
Compiling Lazy Pattern Matching

Luc Maranget *

1 Introduction

Pattern matching is a key feature of the ML lan-

guage. Pattern matching is a way to discriminate

between values of structured types and to access

their subparts. Pattern matching enhances the clar-

ity and readability of programs. Compare, for in-

stance, the ML function computing the sum of an

integers list with its Lisp counterpart (all examples

are in CAML [11] syntax).

let rec sum xs = match xs with

[1+0
I Y::YS + y+sum ys

(defun sum (1)

(if (consp 1)

(+ (earl) (sum (cdr l)))

o))

In ML, patterns can be nested arbitrarily. This

means that pattern matching has to be compilecl into

sequences ofsimple tests: a complicated pattern such

as ((ijx), y::[]) cannot be recognized by a single test.

Usually, pattern matching compilers attempt to “fac-

torize” tests asmuch as possible, toavoidtestingsev-

eral times same position in a term.

A pattern matching expression does not specify the

order inwhich tests are performed. WhenML is given

strict semantics, as in ShIL [7], all orders are correct

*INRIA Rocquencowt. This work was ~>artiallyfL~I~cleclby

DRET under grant N“8780814.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, theACM copyright notice andthe

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA
@ 1992 ACM0.89791 -483. x/92/0006 /0021 . ..$505O

and choosing a particular order is only a matter of

code size and run-time efficiency. When ML is given

lazy semantics, as inz LML [1], all testing orders are

not semantically equivalent. Consider for instance

the ML definition:

let Fxy = match (x, y) with

(true, true) - 1

I (_) false) ~ 2

I (false, true) ~ 3

Patterns can be checked from left to right, as it is

usually the case (function Fi, below)j or from right

to left (function F2)

let F1xy=

if x then

if y then 1

else 2

else

if y then 3

else 2

let F2xy=

if y then

if x then

else 3

else

2

1

When variable y is bound to false, the test on

variable x is useless. This can be avoided by testing

y before x, as in F2.

Worse, consider function application F 1 false,

where 1 is a non-terminating computation. In strict

ML, function arguments are reclucecl before calling

the functions, so that both compilations F1 1 false

ancl F2 1 false do not terminate. In lazy ML, func-

tion arguments are not be evaluated ‘until them values

are actually neecled. Therefore, function F1 will loop

by trying to evaluate x = 1, whereas F2 will give

the answ-er 2. In the spirit of lazy evaluation a re-

sult should be given whenever possible. T’bus, a lazy

compiler should compile function F as F2, not as F1.

It is essential for a lazy ML compiler to produce

a correct compilation of pattern matching whenek-er

there exists one. Tins problem has first been solved

in the case of non-overlapping patterm by Huet and

21

L&y [z?]. C+iveu a set of’ (possibly) o~-e~lapl~ing pa.t-

terus, A. La.ville [5] shows how to replace t,hem, ~vheu

po:;sible, by an equivalent set of lloll-o~’erl~~p~illg pat-

terns, compiled using Huet and L6vy ’s technique. A.

Suirez and L. I?uel [s] translate the initial set of

overlapping patterns into au equivalent set of “con-

strained)’ patterns, which are special patterns encod-

inp; the disambiguating rule of pattern nlatching On

overlapping patterns. Then, they colmpile pattern

matching on the constrained patterns with an exten-

sic,n of Huet and L4vy ’s technique.

In this paper we take a more direct approach: we

compile pattern matching on overlapping patterns.
JJTe first recall the semantics of lazy pattern match-

ing, as given by A. Laville [5]. Then, we explain our

compilation technique as a source to source transfor-

mation. Given a set of patterns, several compilations

are possible, we prove that they all satisfy a partial

correctness property. We also give a criterion to char-

acterize totatly correct compilations and an algorithm

to find a totally correct compilation whenever there

exists one. We compare our approach to previous

ones and we show that effective computation of a cor-

rect compilation is more feasible in our framework.

Our algorithm may still lead to huge computations,

we propose a simple heuristic that solves this problem

in practice.

2 Values and patterns

Our intention is to model pattern matching as a func-

tion on the set of terms representing the results of lazy

ML programs.

2.1 Partial values

A. constructor is a functional symbol with an arity.

A. constructor will often be represented by c and its

arity by a. Constructors are defined by data type

declarations. Consider for instance the type cleclara-

tion:

type tree CY =

Leaf a I Node (tree a) u (tree a)

This declaration defines the type tree o of the l>i-

nary trees of objects of type a. It introduces the two

constructors Leaf auc} Node, of arit,ies 1 and 3. The

set of all constructors in a type is the signature of

this t~pe. some types, as pairs, lists, booleans and

integers are pre-defiued. There is one single binary

constructor, written as an infix “,”, in the signature

c)f the type of pairs, The type of lists has two con-

structors, the binary cons, written with an infix ~’::’)

and the uullary nio writteu as []. The booleans Iwe

the two nulls.ry constructors true and false. Fi-

nally] the signature of the type of integers is infinite;

it consists of all the signed integers, viewed as nullary

constructors.

The distinguished nullary symbol Q stands for the

unknown parts of a value. The set Vo of partial val-

ues is the set of terms built with constructors and

symbol Q:

Partial values V.Q: V ::= 0. I c VI Vz. .V.

