# Compiling Lazy Pattern Matching 

Luc Maranget *

## 1 Introduction

Pattern matching is a key feature of the ML language. Pattern matching is a way to discriminate between values of structured types and to access their subparts. Pattern matching enhances the clarity and readability of programs. Compare, for instance, the ML function computing the sum of an integers list with its Lisp counterpart (all examples are in CAML [11] syntax).

```
let rec sum xs = match xs with
    [] }->
| y::ys }->\mathrm{ y+sum ys
    (defun sum (1)
        (if (consp l)
            (+ (car 1) (sum (cdr 1)))
            0))
```

In ML, patterns can be nested arbitrarily. This means that pattern matching has to be compiled into sequences of simple tests: a complicated pattern such as $((1, x), y::[])$ cannot be recognized by a single test. Usually, pattern matching compilers attempt to "factorize" tests as much as possible, to avoid testing several times same position in a term.

A pattern matching expression does not specify the order in which tests are performed. When ML is given strict semantics, as in SML [7], all orders are correct

[^0]and choosing a particular order is only a matter of code size and run-time efficiency. When ML is given lazy semantics, as inz LML [1], all testing orders are not semantically equivalent. Consider for instance the ML definition:

```
let F x y = match (x,y) with
    (true,true) }->
| (_,false) }->
| (false,true) -> 3
```

Patterns can be checked from left to right, as it is usually the case (function $F_{1}$, below), or from right to left (function $\mathrm{F}_{2}$ )

```
let F}\mp@subsup{F}{1}{}\textrm{x y =
    if x then
        if y then 1
        else 2
    else
        if y then 3
        else 2
```

```
let }\mp@subsup{F}{2}{}\times\textrm{y}
    if y then
        if }x\mathrm{ then 1
        else 3
    else
        2
```

When variable $y$ is bound to false, the test on variable x is useless. This can be avoided by testing $y$ before $x$, as in $F_{2}$.

Worse, consider function application $F \perp$ false, where $L$ is a non-terminating computation. In strict ML, function arguments are reduced before calling the functions, so that both compilations $F_{1} \perp$ false and $F_{2} \perp$ false do not terminate. In lazy ML, function arguments are not be evaluated until therr values are actually needed. Therefore, function $F_{1}$ will loop by trying to evaluate $x=\perp$, whereas $F_{2}$ will give the answer 2. In the spirit of lazy evaluation, a result should be given whenever possible. Thus, a lazy compiler should compile function $F$ as $F_{2}$, not as $F_{1}$.

It is essential for a lazy ML compiler to produce a correct compilation of pattern matching whenever there exists one. This problem has first been solved in the case of non-overlapping patterns by Huet and

Lévy [2]. Given a set of (possibly) overlapping patterns, A. Laville [5] shows how to replace them, when possible, by an equivalent set of non-overlapping patterns, compiled using Huet and Lévy's technique. A Suárez and L. Puel [8] translate the initial set of overlapping patterns into an equivalent set of "constrained" patterns, which are special patterns encoding the disambiguating rule of pattern matching on overlapping patterns. Then, they compile pattern matching on the constrained patterns with an extension of Huet and Lévy's technique.

In this paper we take a more direct approach: we compile pattern matching on overlapping patterns. We first recall the semantics of lazy pattern matching, as given by A. Laville [5]. Then, we explain our compilation technique as a source to source transformation. Given a set of patterns, several compilations are possible, we prove that they all satisfy a partial correctness property. We also give a criterion to characterize totally correct compilations and an algorithm to find a totally correct compilation whenever there exists one. We compare our approach to previous ones and we show that effective computation of a correct compilation is more feasible in our framework. Our algorithm may still lead to huge computations, we propose a simple heuristic that solves this problem in practice.

## 2 Values and patterns

Our intention is to model pattern matching as a function on the set of terms representing the results of lazy ML programs.

### 2.1 Partial values

A constructor is a functional symbol with an arity. A constructor will often be represented by $c$ and its arity by $a$. Constructors are defined by data type declarations. Consider for instance the type declaration:

```
type tree \alpha =
    Leaf \alpha | Node (tree \alpha) \alpha (tree \alpha)
```

This declaration defines the type tree $\alpha$ of the binary trees of objects of type $\alpha$. It introduces the two constructors Leaf and Node, of arities 1 and 3 . The set of all constructors in a type is the signature of this type. Some types, as pairs, lists, booleans and integers are pre-defined. There is one single binary constructor, written as an infix ",", in the signature of the type of pairs. The type of lists has two constructors, the binary cons, written with an infix "::"
and the nullary nit, written as []. The booleans are the two nullary constructors true and false. Finally, the signature of the type of integers is infinite; it consists of all the signed integers, viewed as nullary constructors.

The distinguished nullary symbol $\Omega$ stands for the unknown parts of a value. The set $\mathcal{V}_{\Omega}$ of partial values is the set of terms built with constructors and symbol $\Omega$ :

$$
\text { Partial values } \quad \mathcal{V}_{\Omega}: \quad V::=\Omega \mid c V_{1} V_{2} \ldots V_{a}
$$

In a partial value $V=c V_{1} V_{2} \ldots V_{a}$, constructor $c$ is the root constructor of $V$. We only consider values that are well typed in the standard sense, partial value $\Omega$ belonging to all types. For instance, Node $\Omega 1$ (Leaf 2) has type tree int.

A lazy language distinguishes between totally unknown values and partially unknown values. Consider, for instance, a list of two unknown values, represented as $\Omega:: \Omega::[]$. We can refer to the length of such a partial list. In a lazy language, we should even be able to compute it. As to the totally unknow value $\Omega$, it does not carry any information at all. This suggests that partial values may be considered as more or less precise approximations of the results of computations. The definition ordering captures this intuition.

Definition 2.1 (Definition Ordering) Let $U$ and $V$ be two partial values of the same type. The partial value $U$ is said to be less defined than $V$, written $U \preceq V$, if and only if :

$$
\left\{\begin{array}{l}
U=\Omega \\
\quad \begin{array}{l}
\text { or } \\
\left\{\begin{array}{c}
U=c U_{1} \ldots U_{a}, V=c V_{1} \ldots V_{a} \\
\text { and } \\
\text { for all } i \text { in the interval } 1 \ldots a, U_{i} \preceq V_{i}
\end{array}\right.
\end{array}
\end{array}\right.
$$

Two partial values $U$ and $V$ are said to be compatible, written $U \uparrow V$, when they can be refined toward the same partial value, i.e., when there exists a common upper bound of $U$ and $V$. When this is not the case, values $U$ and $V$ are incompatible, written $U \# V$.

