arity ~ 2 is decidable for recursive types.

Another area which needs further investigation is the

representation of typings, which are rather complicated in

general. In [6] Fuh and Mishra have presented a simpli-

faction method for structural subtyping. Their method is

based on two observations: In most cases, coercion sets for

user defined functions computed by the typechecker coutain

redundant constraints which can be removed without affect-

ing the set of possible types. Moreover, some of the coercion

constraints can be moved from function definitions to func-

tion usages. We have adapted their methods to the case of

predefine parametric overloading and implemented in our

typechecker. They are rather effective and often result in

empty coercion sets.

8 ACKNOWLEDGEMENTS

The author would like to thank his colleagues Gregor Snelt-

ing and Michael Gloger for many stimulating discussions on

type inference and language design. The presentation of sec-

tion 4 has greatly benefited from reading Tobias Nipkow’s

course notes on equational reasoning.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

Roberto M. Amadio and Luca Cardelli. Subt yping re-

cursive types. In Conference Record of the 18th Annual

ACM Symposium on Principles of Programming Lan-

guages, pages 104-118, Orlando, Florida, January 1991.

Bruno Courcelle. Fundamental properties of infinite

trees. Theoretical Computer Science, 25:95–169, 1983.

Luis Damas and Robin Milner. Principal type schemes

for functional programs. In Conference Record of the 9th

Annual ACM Symposium on Principles of Programming

Languages, pages 207-212, January 1982.

Functional Programming Languages and Computer Ar-

chitecture, 5th ACM Conference, volume 523 of Lecture

Notes in Computer Science, Cambridge, Massachusetts,

August 1991. Springer-Verlag.

You-Chin Fuh and Prateek Mishra. Type inference with

subtypes. In Ganzinger [7], pages 94–1 14.

You-Chin Fuh and Prateek Mishra. Polymorphic sub-

type inference: Closing the theory-practice gap. In

J. Diaz and F. Orejas, editors, TAPSOFT’89 — Pro-

ceedings of the International Joint Conference on The-

ory and Practice of Sojtware Development, volume 352

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

of Lecture Notes in Computer Science, pages 167–183,

Barcelona, March 1989. Springer-Verlag.

HarsJd Ganzinger, editor. ESOP ’88, 2nd European

Symposium on Programming, volume 300 of Lecture

Notes in Computer Science, Nancy, France, March

1988. Springer-Verlag.

Michael Gloger, Stefan Kaes, and Christoph Thies.

Entwicklung funktionaler Programme in der SAM PJE-
Programmierumgebung. Technical Report PI-R3/90,

TH Darmst adt, Praktische Informatik, D-61OO Darm-

stadt, June 1990.

Robert Harper, Robin Milner, and Mads Tofte. The

definition of Standard ML Version 2. Technical Re-

port ECS-LFCS-88-62, University of Edinburgh, Au-

gust 1988.

Michael Jiiger, Michael Gloger, and Stefan Kaes. SAM-

PLE — a functional language. In Robin E. Bloomfield,

Lynn S. Marshall, and Roger B. Jones, editors, Proceed-

ings VL?M’88, VDM — The Way Ahead, volume 328

of Lecture Notes in Computer Science, pages 202–217,

Dublin, September 1988. Springer-Verlag.

Lalita A. Jategaonkar and John C. Mitchell. ML with

extended pattern matching and subtypes. In LFP88

[13], pages 198-211.

Stefan Kaes. Parametric overloading in polymorphic

programming languages. In Ganzinger [7], pages 131-

144.

Proceedings of the 1988A CM Conference on LISP and

Functional Programming, Snowbird, July 1988.

Robin Milner. A theory of type polymorphism in pro-

gramming. Journal oj Computer and System Sciences,

17(3):348-375, December 1978.

John C. Mitchell. Coercion and type inference. In Con-

ference Record oj the Ilth Annual A CM Symposium on

Principles oj Programming Languages, pages 175-185,

January 1984.

Tobias Nipkow and Gregor Snelting. Type classes and

overloading resolution via order-sorted unification. In

FPCA91 [4], pages 1-14.

Atsushi Ohori. Type inference in a database program-

ming language. In LFP88 [13], pages 174–183.

Conference Record of the 16th Annual ACM Sympo-

sium on Principles of Programming Languages, January

1989.

Didier R6my. Typechecking records and variants in a

natural extension of ML. In POPL89 [18], pages 77–88.

Franqois Rouaix. Safe run-time overloading. In Con-

ference Record oj the 17th Annual A CM Symposium on

Principles of Programming Languages, pages 355-366,

San Francisco, California, January 1990.

J6rg H. Siekmann. Unification theory. Journal oj Sym-

bolic Computation, 7:207-273, February 1989.

Dennis Volpano and Geoffrey S. Smith. On the com-

plexity of ML typability with overloading. In FPCA91

[4], pages 15-28.

Philip Wadler and Stephen Blott. How to make ad-

hoc polymorphism less ad-hoc. In POPL89 [18], pages

60-76.

Mitchell Wand. Complete type inference for simple ob-

jects. In Proceedings oj the Second Annual Symposium

of Logic in Computer Science, pages 37–44, Ithaca, New

York, June 1987.

204