In a partial value V = c VI V2. . .V., constructor c

is the root constructor of V. We only consider val-

ues that are well typed in the standard sense, par-

tial value Q belonging to all types. For instance,

Node ~ 1 (Leaf 2) has type tree int.

A lazy language distinguishes between totally rm-

known values and partially unknown values. Con-

sider, for instance, a list of two unknown values, rep-

resented as Q: :Q::[]. We can refer to the length of

such a partial list. In a lazy language, we should even

be able to compute it. As to the totally unknow value

Q, it does not carry any information at all. This sug-

gests that partial values may be considered as more or

less precise approximations of the results of computa-

tions. The definition ordering captures this intuition.

Definition 2.1 (Definition Ordering) Let U and

V be two partial values of the same type. The partial

value U is said to be less defined than V, written

U ~ V, if and only if:

{{

u=f2
or

u=cu~. ..ua, v=cvva. .va

and

for all i in the interval 1... a, Ui < E

Two partial values U and V are said to be compat-

ible, written U ~ V, when they can be refined toward

the same partial value, i.e., when there exists a com-

mon upper bound of U and V. When this is not the

case, values U and V are incompatible, written U # V.
we also Consider the set Tn of well typed partial

terms built from constructors, symbol Q aucl a. set of

variables.

Partial terms ‘Tn: M::= fl]vlcvlv’. ..v.

A substitution, written as u, is a morphism on par-

tial terms, i.e., a function on partial terms such that:

a(c VI VZ. .Va) = c a(Vl) u(VZ). J.7(VG). Sometimes,

a substitution will be written as the environment

[vl\JV1l, v2\M2, v,,\M~] binding, for any integer

i in the interval [1. .71], the variable vi to the partial

22

term .1/, . Application of such a substitlltion to a par-

tial term 1s Ivr]tten as JY 1[l\JJl , tt!\Jl12, “n\ JII,,].

For any pa~tial term M, the partial value Mn is ob-

tained by substlt,uting Q for all variables in M (i.e.,

,Vn D MIv1\Q, uz\Q, . ..v.l\Q], where tl,uz)...)vn

are the vallables of term ill).

2.2 Patterns

Patterns are strict linear terms, i.e., partial terms

without Q, such that the same variable cloes not ap-

pear more than once in them. Variables in pattern

are w~itten as .c.

Patterns P: p ::= x \ c pl p~. .pa p is linear

A pattern can be seen as representing a set of (par-

tial) terms sharing a common “prefix”. Additionally,

subterms located under this prefix are bound to pat-

tern variables.

Definition 2.2 (Instantiation relation) Let p be

a pattern and M be a parttal term belonging to a com-

mon type. Term ,M M an instance of pattern p, writ-

ten p ~ M, iff there ex~sts a substitution u such that

a(p) = M.

The instantiation relation is closely related to the

definition ordering.

Lemma 2.3 Lei p be a pattern and M be a partial

term. The followzng equivalence holds:

Proof: Easy induction on p, it requires the linearity

of patterns. ❑

A pattern p and a partial term Ill are incompatible,

and we write p # M, when M is sufficiently defined

to ensure that it is not an instance of p. That is, we

state p # iw, if and only if

{{

p= Cpl. ..pa, A4=A~I~i. ..i’VIaI with c#c’

or

p=c??l. ..pa, llf=cll[ll{all{a

and

there exists i such that I,; # il~,

The compatibility notation ~~1 JIT applies when pat-

tern p ancl partial term II{ are not incompatible. The

following equivalence properties holding for any pa,t-

tern p and any partial term :1~, directly follow from

lemima 2.3:

Partial term M maj be a, pattern q. If patterns

1) and q are compatible] then they are also said to

I)e ambljuoas or ore~lapplnj. As a conse(]uence of

lemma, 2.3, two patterm are compatible if and only if

they admit a common instance.

3 Compilation

Pattern matching is modeled as a function over the

set of partial values. This function is compiled into

multi-way branches represented by sample pattern

matching expressions, in the spirit of [I].

3.1 The matching function

Pattern matching is usually formalized as a predicate

on partial values [2, 5]. We prefer a representation

as a function over partial values, closer to pattern

matching in ML.

A clause is a three-tuple (i, p, e), where i is an in-

teger, p is a pattern and e is a partial term, such

that all variables in term e are variables of pattern p.

Integer i is the number of the clause, whereas term

e is its result. To simplify notations, we shall write

clauses as pi: ei. We consider sets of clauses meeting

the following three conditions:

1. All clause numbers are distinct.

2. All patterns belong to a common type.

3. All results belong to a common type.

Sets of clauses are written E = {pi: ei I i E 1},

where 1 is a set of numbers. These sets are ordered

by the ordering on the clause numbers. The pattern

matching function takes this ordering into account to

resolve possible ambiguities between patterns, In our

view, clause numbers just express the natural textual

clause ordering meant by the programmer, when he

writes one clause after (under) another.

Definition 3.1 (Matching predicate (Laville))

Let E= {pl:el, p2:e2,pm. em} be a set of clauses.