We also consider the set $\mathcal{T}_{\Omega}$ of well typed partial terms built from constructors, symbol $\Omega$ and a set of variables.

$$
\text { Partial terms } \mathcal{T}_{\Omega}: \quad M::=\Omega|v| c V_{1} V_{2} \ldots V_{a}
$$

A substitution, written as $\sigma$, is a morphism on partial terms, i.e., a function on partial terms such that: $\sigma\left(c V_{1} V_{2} \ldots V_{a}\right)=c \sigma\left(V_{1}\right) \sigma\left(V_{2}\right) \ldots \sigma\left(V_{a}\right)$. Sometimes, a substitution will be written as the enviroment $\left[v_{1} \backslash M_{1}, v_{2} \backslash M_{2}, \ldots v_{n} \backslash M_{n}\right.$ ] binding, for any integer $i$ in the interval $[1 \ldots n]$, the variable $v_{i}$ to the partial
term $M_{2}$. Application of such a substitution to a partial term is written as $N\left[v_{1} \backslash \Lambda_{1}, v_{2} \backslash M_{2}, \ldots v_{n} \backslash M_{n}\right]$. For any partial term $M$, the partial value $M_{\Omega}$ is obtained by substituting $\Omega$ for all variables in $M$ (i.e., $M_{\Omega}=M\left[v_{1} \backslash \Omega, v_{2} \backslash \Omega, \ldots v_{n} \backslash \Omega\right]$, where $v_{1}, v_{2}, \ldots, v_{n}$ are the vanables of term $M$ ).

### 2.2 Patterns

Patterns are strict linear terms, i.e., partial terms without $\Omega$, such that the same variable does not appear more than once in them. Variables in pattern are written as $x$.

Patterns $\mathcal{P}: \quad p::=x \mid c p_{1} p_{2} \ldots p_{a} \quad p$ is linear
A pattern can be seen as representing a set of (partial) terms sharing a common "prefix". Additionally, subterms located under this prefix are bound to pattern variables.

Definition 2.2 (Instantiation relation) Let $p$ be a pattern and $M$ be a partual term belonging to a common type. Term $M$ is an instance of pattern $p$, written $p \preceq M$, iff there exists a substitution $\sigma$ such that $\sigma(p)=M$.

The instantiation relation is closely related to the definition ordering.
Lemma 2.3 Let $p$ be a pattern and $M$ be a partial term. The following equivalence holds:

$$
p \preceq M \text { Iff } p_{\Omega} \preceq M_{\Omega}
$$

Proof: Easy induction on $p$, it requires the linearity of patterns.

A pattern $p$ and a partial term $M$ are incompatible, and we write $p \# M$, when $M$ is sufficiently defined to ensure that it is not an instance of $p$. That is, we state $p \# M$, if and only if

$$
\left\{\begin{array}{l}
p=c p_{1} \ldots p_{a}, M=c^{\prime} M_{1} \ldots M_{a^{\prime}} \text { with } c \neq c^{\prime} \\
\text { or } \\
\left\{\begin{array}{c}
p=c p_{1} \ldots p_{a}, M=c M_{1} \ldots M_{a} \\
\text { and } \\
\text { there exists } i \text { such that } p_{i} \# M_{2}
\end{array}\right.
\end{array}\right.
$$

The compatibility notation $p \upharpoonleft M$ applies when pattern $p$ and partial term $M$ are not incompatible. The following equivalence properties, holding for any pattern $p$ and any partial term $M$, directly follow from lemma 2.3:

$$
p \# M \text { iff } p_{\Omega} \# M_{\Omega} \text { and } p \mid M \text { iff } p_{\Omega} \mid M_{\Omega}
$$

Partial term $M$ may be a pattern 4 . If patterns $p$ and $q$ are compatible, then they are also said to
be ambuguous or overlapmang. As a conseguence of lemma. 2.3, two patterns are compatible if and only if they admit a common instance.

## 3 Compilation

Pattern matching is modeled as a function over the set of partial values. This function is compiled into multi-way branches represented by sunple pattern matching expressions, in the spirit of [1].

### 3.1 The matching function

Pattern matching is usually formalized as a predicate on partial values [2,5]. We prefer a representation as a function over partial values, closer to pattern matching in ML.

A clause is a three-tuple ( $i, p, e$ ), where $i$ is an integer, $p$ is a pattern and $e$ is a partial term, such that all variables in term $e$ are variables of pattern $p$. Integer $i$ is the number of the clause, whereas term $e$ is its result. To simplify notations, we shall write clauses as $p^{i}: e_{i}$. We consider sets of clauses meeting the following three conditions:

1. All clause numbers are distinct.
2. All patterns belong to a common type.
3. All results belong to a common type.

Sets of clauses are written $E=\left\{p^{i}: e_{i} \mid i \in I\right\}$, where $I$ is a set of numbers. These sets are ordered by the ordering on the clause numbers. The pattern matching function takes this ordering into account to resolve possible ambiguities between patterns. In our view, clause numbers just express the natural textual clause ordering meant by the programmer, when he writes one clause after (under) another.

Definition 3.1 (Matching predicate (Laville)) Let $E=\left\{p^{1}: e_{1}, p^{2}: e_{2}, \ldots, p^{m}: e_{m}\right\}$ be a set of clauses. Let $V$ be a partial value. Value $V$ matches clause number $i$ in $E$ and we write match $(V, E)$, ff and only of the following two conditions are satisfied:

$$
p^{2} \preceq V \quad \text { and } \quad \forall j<i, p^{j} \# V
$$

Notice that the matching predicates defined by two distinct clause numbers are mutually exclusive, because $p^{j} \# V^{r}$ excludes $p^{j} \preceq V$.

Definition 3.2 (Pattern matching function)
Let $E$ be a set of clauses. For any partaal value $V$, we define the partial value match $(V, E)$ as follows:

- If value $V$ matches clause number i. we take $\operatorname{match}(V, E)=\sigma\left(e_{2}\right)$, where $\sigma$ is the substitution such that $\sigma\left(p^{2}\right)=V$.
- Otherwase, $V$ is a non-matching value and we take match $(V, E)=\Omega$.

It is easy to show that, given a set of clauses $E$, the function match( $V, E$ ) is a monotonic function over partial values. Other rules than the textual priority rule (definition 3.1) can be used to resolve ambiguity in patterns: in particular, the specificity rule [4]. We do not consider this alternative, since the textual priority ordering mimics the familiar "if condition $n_{1}$ then resull $_{1}$ else of condition $n_{2}$ then result ${ }_{2} \ldots$... construct. Furthermore, both schemes have the same expressive power [5].