Let V be a partial value. Value V matches clause

number i zn E and we wriie matcl/i(V, E), zf and only

zf the followlng Iwo conditions are satzsfied:

Notice that the matching predicates defined by two

clistinct clause numbers are mutually exclusive, be-

cause ~) # V excludes 14 ~ V.

Definition 3.2 (Pattern n~at thing function)

Let E be a set of claases. For any paltlal ualae V,

we define the parlial value match(V, h-) as follows:

23

●

●

If ?(IIVC V ln(7tCheS Cl(l USP]Wmi)er i, (LIC t([kf

nLatc/l(l/-, E) = cr(ez), where a 2s fhe substtfahon

such that a(p’) = 1“-.

Otherwzse, V w o nommatcbing value and we

take moteh(h’, E) = ~.

It is easy to show7 that, given a set of clauses E, the

function rnatch(V, E) is a monotonic function over

partial values. Other rules than the textual priority

rule (definition 3.1) can be used to resolve ambiguity

in patterns: in particular, the specificity rule [4]. We

do not consider this alternative, since the textual pri-

ority ordering mimics the familiar “ij condition then

resultl else af condttion2 then result2 . ..” construct.

Furthermore, both schemes have the same expressive

power [5].

Pattern matching expressions can also be written

as ML programs. If a pattern variable does not ap-

pear in the corresponding result expression, then its

name is unimportant and the pattern variable is re-

placed by the symbol “_”. Consider, for instance, the

set of clauses E = {(zl, true) : true, (true, ZZ) :

true, (Z3, X4) : false} and the function or(V) =

match(V, E). In ML syntax we have:

or(v) = match V with

_, true -+ true

I true, _ + true

I _,_ + false

There is a finite number of partial values of type

bool x bool. By definition 3.2, we get:

v or(V)

Q (L?, Q) (Q, false) (true, fl) (falsel Q) Q

(Q, true) (false, true) (true, true)

(true, false)
true

(false, false) false

Note that or is not the “parallel or” function per,

since por(fl, true) = por(true, Q) = true.

It may seem that the definition of pattern match-

ing might be simplified by replacing condition 2 Yj <

i, F # V, by the new and less strict condition: Vj <

i, @ fl V. SUcJl a change is not advisable though,

since it would imply loosing monotonicity. Consider,

for instance, the pattern matching match (V, 1?) cle-

finecl by:

match jr with 1

The modified definition

woulcl give us: match (Q,

—fll _-2

of the matching function

E) == 2 A 7natc/l(l, E) = Q.

3.2 Pattern matching on vectors

W;hen we examine the compilation of pat tern mat th-

ing in the next section, we shall consicler “internle-

diate” matchings. In these matchings, the value to

match and the patterns have a common prefix: the

part of the value examined so far. More precisely, let

n be a positive integer, let VI, 02 . Vn be n variables

and let N be a linear partial term whose variables are

vl, v~. . . Vn. An intermediate matching is a pattern

matching of the format:

match JV[vl\V1, v2\V2, . . .vn\Vn] with

\’]+elfv[vl\p:, v2\p; , . . % Pm

I N[vI\pT, v2\?&, .k\P%l+ %

Obviously, the result of such a matching does not de-

pend on the prefix N, but only on the partial values

U and patterns p{ that are substituted for the vari-

ables v;.

The n partial values may be seen as a vector ~ =

(Vl V2 . . . V~), whereas each clause may be seen as a

vector clause consisting of a number i, of a vector of

71 patterns <pi and of a result term e,. The set of

clauses is replaced by a clause matrix (P) written as:

(P) ——

In pattern pj, integer i is the clause or row number,

whereas d is the column index.

The instantiation and the incompatibility relation

on patterns and values trivially extend to vectors:

(PlP2...Pn)< (V1v2... vn)

if and only if

for all i in 1. ..n, we have p; ~ u

(Pl P2... Pn)#(vl v2... vn)

if and only if

there exists i in 1.. .n such that pi # V,

Substitutions operate on vectors in the natural way:

a(~) n (~(pl) CT(PZ) . ~(p~)). It is then straightfor-

ward to extencl the definition of the matching pre(l-

icate to vectors of partial values P ancl matrices of

clauses (F’):

{

$’~?

772cztch~(ti, (P)) iff and

For all j < i, we have 17’ # ~

24

Figure 1: Compilation: first rowismadeo fvariables

Figure 2: Acolumnis made of variables

If vector ~matchesc lausenumberi inmatrix(~~,

then there exists a substitution a such that u(~’) = V

and take match (V,(P)) = cr(e~). Otherwise, vec-

tor ; does not match any clause in (P) and take

match (P,(P)) = Q

3.3 Compilation

Compilation is defined as a function C, from the set

of pattern matching expressions to the set of nested

simple pattern matching expressions. Simple match-

ings are a natural presentation of multiway-branches

in ML: they are pattern matchings such that the pat-

terns to be matched are non-nested or simple pat-

terns.

Simple patterns p ::= x \ c xl x2. .xa p is linear

Function C takes two arguments. The first argu-

ment is a linear vector of n variables U = (VI V2 . . Vn)

and the second one is a matrix of clauses (P) of

width n. A typical call to function C is thus

written as C(i’, (P)). Vector ; abstracts the in-

put to the pattern matching. To see this, let

~ = (Vl V2 . ~,) be any vector of partial val-

ues of size n. We define C((V1 V2 . . .Vn), (P)) as

C((V1 V2. . .V,l), (F’)) [vl\Vl, v2\V2, .Vn\V’n]. Ma-

trix (P) represents the unchecked subparts of the ini-

tial patterns. Given a set of clauses E = {pi : ei I 1<

i< m], compilation is started by:

H
pl : el

q(v), ;)

~)m : e,,,

Where v is a. fresh variable and function C is defined

as follows:

1. If vector ii is of length zero, then the matching

process is over. Either the clause matrix is empty

2.

3.

4.

and matching fails:

c((), ()) = c?

Otherwise, there is one or more clauses in (P)

and the result expression of the first clause is

the result of the whole matching:

()

: el

c((), :)=e~

: em

If the first row of patterns only contains vari-

ables, then matching successes and returns the

first expression as its result (see figure 1).

If one column of patterns —the first one, for

instance— contains only variables, then the cor-

responding variable in vector V does not need to

be examined (see figure 2).

If none of the rules above apply, then matching

can only progress by examining one of the vari-

ables vi. Until otherwise stated, the choice of

this variable is arbitrary and the result of com-

pilation a priori clepencls on this choice. When

variable vi is chosen, we shall say that matching

is done by following index i. To be more specific,

assume that the first variable, v], is chosen. Let

X = {c~ I 1< k ~ z} be the set of the root con-

structors of the patterns in the first column of

(P). To each constructor c~, of arity a~, a new

matrix (Pk) is associated. Matrix (Pk) contains

the clauses of (P) that may match a vector of

values of the format ((c~ U1 Uak) V2 . V,l).

More precisely, the following table shows how

each row of the new matrix is constructed:

~

25

I
match VI with

Cl WI Wai - C((w] ‘w? ‘Wa, ‘U2

I C2W1 Wa2 — ~~~

C((7JI U2. ..’U,,),(P))=

I CZWI . ..Waz - C((wl Wz. ..waz v?

I_ - C((U2. .u,z), (Pal))

Figure 3: Compilation: the general case

If the set of constructors X is not a coln-

plete signature, then some clauses in matrix

(P) may match a value vector of the format

((c UI U=) Vz . . . V~), where c is a constructor

that does not belong to Z. To match these cases,

a default matrix (Pd) is built:

EEEEEER

The original ordering of the rows is preserved

in the new matrices (P~) and (Pd)~ so that

the clauses are arranged by increasing number.

Compilation is then defined by figure 3 (in this

figure, the WJ are fresh variables).

Compilation always terminates, since the size of

the clause matrix (P) strictly decreases at each re-

cursive call to function C. To see this, consider the

lexicographic ordering on the pairs of positive inte-

gers (NC(P), N.(p)), where AJ~(P) and JVO(P) are

the sums for all the patterns in (P) of the nc and

n. functions, defined by:

{

nc(.z) = O

nc(cpl . .. p.) = I+nc(pl)+ +n. (p.)

{

n.(x) = 1

n.(cpl. ..p=)=o

Now, consider the or function of section 3.2. The

initial call to function C is given at the top of fig-

ure 4. Then, there are two possible compilations,

depending on whether matching proceeds by e~anl-

ining variable z first or variable y first. The rest of

the compilations is easy and we get the t~vo com-

piled expressions Cl (w) and CQ(U) as given in figure 4.

These two compilation are syut acticall}- different.

They are also semantically different IVhen applied

to value V = (Q, true), the automata generated by

compilation schemes Cl ancl Cz gi~~e different answers

(CI(V) = ‘Q ancl Cz(t’-) = true = Or(l’-)). For any

other partial value 1-, we get C~(V) = CZ(V) = O~(V).

Therefore, autolnaton Cl(v) does not, correctly imple-

ment function o?, whereas automaton G(L) does

?J,,), (PI))

v,,), (P2))

4 Correct compilation

4.1 Partial correctness

As shown by the Cl example above, our compilation

scheme may not be correct. It satisfies a partial cor-

rectness property, though: when the compiled au-

tomaton gives a result that is strictly more defined

than Q, this result is correct.

Lemma 4.1 (Partial correctness) Let E be a set

of clauses. Conszder any compilation of the matchtng

by E. Durzng thts comptlatzon, for any call to func-

tzon C and any parttal value vector (Vl 1~2. . . Vn)j the

followtng equaltty holds:

C((VI V.... V~), (P)) < match((Vl V2 .%), (P))

Proof: By induction on the definition of compila-

tion. We only give the interesting case. In the case of

the inductive step 4, suppose that compilation pro-

gresses by a simple matching on variable V1. Then,

value C((V1 V2 . . Vn), (P)) is:

mat ch VI With

CIW1 . .. Wal_+ c((w~ . . .Wal V2 ..%),(R))

lCz W~. .. Waz_+ (,?((W~ .Waz V2 .Vn), (P;))

I_ + C((vj? . vn), (Pal))

There are now three cases. In the case where value V1

equals Q, then the simple matching on V1 fails. That

is, we get C((VI V2 . . Vn), (P)) = Q, where value ~ is

always less defined than match((Vl V? . . . V~), (P)).