Pattern matching expressions can also be written as ML programs. If a pattern variable does not appear in the corresponding result expression, then its name is unimportant and the pattern variable is replaced by the symbol "_". Consider, for instance, the set of clauses $E=\left\{\left(x_{1}\right.\right.$, true $)$ : true, (true, $x_{2}$ ): true, $\left(x_{3}, x_{4}\right)$ : false $\}$ and the function $\operatorname{or}(V)=$ match $(V, E)$. In ML syntax we have:

$$
\begin{aligned}
\operatorname{or}(V)=\text { match } V \text { with } & \\
& \rightarrow \text { true } \\
\quad \text {, true } & \rightarrow \text { true, } \\
\quad \text { _, }_{-} & \rightarrow \text { false }
\end{aligned}
$$

There is a finite number of partial values of type bool $\times$ bool. By definition 3.2, we get:

| $V$ | or $(V)$ |
| :---: | :---: |
| $\Omega(\Omega, \Omega)(\Omega$, false $)$ (true,$\Omega)($ false $\Omega)$ | $\Omega$ |
| $(\Omega$, true) (false, true) (true, true) <br> (true,false) | true |
| (false,false) | false |

Note that or is not the "parallel or" function por, since $\operatorname{por}(\Omega$, true $)=\operatorname{por}($ true,$\Omega)=$ true.

It may seem that the definition of pattern matching might be simplified by replacing condition $\underset{\sim}{\mathscr{O}}: \forall j<$ $i, p^{j} \# V$, by the new and less strict condition: $\forall j<$ $i, p^{3} 太 V$. Such a change is not advisable though, since it would imply loosing monotonicity. Consider, for instance, the pattern matching $\operatorname{match}(V, E)$ defined by:

```
match V with 1 - \Omega | _ - 2
```

The modified definition of the matching function would give us: $\operatorname{match}(\Omega, E)=2 太 \operatorname{match}(1, E)=\Omega$.

### 3.2 Pattern matching on vectors

When we examine the compilation of pattern matching in the next section, we shall consider "intermediate" matchings. In these matchings, the value to match and the patterns have a common prefix: the part of the value examined so far. More precisely, let $n$ be a positive integer, let $v_{1}, v_{2} \ldots v_{n}$ be $n$ variables and let $N$ be a linear partial term whose variables are $v_{1}, v_{2} \ldots v_{n}$. An intermediate matching is a pattern matching of the format:

$$
\begin{aligned}
& \text { match } N\left[v_{1} \backslash V_{1}, v_{2} \backslash V_{2}, \ldots v_{n} \backslash V_{n}\right] \text { with } \\
& N\left[v_{1} \backslash p_{1}^{1}, v_{2} \backslash p_{2}^{1}, \ldots v_{n} \backslash p_{n}^{1}\right] \rightarrow e_{1} \\
& \vdots \\
& \text { । } N\left[v_{1} \backslash p_{1}^{m}, v_{2} \backslash p_{2}^{m}, \ldots v_{n} \backslash p_{n}^{m}\right] \rightarrow e_{m}
\end{aligned}
$$

Obviously, the result of such a matching does not depend on the prefix $N$, but only on the partial values $V_{i}$ and patterns $p_{i}^{j}$ that are substituted for the variables $v_{i}$.

The $n$ partial values may be seen as a vector $\vec{V}=$ $\left(V_{1} V_{2} \ldots V_{n}\right)$, whereas each clause may be seen as a vector clause consisting of a number $i$, of a vector of $n$ patterns $<p^{i}$ and of a result term $e_{2}$. The set of clauses is replaced by a clause matrix $(P)$ written as:

$$
(P)=\left(\begin{array}{cc}
p_{1}^{1} & p_{2}^{1} \ldots p_{n}^{1}: e_{1} \\
p_{1}^{2} & p_{2}^{2} \ldots p_{n}^{2}: e_{2} \\
& \vdots \\
p_{1}^{m} & p_{2}^{m} \ldots p_{n}^{m}: e_{m}
\end{array}\right)
$$

In pattern $p_{d}^{i}$, integer $i$ is the clause or row number, whereas $d$ is the column index.

The instantiation and the incompatibility relation on patterns and values trivially extend to vectors:

$$
\left(p_{1} p_{2} \ldots p_{n}\right) \preceq\left(V_{1} V_{2} \ldots V_{n}\right)
$$

if and only if
for all $i$ in $1 \ldots n$, we have $p_{i} \preceq V_{i}$

$$
\begin{gathered}
\left(p_{1} p_{2} \ldots p_{n}\right) \#\left(V_{1} V_{2} \ldots V_{n}\right) \\
\text { if and only if }
\end{gathered}
$$

there exists $i$ in $1 \ldots n$ such that $p_{i} \# V_{i}$
Substitutions operate on vectors in the natural way: $\sigma(\vec{p})=\left(\sigma\left(p_{1}\right) \sigma\left(p_{2}\right) \ldots \sigma\left(p_{n}\right)\right)$. It is then straightforward to extend the definition of the matching predicate to vectors of partial values $\vec{V}$ and matrices of clauses $(P)$ :
$\operatorname{match}_{i}(\vec{V},(P))$ iff $\left\{\begin{array}{l}\vec{p}^{2} \preceq \vec{V} \\ \text { and } \\ \text { For all } j<i, \text { we have } \vec{p}^{3} \# \vec{V}\end{array}\right.$

$$
\mathcal{C}\left(\left(v_{1} v_{2} \ldots v_{n}\right),\left(\begin{array}{cc}
x_{1} & x_{2} \cdots x_{n}: e_{1} \\
p_{1}^{2} & p_{2}^{2} \cdots p_{n}^{2}: e_{2} \\
p_{1}^{m} & p_{2}^{m} \cdots p_{n}^{m}: e_{m}
\end{array}\right)\right)=e_{1}\left[x_{1} \backslash v_{1}, x_{2} \backslash v_{2}, \ldots x_{n} \backslash v_{n}\right]
$$

Figure 1: Compilation: first row is made of variables

$$
\mathcal{C}\left(\left(v_{1} v_{2} \ldots v_{n}\right),\left(\begin{array}{cc}
x^{1} & p_{2}^{1} \cdots p_{n}^{1}: e_{1} \\
x^{2} & p_{2}^{2} \cdots p_{n}^{2}: e_{2} \\
& \cdots \\
x^{m} & p_{2}^{m} \cdots p_{n}^{m}: e_{m}
\end{array}\right)\right)=\mathcal{C}\left(\left(v_{2} \ldots v_{n}\right),\left(\begin{array}{c}
p_{2}^{1} \cdots p_{n}^{1}: e_{1}\left[x^{1} \backslash v_{1}\right] \\
p_{2}^{2} \cdots p_{n}^{2}: e_{2}\left[x^{2} \backslash v_{1}\right] \\
\cdots \\
p_{2}^{m} \cdots p_{n}^{m}: e_{m}\left[x^{m} \backslash v_{1}\right]
\end{array}\right)\right)
$$

Figure 2: A column is made of variables

If vector $\vec{V}$ matches clause number $i$ in matrix $(P)$, then there exists a substitution $\sigma$ such that $\sigma\left(\vec{p}^{i}\right)=\vec{V}$ and take $\operatorname{match}(\vec{V},(P))=\sigma\left(e_{i}\right)$. Otherwise, vector $\vec{V}$ does not match any clause in $(P)$ and take $\operatorname{match}(\vec{V},(P))=\Omega$

### 3.3 Compilation

Compilation is defined as a function $\mathcal{C}$, from the set of pattern matching expressions to the set of nested simple pattern matching expressions. Simple matchings are a natural presentation of multiway-branches in ML: they are pattern matchings such that the patterns to be matched are non-nested or simple patterns.