If VI = c U1 U., where constructor c is not the

root constructor of one of the patterns in the first col-

umn of (P), then value VI matches the default clause

of the simple matching and we get:

C((vl V2 .vn), (P)) = C((V2 .vn), (pal))

It follows, by induction hypothesis:

C((I\ l’; h;,), (~)) < 17Uddt((~~2 t%), (pci)[v,\v,])

26

_, true : true

true, _ : true

[_, _ :false [.

true : true

)

)==match v with x,y - LY((.z y), ;rue _ :true)

: false—

match v with

X,Y - (match x with

(true :true

true ~ C((Y), _ : true \)
_ :false)

1-

Cl(v) =

+ C((y), (-true : true

: false)
))

match v with

X,y + (match x with

true ~ (match y with

true -+ true

I_ = true)

11- -+ (match y with

true * true

I_ + false))

match v with

x) Y * (match y with

true ~ C((z),

(:ruef:e.))

l.+ C((x)j (true : true

~false)
))

-.

C2(V) =

match v with

x> Y ~ (match y with

true -+ true

1- + (matchx with

true ~ true

1- + false))

Figure4: The twopossible compilations of function or

Moreover, for any clause ~’: ei in matrix (P), we have:

(p; p;. ~.Pi)s((c ul. ..ua)vvn). vn)
ifand onlyif

p; =xi and (p\ . ..p~)<(VV~). V~)

(PiPiP:)#((culua)fi””v~)
if and only if

{

p~=c’q~. .. q:,

or

p~=z’and(p~ . ..p~)#(V2 . ..Vn)

Thus, for a vector of partial values ; whose first com-

ponent is of the format VI = c U1 . . U., matchings

by matrices(P) and(Pd) are equivalent. In symbols,

partial values match (((c U~ . ..Ua) VZ. .. Vn), (P))

and 7nat C/l((VZ . .. V.J), (P~)[Vl\C U1 . . . Us]) are the

same. Therefore:

C((vl Y2. . .14),(P))5 match((Vl V2... ~),(P))))

Finally, ifpartialvalueV1 admitsa root construct-

or c~t where constructor c~ is the root constructor

of a pattern in the first column of (P), then par-

tial value VI = c~ U1 . . . Uak matches the clause

with simple pattern c~ L’1 . . . U]ak. That is, value

C(((cl. [~1 CTak) }t. ..l~n), ()))) reduces to value

C((ul . . .U., V2 Vn), (Pk)). By induction hypoth-

esis, we get the inequality C((V1 V2 . . Vn), (P)) <

~atch((ul . Uak V2 . V~), (P~)[vl\Vl]). whereas)

by expanding definitions as we already did above,

values mutch(((ck U1 . . . U.,) V2 . .Vn), (P)) and

~afch((U1. . .Ua~ V2 . . . Vn), (lJk)[vI\Wl) are equal
Hence the result:

C((V~ IZ2 .Vn), (F’)) < rnatch((V~ VZ . . .Vn), (P))

•1

4.2 Total correctness

We now aim at improving the compilation scheme

above, so that it yields a correct compilation, if pos-

sible. A compilation is correct, if and only if, for ev-

ery call to function C and every partial value vector

(V1 V? . . . l&), we have:

C((vl 1’; . ..1’.), (P)) = rnaich((vl V2 . . .Vn), (P))

Totally correct automata enjoy optimality proper-

ties as defined by other authors. First, the automaton

produced by a correct compilation is a “lazy algo-

rithm’) in the sense of A. Laville [5]. This means that

5uG11 an automaton only explores a minimal prefix of

27

the recognized value Furthem]ore, a given subpart

Inside this prefix is never looked at twice. A correct

automaton hence enjoy an optimal m-time behavior:

it performs a minimal number of tests on matched

values. Correct automata also satisfy the other opti-

mality property defined in [8]: they fail to produce a

result only on the “minimal” set of the partial values

that are not defined enough to match a clause in the

initial set E (i.e., a correct automaton gives Q as a

result, if and only if the result of the matching by E

is Q).

The proof of partialcorrectness carries almost un-

changed to total correctness, except for the inductive

step ~. If simple pattern matching is performed on

the first value component, VI, and if VI is Q, then

we get: C((Q V2 Vn), (P)) = Q. However, it may

be the case that match((fl V2 . Vn), (P)) > Q, if the

whole value vector (Q V2 . . Vn) matches a clause in

matrix (F’). A correct compiler must avoid this situ-

ation whenever possible.

Definition 4.2 (Directions) Let (P) be a clause

rnatriz of width n. The column index d such that

1 < d < n w a direction for the matchzng by (P),

wrttten d c Dir(P), zfl the following two conditions

are met:

1. mafch((fl Q . . .Q), (F’)) = Q

2?. There is no vector ~ = (Vl V2 . . Vn), such that

? matches a clause tn (P) a7~d vd = O.

Directions are computable from the matrix (P).