Simple patterns $\quad p::=x \mid c x_{1} x_{2} \ldots x_{a} \quad p$ is linear
Function $\mathcal{C}$ takes two arguments. The first argument is a linear vector of $n$ variables $\vec{v}=\left(v_{1} v_{2} \ldots v_{n}\right)$ and the second one is a matrix of clauses $(P)$ of width $n$. A typical call to function $\mathcal{C}$ is thus written as $\mathcal{C}(\vec{v},(P))$. Vector $\vec{v}$ abstracts the input to the pattern matching. To see this, let $\vec{V}=\left(\begin{array}{ll}V_{1} & V_{2} \ldots V_{n}\end{array}\right)$ be any vector of partial values of size $n$. We define $\mathcal{C}\left(\left(\begin{array}{ll}V_{1} & V_{2}\end{array} \ldots V_{n}\right),(P)\right)$ as $\mathcal{C}\left(\left(v_{1} v_{2} \ldots v_{n}\right),(P)\right)\left[v_{1} \backslash V_{1}, v_{2} \backslash V_{2}, \ldots v_{n} \backslash V_{n}\right]$. Matrix $(P)$ represents the unchecked subparts of the initial patterns. Given a set of clauses $E=\left\{p^{i}: e_{i} \mid 1 \leq\right.$ $i \leq m\}$, compilation is started by:

$$
\mathcal{C}\left((v),\left(\begin{array}{c}
p^{1}: e_{1} \\
\vdots \\
p^{m}: e_{m}
\end{array}\right)\right)
$$

Where $v$ is a fresh variable and function $\mathcal{C}$ is defined as follows:

1. If vector $\vec{v}$ is of length zero, then the matching process is over. Either the clause matrix is empty
and matching fails:

$$
\mathcal{C}((),())=\Omega
$$

Otherwise, there is one or more clauses in $(P)$ and the result expression of the first clause is the result of the whole matching:

$$
\left.\mathcal{C}(0),\left(\begin{array}{c}
: e_{1} \\
\vdots \\
: e_{m}
\end{array}\right)\right)=e_{1}
$$

2. If the first row of patterns only contains variables, then matching successes and returns the first expression as its result (see figure 1).
3. If one column of patterns --the first one, for instance- contains only variables, then the corresponding variable in vector $\vec{v}$ does not need to be examined (see figure 2 ).
4. If none of the rules above apply, then matching can only progress by examining one of the variables $v_{i}$. Until otherwise stated, the choice of this variable is arbitrary and the result of compilation a priori depends on this choice. When variable $v_{i}$ is chosen, we shall say that matching is done by following index $i$. To be more specific, assume that the first variable, $v_{1}$, is chosen. Let $\Sigma=\left\{c_{k} \mid 1 \leq k \leq z\right\}$ be the set of the root constructors of the patterns in the first column of $(P)$. To each constructor $c_{k}$, of arity $a_{k}$, a new matrix $\left(P_{k}\right)$ is associated. Matrix $\left(P_{k}\right)$ contains the clauses of $(P)$ that may match a vector of values of the format $\left(\left(c_{k} U_{1} \ldots U_{a_{k}}\right) V_{2} \ldots V_{n}\right)$. More precisely, the following table shows how each row of the new matrix is constructed:

| $p_{1}^{2}$ | row of $P_{k}$ |
| :---: | :---: |
| $x_{1}$ | $-\cdots-p_{2}^{i} \cdots p_{n}^{i}: e_{i}\left[x_{1} \backslash v_{1}\right]$ |
| $c_{k} q_{1}^{i} \cdots q_{a_{k}}^{i}$ | $q_{1}^{i} \cdots q_{a_{k}}^{i} p_{2}^{i} \cdots p_{n}^{i}: e_{i}$ |
| $c q_{1}^{i} \cdots q_{a}^{i}\left(c \neq c_{k}\right)$ | row deleted in $\left(P_{k}\right)$ |

Figure 3: Compilation: the general case

If the set of constructors $\Sigma$ is not a complete signature, then some clauses in matrix $(P)$ may match a value vector of the format $\left(\left(c U_{1} \ldots U_{a}\right) V_{2} \ldots V_{n}\right)$, where $c$ is a constructor that does not belong to $\Sigma$. To match these cases, a default matrix $\left(P_{d}\right)$ is built:

| $p_{1}^{2}$ | row of $P_{d}$ |
| :---: | :---: |
| $x_{1}$ | $p_{2}^{2} \cdots p_{n}^{2}: e_{i}\left[x_{1} \backslash v_{1}\right]$ |
| $c q_{1}^{2} q_{2}^{2} \ldots q_{a}^{2}$ | row deleted in $\left(P_{d}\right)$ |

The original ordering of the rows is preserved in the new matrices $\left(P_{k}\right)$ and $\left(P_{d}\right)$, so that the clauses are arranged by increasing number. Compilation is then defined by figure 3 (in this figure, the $w_{\text {g }}$ are fresh variables).
Compilation always terminates, since the size of the clause matrix $(P)$ strictly decreases at each recursive call to function $\mathcal{C}$. To see this, consider the lexicographic ordering on the pairs of positive integers ( $N_{c}(P), N_{v}(P)$ ), where $N_{c}(P)$ and $N_{v}(P)$ are the sums for all the patterns in $(P)$ of the $n_{c}$ and $n_{v}$ functions, defined by:

$$
\begin{aligned}
& \left\{\begin{array}{rl}
n_{c}(x) & =0 \\
n_{c}\left(c p_{1} \ldots p_{a}\right) & =1+n_{c}\left(p_{1}\right)+\cdots+n_{c}\left(p_{a}\right) \\
n_{v}(x) & =1 \\
\left\{\begin{aligned}
n_{v}\left(c p_{1} \ldots p_{a}\right) & =0
\end{aligned}\right.
\end{array} . \begin{array}{rl}
\end{array}\right)
\end{aligned}
$$