Consider the set Dar, (P) of dzrecttons for the match-

zng by clause number i, defined as:

Dir,(P) = {d c [1. . .n] I maich, (~, (P)) ~ Vd > Q}

Then Dir(P) is the intersection of the Diri (P) sets.

For instance, at the critical compilation step for func-

tion or, we have:

(
true : true

(P) = ire _ : true

: false—)

and

~

rnatch2(V, (P)) @ true < Vi A true # IL

match3(V, (P)) + true# V1 ~true# V2

Thus, we get Drrl(P) = {2}, DirZ(P) = {1, 2},

Di7-3(P) = {1,2} and D~r(P) = {2}. See section 5

for a full description of the computation of directions.

Directions gives us a method to test the corlect,ness

of a given compilation:

Lemma 4.3 (Correct conlpilation) Let E be a

set of elrmses. .-1 g7ue7/ colnpllot?on of Il?e 7notc1177Lg

by E M correct, zf and only t~ at each znducftve step

J of the compzlatzonl there ez(sts a d~rectton d m the

clause mair~x (P) and conlpdat~on goes on by a sznl-

p!e ~latchfng on v(l~lable ~d.

Proofi See the cliscussion at the beginning of this

section. ❑

For inst ante, m the case of the or function, conlpi-

lation C2 can be stated as correct without testing it

on all partial values, since it always performs simple

matchings by following directions.

Checking directions only gives a sufficient condi-

tion of correctness because this method ignores re-

sult expressions. Consider, for inst ante, the following

matching on pairs of booleans:

match v with true, true ~ true] ., _ ~ Q

After a first trivial inductive step the compilation of

such a matching amounts to:

match v with

- C((xy),
(-

true true : true
x? Y Q)

)

At this stage, the set of directions Dir(F’) is empty.

Namely, we have match2(fi, (P)) & true # V1 V

true # V? and thus Dzr2(P) = 0. However, both

possible compilations are correct. Indeed, it is noJ

important whether Q is associated to any value V

matching clause number 2 because it is recognized

to match clause number 2 —as it is always the case

for ; = (false false), for instance—, or because

simple pattern matching fails on one of its subcompo-

nents —as it is the case for ; = (Q false), when left-

to-right sub component mat thing order is chosen-.

We deliberately ignore such correct compilations.

If the result expressions of the clauses were full ML

expressions, and that we identified —a bit quickly-

value ‘Q and the non-termination of a NIL program,

then it would become undecidable to know whether

the value of an expression is Q or not.

4.3 Finding a correct conlpilation

Some pattern matching expressions cannot be colm-

pilecl correctly. Cousicler a variation on the classical

example clue to C,. Berry, as given in figure 5. Sixteen

different compilations are possible. None of them is

correct To see this, it is not necessary to completely

construct all these automata. The correctness crite-

rion of lemma 4.3 applies at automaton construction

tmne and can be used to prune the search for a cor-

rect au~ornatou. Such a limited enumeration is still

28

let G x y z = match (x, (y,z)) with

(true, (false,_)) - 1

I (false, (_,true)) - 2

I (_, (true,false)) - 3

Figure 5: Berry’s example

not satisfying, since a pattern matrix with more than

one direction lmay imply some backtracking.

Fortunately, discovering one matrix without a cli-

rection during any compilation attempt is sufficient

to ensure that there is no correct compilation at all.

Due tolack ofspace, we only sketch theproofof this

result.

Proposition 4.4 Let E be a set of clauses. The

following compilation algortthm ytelds an auto7naton

correctly implementing the matchzng by E whenever

posstble.

Compile pattern matching as descrtbed in sec-

tion 3.3. At the inductive step ./, consider the di-

rections for the matching by matrix (P). Two cases

are possible:

1. If matrix (P) does not have a direction, then fad.

2. If matrix(P) has directions, then choose one and

continue compilation by a simple matching fol-

lowing this du-eciion.

Proof: If condition 1 above occurs, then it can be

shown that matching by E is not a sequential function

in the sense of Kahn- Plotkin (see [3, 2]). Whereas any

automaton produced by our method is sequential in

this sense. ❑

5 Implementation

Given a clause matrix (P), a clause number i and

a column index d, we want to know whether d be-

longs to Dtri (P) or not. This can be expressed as

the unused match case detection problem: is the last

clause of the matrix (Q(d, i)) below satisfiable or not ?

That is, does there exist a value vector T7 such that

nlatch, (7, (Q(,l,,))) holds ? The matrix (Q(d,,)) is Lhe
submatrix of (P) obtained by deletin~ column d and

the clauses after clause i:

(Q((L)) =

Lemma 5.1 Let (P) be a clause mall /.L Let i be

a cl(ru5f m(mber nnd d be o column lnde,r Zn 7nair7,r

(P). Lei (Q[d,, ~) be as described above. Then, 171-

dez d M not a d[rectzon for mafrrx (P), zf and only

zf I)aiiern p~.l rs a vor)oble a71d the last clause of ma-

tr’u’ (Q(d),)) 1s sat/sfiab/e.

Proof: In the case where ~+ = c ql ya is not a vari-

able, then any value vector (Vl V2 V,l) matching

clause number i in matrix (P) is such that component

Vd is an instance of pattern c gl . . yu. Therefore, we

get V~ > Q. Otherwise, let VI, . . , V~–1, V~+lj . . .,

Vm be any n – 1 partial values. The following equality

can be shown by expanding clefinitions:

7nafch8((Vl . . . V~_l O V~+l . . ,Vn), (P))

II
matchi((V1 Vd, Vd+l . . . Vn), (Q(d,i)))

u

We now give an algorithm to solve the unused

match case detection problem in the general case.

Given a pattern matrix (P), of size n by m, the algo-

rithm below computes the truth value of the formula

3(P) = 3 ~ matchm(ti, (P)). This algorithm closely

follows the compilation algorithm itself

1. If the rows of matrix (P) are empty, or if its

first row contains only variables, then the value

of T(P) depends on the number m of rows in

(P). If 7rr = 1, then -F(P) = true, since any

instance of 171 matches the last (and only) clause

of matrix (P). Otherwise, Y(P) = false.

2. In all the other cases, let us choose a column in-

dex. Suppose that index 1 is chosen. Let Z be

the set of the root constructors of the patterns

in the first column of (F’). To each constructor

Ck in E, a new pattern matrix (Pk) is associated

as in the compilation of pattern matching (sec-

tion 3.3). If set X is not a complete signature or

if X is the empty set, then a default matrix (Pd)

is also considered. There are two subcases:

(a) If pin = x, then let ; be a value vector sat-

isfying the last clause of (P). If VI has a

root constructor, then the matching by ma-

trix (P) is equivalent to the matching by

one of the matrices (P~) or (P~). Other-

wise, if l;l = f2, then, because the nlatcll-

ing predicate is monotonic, any value vec-

tor U = (i!;l VZ Vn) such that U1 > Q

matches clause m as V does. Therefore,

Y(P) is true, if and only at one at least

of the formulas Z(P1), Z(PZ), . . .~(Pz) or

F(P,~) is.

29

(b) If p~ > .r, then let c be the root constructor

of p~. If c belongs to II, then there em.ts

a matrix (P~) such that F(P) = T(PL).

Otherwise, we have 7(P) = F(Pd).

Regarding the efficiency of this algorithm, it can

be observed that the number of calls to function 7 is

bounded by the number of calls to function C, when

compilation is done by making the same choices at

critical steps. This upper bound is reached when

$(P) is false and when the last row of matrix (P)

contains only variables. As shown by the example

given in the appendix, the number of calls to func-

tion C can be quite large. Although we do not know

whether this upper bound is indeed reached or not in

the worst cases, experiments showed us that a naive

implementation of function F may lead to important

computations. Fortunately, we were able to avoid this

misbehavior by using the following three heuristics:

1.

2.

3.

Matrix (P) itself can be reduced. Let ~i and fl~

be two rows inside matrix (P) (i.e. i < m and

j < m), such that $’3 FJ. For any value vect~r

~ such that ~’ #~, we necessarily have FJ #V.

That is, pattern vector ~~ is useless for the com-

putation of T(P) and matrix (P) can be simpli-

fied by only retaining the pattern rows that are

minimal for the definition ordering. This simpli-

fication of matrix (P) is particularly worthwhile

when some pattern row contain a lot of variables.

When there is a default matrix (P~), it is tested

first. This amounts to making the assumption

that, if there exists a value vector satisfying the

last row of (P), then its components are likely

not to appear inside matrix (P).

We also attempt to minimize the size and num-

ber of the matrices (F’l), (P2) (Pz), by a

good choice of the column to examine at step 2-

(a). For each column, characterized by its in-

dex i, let z(i) be the number of different root

constructors in column i and v(i) be the num-

ber of variables in column i. Let then r(i) be

the total number of rows in the matrices (PI),

(P?) (P2(,)), we have r(i) = z(i)v(i) + m or

r(i) = z(i)v(i) + m — v(i), depending on whether

there is a default matrix (Pd) or not. We se-

lect a column with a minimal r(i). If there are

several columns such that r(i) is minimal, then

we favor one with a minimal number of clifferent

root constructors z(i). Other size measures have

been tested, including matrices surfaces (number

of rows x number of columns) and the function

IV. of section :3.3. Choosing a good measure is

llOt easy and this heunstlc is less eficient t,hall

the two others.

Regarding the efficiency of the computation of

set Dz7-(P), it is usually not necessary to compute

all the Dzr, (F’) sets First, if there is a column

in matrix (P) which contains no variable, then, by

lemma 5.1, the index of this column is a direction.

Such a direction is an obvtous directaon and knowing

just one direction is enough to apply the conlpila-

tion algorithm of proposition 4.4. Otherwise, there is

no obvious direction in matrix (P) and set Dir(P)

has to be tested for empty ness. If index d does

not belong to Dirt(P), then, for any other clause

number j, we need not check whether index d be-

longsto Dirj (P) or not, since we already know that

d is not a direction for the whole matrix (P). Of

course, the Dir~ (P) sets are examined following in-

creasing clause numbers i, so that index checkings

are avoided when matrices Q(d)i) are large. That is,

we compute 7?~ = Dir(P), where ‘DI = Dirl (P) and

Di+l = { d E Di I d c Dzri+l(P) }. If matrix (F’)

has no direction, then there exists a clause number

max, such that D~.Z # 0 and D~~~+l = 0. In such

case, the column indices in Dmaz are called partzal

dlrectzons.