Now, consider the or function of section 3.2. The initial call to function $\mathcal{C}$ is given at the top of figure 4. Then, there are two possible compilations, depending on whether matching proceeds by examining variable $x$ first or variable $y$ first. The rest of the compilations is easy and we get the two compiled expressions $\mathcal{C}_{3}(v)$ and $\mathcal{C}_{2}(v)$ as given in figure 4. These two compilations are syntactically different. They are also semantically different When applied to value $V=(\Omega$, true $)$, the automata generated by compilation schemes $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ give different answers $\left(\mathcal{C}_{1}(V)=\Omega\right.$ and $\mathcal{C}_{2}(V)=$ true $=$ or $\left.(V)\right)$. For any other partal value $V$, we get $\mathcal{C}_{1}(V)=\mathcal{C}_{2}(V)=o n(V)$. Therefore, automaton $\mathcal{C}_{1}(v)$ does not correctly implement function or, whereas automaton $\mathcal{C}_{2}(v)$ does

## 4 Correct compilation

### 4.1 Partial correctness

As shown by the $\mathcal{C}_{1}$ example above, our compilation scheme may not be correct. It satisfies a partial correctness property, though: when the compiled automaton gives a result that is strictly more defined than $\Omega$, this result is correct.

Lemma 4.1 (Partial correctness) Let $E$ be a set of clauses. Consider any complation of the matching by E. During this complation, for any call to function $\mathcal{C}$ and any partıal value vector $\left(V_{1} V_{2} \ldots V_{n}\right)$, the followng equaluty holds:

$$
\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right) \preceq \operatorname{match}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)
$$

Proof: By induction on the definition of compilation. We only give the interesting case. In the case of the inductive step 4, suppose that compilation progresses by a simple matching on variable $v_{1}$. Then, value $\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)$ is:

```
match \(V_{1}\) with
    \(\mathrm{c}_{1} \mathrm{w}_{1} \ldots \mathrm{wa}_{1} \rightarrow \mathcal{C}\left(\left(\mathrm{w}_{1} \ldots \mathrm{wa}_{1} V_{2} \ldots V_{n}\right),\left(P_{1}\right)\right)\)
\(\mathrm{c}_{\mathbf{z}} \mathrm{w}_{\mathbf{1}} \ldots \mathrm{wa}_{\mathbf{z}} \rightarrow \mathcal{C}\left(\left(\mathrm{w}_{1} \ldots \mathrm{wa}_{\mathbf{z}} V_{2} \ldots V_{n}\right),\left(P_{z}\right)\right)\)
\(1-\quad \rightarrow \mathcal{C}\left(\left(V_{2} \ldots V_{n}\right),\left(P_{d}\right)\right)\)
```

There are now three cases. In the case where value $V_{1}$ equals $\Omega$, then the simple matching on $V_{1}$ fails. That is, we get $\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)=\Omega$, where value $\Omega$ is always less defined than match $\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)$.

If $V_{1}=c U_{1} \ldots U_{a}$, where constructor $c$ is not the root constructor of one of the patterns in the first column of $(P)$, then value $V_{1}$ matches the default clause of the simple matching and we get:

$$
\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)=\mathcal{C}\left(\left(V_{2} \ldots V_{n}\right),\left(P_{d}\right)\right)
$$

It follows, by induction hypothesis:

$$
C\left(\left(F_{1} V_{2} \quad . V_{n}\right),(P)\right) \preceq \operatorname{match}\left(\left(V_{2} . . V_{n}\right),\left(P_{d}\right)\left[v_{1} \backslash V_{1}\right]\right)
$$

$$
\mathcal{C}\left(\left(c^{\prime}\right),\left(\begin{array}{l}
- \text { true: true } \\
\text { true, }, \text { true } \\
-, \quad: \text { false }
\end{array}\right)\right)=\text { match } v \text { with } x, y \rightarrow C\left((x y),\left(\begin{array}{ll}
- & \text { true: true } \\
\text { true } & \text { :true } \\
- & - \\
- & \text { false }
\end{array}\right)\right)
$$

match $v$ with

$$
x, y \rightarrow \text { (match } x \text { with }
$$

$$
\text { true } \rightarrow \mathcal{C}\left((y),\left(\begin{array}{ll}
\text { true }: \text { true } \\
- & : \text { true } \\
- & : \text { false }
\end{array}\right)\right)
$$

$$
\left.1-\quad \rightarrow \mathcal{C}\left((y),\left(\begin{array}{c}
\text { true }: \text { true } \\
- \\
: \text { false }
\end{array}\right)\right)\right)
$$

$$
\vdots
$$

$$
\begin{aligned}
& \text { match } v \text { with } \\
& x, y \rightarrow \text { (match y with } \\
& \text { true } \rightarrow \mathcal{C}\left((x),\left(\begin{array}{ll}
- & : \text { true } \\
\text { true }: \text { true } \\
- & : \text { false }
\end{array}\right)\right) \\
& \left.1-\quad \rightarrow \mathcal{C}\left((x),\left(\begin{array}{cc}
\text { true }: \text { true } \\
- & : \text { false }
\end{array}\right)\right)\right) \\
& \text { : } \\
& \mathcal{C}_{2}(v)=\left\{\begin{array}{cc}
\text { match } v \text { with } \\
x, y \rightarrow & \rightarrow \text { (match y with } \\
\text { true } & \rightarrow \text { true } \\
1-\quad & \rightarrow \text { (match } x \text { with } \\
& \text { true } \rightarrow \text { true } \\
& 1-\quad \rightarrow \text { false )) }
\end{array}\right.
\end{aligned}
$$

Figure 4: The two possible compilations of function or

Moreover, for any clause $\vec{p}^{2}: e_{i}$ in matrix $(P)$, we have:

$$
\left.\begin{array}{l}
\left(p_{1}^{2} p_{2}^{i} \ldots p_{n}^{i}\right) \preceq\left(\left(c U_{1} \ldots U_{a}\right) V_{2} \ldots V_{n}\right) \\
\text { if and only if } \\
p_{1}^{2}=x^{i} \text { and }\left(p_{2}^{i} \ldots p_{n}^{2}\right) \preceq\left(V_{2} \ldots V_{n}\right) \\
\left(p_{1}^{i} p_{2}^{i} \ldots p_{n}^{i}\right) \#\left(\left(c U_{1} \ldots U_{a}\right) V_{2} \ldots V_{n}\right) \\
\text { if and only if }
\end{array}\right\} \begin{gathered}
p_{1}^{i}=c^{\prime} q_{1}^{i} \ldots q_{a^{\prime}}^{i} \\
\text { or } \\
p_{1}^{2}=x^{2} \text { and }\left(p_{1}^{2} \ldots p_{n}^{2}\right) \#\left(V_{2} \ldots V_{n}\right)
\end{gathered}
$$