The other approaches to the compilation of lazy

pattern matching [5, 8] involve the explicit computa-

tion of the set of value vectors matching the clauses

of matrix (P). Let M be this set. We have M =
u~l M,, where A4i = {; I rnatchi(~, (P))}. In [5]

set M is described by its minimal generators, that is,

by the subset of its least defined elements. In [8] each

set Mi is represented by a normalized constrained

pattern that can be seen as the disjunctive normal

form of the characteristic proposition

i—l n

/Y4vl, v2,. ..vn) =4/4 vP; #vk) ~(fiw)

j=l k=l kzl

Direct implementation of these two representations

for set M leads to data structures whose size grow ex-

ponentially with the size of the input matrix (P). Our

approach, by directly computing directions, avoids

such an exponential space behavior.

6 Conclusion

We have described a compiler for lazy pattern matchi-

ng that produces a correct automaton whenever

there exists one. When there are several correct au-

tomata, our compiler attempts to generate one with a

reasonable size, using heuristic 3 above. When there

30

is no correct automaton, the compiler issues a wark

ing message and outputs a partially correct automat-

on (in the sense of section 4.1), still attempting to

minimize its size, using partial directions and heuris-

tic 3. Our work resulted in the first integration of

the correct compilation of lazy pattern matching in

a lazy ML compiler [6]. Furthermore, we developed

a simple presentation of the theory of lazy pattern

matching.

In some rare occasions, the heuristics we use can

be defeated and the size of the automaton gets very

large —In fact, as shown in the appendix, some

set of clauses defeat any heuristic— Other compil-

ers producing tree-like pattern matching automata,

such as SML-NJ or CAML [11], face the same prob-

lem. In [1, 10] an alternative technique of compilation

is presented: pattern matching expressions are com-

piled using a backtracking construct. This technique

leads to matching automata whose size is linear in the

size of the input program. A similar approach may

be possible in our case, but it would probably imply

loosing the optimal run-time behavior.

In a preliminary version of this work, we suggested

the following other direction for further work: analyze

the complexity of the unused match case detection

problem. We recently learned that this problem is

NP-complete [9].

Acknowledgements

I thank X. Leroy for his editorial help and A. Suiirez

for fruitful discussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

L. Augustsson, “Compiling pattern matching.

FPCA’85.

G. Huet, J.-J. L&y, ‘(call by Need Computa-

tions in Non-Ambiguous Linear Term Rewriting

Systems”. INRIA, technical report 359, 1979.

G. Kahn, G. Plotkin, “Domaines concrets”, Rap-

port IRIA Laboria 336, 1978.

R. Kennaway, “The Specificity Rule for Lazy

Pat tern Mat thing in Ambiguous Term Rewrit-

ing Sj~stems”. ESOP’90.

A. Laville, “Comparison of Priority Rules in Pat-

tern Matching and Term Rewriting”. Journal of

Symbolic Computation (1991) 11, 321-347.

L. Maranget, “GAML: A Parallel Implement a-

tion of Lazy ML”. FPCA’91.

[7]

[8]

[9]

[10]

[11]

R. N:lilner, M. ‘Tofte, R. Harper, “The Definition

of Standard ML”. The MIT Press.

L. Puel, A. Su6rez, ‘(Compi~ing Pattern h4atch-

ing by Term Decomposition”. LFP’90.

R.C. Sekar, R. Ramesh and I.V. Ramakrishnan,

“Adaptive Pattern Matchin~. ICALP’92.

P. Wadler, chapter on the compilation of pat-

tern matching in: S. L. Peyton Jones, “The Im-

plemen t ation of Functional Programming Lan-

guages”. Prentice-Hall, 1987.

P. Weis, “The CAML Reference manual” Version

2.6.1, INRIA Technical Report 1211990.

Appendix

Let n be a strictly positive integer. Let In be the

identity matrix of size n by n. And let then An be

the pattern matrix of size n(n – 1)/2 by n inductively

defined as:

Al= ()
(

An= 22 . ..2

In_l

For instance, we have:

A5 .

--- . . .

An-l)

\-

-- i__l_i_2

— -i-_ i_li

Given any column index i in An, there are n – 1 pat-

tern rows in An whose component number i is I or _.

Thus, as any two pattern rows in An are incompati-

ble, any value vector whose component number i is 1

may possibly match n — 1 pattern rows. This is also

true for any value vector whose component number i

is 2. Let us call T this property. As a consequence

of property T, whichever column index is chosen, the

critical compilation step 4 will yield at least two re-

cursive calls to function C. And the pattern matrix

given as an argument in these recursive call will have

n — 1 rows.

Now, apply the C compilation scheme to matrix

.4., not trying to produce a totally correct automa-

ton (i.e., generate all possible automat a). Because all

intermediate pattern matrices that arise while com-

piling .LIn enjoy a property similar to property ‘P, it

can be shown that the size of the generated automata

is greater than 2’~. That is, if iV = nz(n – 1)/2 is the

size of A,,, the size of these automata grows at least

as i~,

31