Thus, for a vector of partial values $\vec{V}$ whose first component is of the format $V_{1}=c U_{1} \ldots U_{a}$, matchings by matrices $(P)$ and $\left(P_{d}\right)$ are equivalent. In symbols, partial values match $\left(\left(\left(c U_{1} \ldots U_{a}\right) V_{2} \ldots V_{n}\right),(P)\right)$ and $\operatorname{match}\left(\left(V_{2} \ldots V_{n}\right),\left(P_{d}\right)\left[v_{1} \backslash c U_{1} \ldots U_{a}\right]\right)$ are the same. Therefore:

$$
\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right) \preceq \operatorname{match}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)
$$

Finally, if partial value $V_{1}$ admits a root constructor $c_{k}$, where constructor $c_{k}$ is the root constructor of a pattern in the first column of $(P)$, then partial value $V_{1}=c_{k} U_{1} \ldots U_{a_{k}}$ matches the clause with simple pattern $c_{k} w_{1} \ldots w_{a_{k}}$. That is, value $\mathcal{C}\left(\left(\left(c_{k} U_{1} \ldots\left(V_{a_{k}}\right) V_{2} \ldots V_{n}\right),(P)\right)\right.$ reduces to value
$\mathcal{C}\left(\left(U_{1} \ldots U_{a_{k}} V_{2} \ldots V_{n}\right),\left(P_{k}\right)\right)$. By induction hypothesis, we get the inequality $\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right) \preceq$ $\operatorname{match}\left(\left(U_{1} \ldots U_{a_{k}} V_{2} \ldots V_{n}\right),\left(P_{k}\right)\left[v_{1} \backslash V_{1}\right]\right)$. Whereas, by expanding definitions as we already did above, values match $\left(\left(\left(c_{k} U_{1} \ldots U_{a_{k}}\right) V_{2} \ldots V_{n}\right),(P)\right)$ and $\operatorname{match}\left(\left(U_{1} \ldots U_{a_{k}} V_{2} \ldots V_{n}\right),\left(P_{k}\right)\left[v_{1} \backslash V_{1}\right]\right)$ are equal. Hence the result:

$$
\mathcal{C}\left(\left(V_{1} V_{2} \ldots V_{n}^{r}\right),(P)\right) \preceq \operatorname{match}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)
$$

### 4.2 Total correctness

We now aim at improving the compilation scheme above, so that it yields a correct compilation, if possible. A compilation is correct, if and only if, for every call to function $\mathcal{C}$ and every partial value vector ( $V_{1} V_{2} \ldots V_{n}$ ), we have:

$$
C\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)=\operatorname{match}\left(\left(V_{1} V_{2} \ldots V_{n}\right),(P)\right)
$$

Totally correct automata enjoy optimality properties as defined by other authors. First, the automaton produced by a correct compilation is a "lazy algorithm" in the sense of A. Laville [5]. This means that such an automaton only explores a minimal prefix of
the recognized value. Furthermore, a given subpart mside this prefix is never looked at twice. A correct automaton hence enjoy an optimal run-time behavior: it performs a minimal number of tests on matched values. Correct automata also satisfy the other optimality property defined in [8]: they fail to produce a result only on the "minimal" set of the partial values that are not defined enough to match a clause in the initial set $E$ (i.e., a correct automaton gives $\Omega$ as a result, if and only if the result of the matching by $E$ is $\Omega$ ).

The proof of partial correctness carries almost unchanged to total correctness, except for the inductive step 4. If simple pattern matching is performed on the first value component, $V_{1}$, and if $V_{1}$ is $\Omega$, then we get: $\mathcal{C}\left(\left(\Omega V_{2} \ldots V_{n}\right),(P)\right)=\Omega$. However, it may be the case that $\operatorname{match}\left(\left(\Omega V_{2} \ldots V_{n}\right),(P)\right) \succ \Omega$, if the whole value vector ( $\Omega V_{2} \ldots V_{n}$ ) matches a clause in matrix $(P)$. A correct compiler must avoid this situation whenever possible.

Definition 4.2 (Directions) Let $(P)$ be a clause matrix of width $n$. The column index $d$ such that $1 \leq d \leq n$ is a direction for the matching by $(P)$, written $d \in \operatorname{Dir}(P)$, iff the following two conditions are met:

1. $\operatorname{match}((\Omega \Omega \ldots \Omega),(P))=\Omega$.
2. There is no vector $\vec{V}=\left(V_{1} V_{2} \ldots V_{n}\right)$, such that $\vec{V}$ matches a clause in $(P)$ and $V_{d}=\Omega$.

Directions are computable from the matrix $(P)$. Consider the set $D \imath r_{i}(P)$ of directions for the matchong by clause number $i$, defined as:

$$
\operatorname{Dir}_{2}(P)=\left\{d \in[1 \ldots n] \mid \operatorname{match}_{\imath}(\vec{V},(P)) \Rightarrow V_{d} \succ \Omega\right\}
$$

Then $\operatorname{Dir}(P)$ is the intersection of the $\operatorname{Dir}_{i}(P)$ sets. For instance, at the critical compilation step for function or, we have:

$$
(P)=\left(\begin{array}{ll}
- & \text { true: true } \\
\text { true } & - \\
- & \text { true } \\
- & \text { :false }
\end{array}\right)
$$

and

| match $_{1}(\vec{V},(P)) \Leftrightarrow$ true $\preceq V_{2}$ |
| :--- |
| match $_{2}(\vec{V},(P)) \Leftrightarrow$ true $\preceq V_{1} \wedge$ true $\# V_{3}$ |
| match $_{3}(\vec{V},(P)) \Leftrightarrow$ true $\# V_{1} \wedge$ true $\# V_{3}$ |

Thus, we get $\operatorname{Dur}_{1}(P)=\{2\}, \operatorname{Dir}_{2}(P)=\{1,2\}$, $\operatorname{Dir}_{3}(P)=\{1,2\}$ and $\operatorname{Dir}(P)=\{2\}$. See section 5 for a full description of the computation of directions.

Directions gives us a method to test the correctness of a given compilation:

Lemma 4.3 (Correct compilation) Let $E$ be a set of clauses. A grven complatron of the matchang by $E$ is correct, of and only if, at each inductove step 4 of the complation, there exists a direction d in the clause matrix $(P)$ and complation goes on by a simple matching on variable $v$.
Proof: See the discussion at the beginning of this section.

For instance, in the case of the or function, compilation $\mathcal{C}_{2}$ can be stated as correct without testing it on all partial values, since it always performs simple matchings by following directions.

Checking directions only gives a sufficient condition of correctness because this method ignores result expressions. Consider, for instance, the following matching on pairs of booleans:
match $v$ with true, true $\rightarrow$ true $l_{\text {_ }} \rightarrow \Omega$
After a first trivial inductive step the compilation of such a matching amounts to:

$$
\begin{aligned}
& \text { match v with } \\
& \qquad \mathrm{x}, \mathrm{y} \rightarrow \mathcal{C}\left((x y),\left(\begin{array}{ll}
\text { true } & \text { true : true } \\
- & - \\
-
\end{array}\right)\right)
\end{aligned}
$$

At this stage, the set of directions $\operatorname{Dir}(P)$ is empty. Namely, we have $\operatorname{match}_{2}(\vec{V},(P)) \Leftrightarrow$ true \# $V_{1} \vee$ true $\# V_{2}$ and thus $D i r_{2}(P)=\emptyset$. However, both possible compilations are correct. Indeed, it is not important whether $\Omega$ is associated to any value $\vec{V}$ matching clause number 2 because it is recognized to match clause number 2 -as it is always the case for $\vec{V}=$ (false false), for instance-, or because simple pattern matching fails on one its subcomponents - as it is the case for $\vec{V}=(\Omega$ false $)$, when left-to-right subcomponent matching order is chosen---.

We deliberately ignore such correct compilations. If the result expressions of the clauses were full ML expressions, and that we identified -a bit quicklyvalue $\Omega$ and the non-termination of a ML program, then it would become undecidable to know whether the value of an expression is $\Omega$ or not.

### 4.3 Finding a correct compilation

Some pattern matching expressions cannot be compiled correctly. Consider a variation on the classical example due to G. Berry, as given in figure 5. Sixteen different compilations are possible. None of them is correct To see this, it is not necessary to completely construct all these automata. The correctness criterion of lemma 4.3 applies at automaton construction time and can be used to prume the search for a correct automaton. Such a limited enumeration is still

```
let G x y z = match (x, (y,z)) with
    (true,(false,_)) - 1
| (false,(_,true)) -> 2
| (_,(true,false)) -> 3
```

Figure 5: Berry's example
not satisfying, since a pattern matrix with more than one direction may imply some backtracking.

Fortunately, discovering one matrix without a direction during any compilation attempt is sufficient to ensure that there is no correct compilation at all. Due to lack of space, we only sketch the proof of this result.

Proposition 4.4 Let $E$ be a set of clauses. The following compilation algorithm yeelds an automaton correctly amplementing the matching by $E$ whenever possible.

Compile pattern matching as described in section 3.3. At the inductive step 4, consider the drrections for the matching by matrix $(P)$. Two cases are possible:

1. If matrix $(P)$ does not have a direction, then fatl.
2. If matrix $(P)$ has directions, then choose one and continue compilation by a simple matching following this direction.

Proof: If condition 1 above occurs, then it can be shown that matching by $E$ is not a sequential function in the sense of Kahn-Plotkin (see [3, 2]). Whereas any automaton produced by our method is sequential in this sense.

## 5 Implementation

Given a clause matrix $(P)$, a clause number $i$ and a column index $d$, we want to know whether $d$ belongs to $\operatorname{Dr}_{i}(P)$ or not. This can be expressed as the unused match case detection problem: is the last clause of the matrix $\left(Q_{(d, i)}\right)$ below satisfiable or not? That is, does there exist a value vector $\vec{V}$ such that match $_{2}\left(\vec{V},\left(Q_{(d, r)}\right)\right)$ holds ? The matrix $\left(Q_{(d, v)}\right)$ is the submatrix of $(P)$ obtained by deleting column $d$ and the clauses after clause $i$ :

$$
\left(Q_{(d, i)}\right)=\left(\begin{array}{cc}
p_{1}^{1} \ldots p_{d-1}^{1} & p_{d+1}^{1} \cdots p_{n}^{1}: e_{\downarrow} \\
p_{1}^{2} \ldots p_{d-1}^{2} & p_{d+1}^{2} \cdots p_{n}^{2}: e_{2} \\
& \vdots \\
p_{1}^{i} \ldots p_{d-1}^{i} & p_{d+1}^{i} \cdots p_{n}^{2}: e_{2}
\end{array}\right)
$$

Lemma 5.1 Lct $(P)$ be a clause mathix Let i be a clause number and $d$ be a column inder in matrix $(P)$. Let $\left(Q_{(d, a)}\right)$ be as described above. Then, index $d$ is not a direction for matrix $(P)$, if and only If pattern $p_{d}^{2}$ is a variable and the last clause of ma$\operatorname{trax}\left(Q_{(d, r)}\right)$ is satisfiable.

Proof: In the case where $p_{d}^{2}=c q_{1} \ldots q_{a}$ is not a variable, then any value vector $\left(V_{1} V_{2} \ldots V_{n}\right)$ matching clause number $i$ in matrix $(P)$ is such that component $V_{d}$ is an instance of pattern $c q_{1} \ldots q_{a}$. Therefore, we get $V_{d} \succ \Omega$. Otherwise, let $V_{1}, \ldots, V_{d-1}, V_{d+1}, \ldots$, $V_{n}$ be any $n-1$ partial values. The following equality can be shown by expanding definitions:

$$
\begin{gathered}
\operatorname{match}_{i}\left(\left(V_{1} \ldots V_{d-1} \Omega V_{d+1} \ldots V_{n}\right),(P)\right) \\
\operatorname{match}_{i}\left(\left(V_{1} \ldots V_{d_{1}} V_{d+1} \ldots V_{n}\right),\left(Q_{(d, i)}\right)\right)
\end{gathered}
$$

$\square$
We now give an algorithm to solve the unused match case detection problem in the general case. Given a pattern matrix $(P)$, of size $n$ by $m$, the algorithm below computes the truth value of the formula $\mathcal{F}(P)=\exists \vec{V}$ match $_{m}(\vec{V},(P))$. This algorithm closely follows the compilation algorithm itself:

1. If the rows of matrix $(P)$ are empty, or if its first row contains only variables, then the value of $\mathcal{F}(P)$ depends on the number $m$ of rows in $(P)$. If $m=1$, then $\mathcal{F}(P)=$ true, since any instance of $\vec{p}^{1}$ matches the last (and only) clause of matrix $(P)$. Otherwise, $\mathcal{F}(P)=$ false.
2. In all the other cases, let us choose a column index. Suppose that index 1 is chosen. Let $\Sigma$ be the set of the root constructors of the patterns in the first column of $(P)$. To each constructor $c_{k}$ in $\Sigma$, a new pattern matrix $\left(P_{k}\right)$ is associated as in the compilation of pattern matching (section 3.3). If set $\Sigma$ is not a complete signature or if $\Sigma$ is the empty set, then a default matrix $\left(P_{d}\right)$ is also considered. There are two subcases:
(a) If $p_{1}^{m}=x$, then let $\vec{V}$ be a value vector satisfying the last clause of $(P)$. If $V_{1}$ has a root constructor, then the matching by matrix $(P)$ is equivalent to the matching by one of the matrices $\left(P_{k}\right)$ or $\left(P_{d}\right)$. Otherwise, if $V_{1}=\Omega$, then, because the matching predicate is monotonic, any value vector $\vec{U}=\left(\begin{array}{ll}U_{1} & V_{2} \ldots V_{n}\end{array}\right)$ such that $U_{1} \succ \Omega$ matches clause $m$ as $\vec{V}$ does. Therefore, $\mathcal{F}(P)$ is true, if and only at one at least of the formulas $\mathcal{F}\left(P_{1}\right), \mathcal{F}\left(P_{2}\right), \ldots \mathcal{F}\left(P_{z}\right)$ or $\mathcal{F}\left(P_{d}\right)$ is.
(b) If $p_{1}^{m_{2}} \succ x$, then let $c$ be the root constructor of $p_{1}^{m}$. If $c$ belongs to $\Sigma$, then there exists a matrix $\left(P_{k}\right)$ such that $\mathcal{F}(P)=\mathcal{F}\left(P_{k}\right)$. Otherwise, we have $\mathcal{F}(P)=\mathcal{F}\left(P_{d}\right)$.

Regarding the efficiency of this algorithm, it can be observed that the number of calls to function $\mathcal{F}$ is bounded by the number of calls to function $\mathcal{C}$, when compilation is done by making the same choices at critical steps. This upper bound is reached when $\mathcal{F}(P)$ is false and when the last row of matrix $(P)$ contains only variables. As shown by the example given in the appendix, the number of calls to function $\mathcal{C}$ can be quite large. Although we do not know whether this upper bound is indeed reached or not in the worst cases, experiments showed us that a naive implementation of function $\mathcal{F}$ may lead to important computations. Fortunately, we were able to avoid this misbehavior by using the following three heuristics:

1. Matrix $(P)$ itself can be reduced. Let $\vec{p}^{i}$ and $\vec{p}^{3}$ be two rows inside matrix $(P)$ (i.e. $i<m$ and $j<m$ ), such that $\vec{p}^{2} \preceq \vec{p}^{3}$. For any value vector $\vec{V}$ such that $\vec{p}^{2} \# \vec{V}$, we necessarily have $\vec{p}^{3} \# \vec{V}$. That is, pattern vector $\vec{p}^{j}$ is useless for the computation of $\mathcal{F}(P)$ and matrix $(P)$ can be simplified by only retaining the pattern rows that are minimal for the definition ordering. This simplification of matrix $(P)$ is particularly worthwhile when some pattern row contain a lot of variables.
2. When there is a default matrix $\left(P_{d}\right)$, it is tested first. This amounts to making the assumption that, if there exists a value vector satisfying the last row of $(P)$, then its components are likely not to appear inside matrix $(P)$.
3. We also attempt to minimize the size and number of the matrices $\left(P_{1}\right),\left(P_{2}\right) \ldots\left(P_{z}\right)$, by a good choice of the column to examine at step 2(a). For each column, characterized by its index $i$, let $z(i)$ be the number of different root constructors in column $i$ and $v(i)$ be the number of variables in column $i$. Let then $r(i)$ be the total number of rows in the matrices $\left(P_{1}\right)$, $\left(P_{2}\right) \ldots\left(P_{z(2)}\right)$, we have $r(i)=z(i) v(i)+m$ or $r(i)=z(i) v(i)+m-v(i)$, depending on whether there is a default matrix $\left(P_{d}\right)$ or not. We select a column with a minimal $r(i)$. If there are several columns such that $r(i)$ is minimal, then we favor one with a minimal number of different root constructors $z(i)$. Other size measures have been tested, including matrices surfaces (number of rows $\times$ number of columns) and the function $N_{c}$ of section 3.3. Choosing a good measure is
not easy and this heurnstic is less efficient than the two others.

Regarding the efficiency of the computation of set $\operatorname{Dir}(P)$, it is usually not necessary to compute all the $D r_{2}(P)$ sets First, if there is a column in matrix $(P)$ which contains no variable, then, by lemma 5.1, the index of this column is a direction. Such a drection is an obvious direction and knowing just one direction is enough to apply the compilation algorithm of proposition 4.4. Otherwise, there is no obvious direction in matrix $(P)$ and set $\operatorname{Dir}(P)$ has to be tested for emptyness. If index $d$ does not belong to $\operatorname{Dir}_{i}(P)$, then, for any other clause number $j$, we need not check whether index $d$ belongs to $\operatorname{Dir}_{j}(P)$ or not, since we already know that $d$ is not a direction for the whole matrix $(P)$. Of course, the $\operatorname{Dir}_{i}(P)$ sets are examined following increasing clause numbers $i$, so that index checkings are avoided when matrices $Q_{(d, i)}$ are large. That is, we compute $\mathcal{D}_{m}=\operatorname{Dir}(P)$, where $\mathcal{D}_{1}=\operatorname{Dir}_{1}(P)$ and $\mathcal{D}_{i+1}=\left\{d \in \mathcal{D}_{i} \mid d \in \operatorname{Dir}_{i+1}(P)\right\}$. If matrix $(P)$ has no direction, then there exists a clause number $\max$, such that $\mathcal{D}_{\max } \neq \emptyset$ and $\mathcal{D}_{\max +1}=\emptyset$. In such case, the column indices in $\mathcal{D}_{\text {max }}$ are called partial directions.

The other approaches to the compilation of lazy pattern matching $[5,8]$ involve the explicit computation of the set of value vectors matching the clauses of matrix $(P)$. Let $\mathcal{M}$ be this set. We have $\mathcal{M}=$ $\bigcup_{i=1}^{m} \mathcal{M}_{i}$, where $\mathcal{M}_{i}=\left\{\vec{V} \mid \operatorname{match}_{i}(\vec{V},(P))\right\}$. In [5] set $\mathcal{M}$ is described by its minimal generators, that is, by the subset of its least defined elements. In [8] each set $\mathcal{M}_{i}$ is represented by a normalized constrained pattern that can be seen as the disjunctive normal form of the characteristic proposition

$$
\mathcal{X}_{i}\left(V_{1}, V_{2}, \ldots V_{n}\right)=\left(\bigwedge_{j=1}^{i-1} V_{k=1}^{n} p_{k}^{3} \# V_{k}\right) \bigwedge\left(\bigwedge_{k=1}^{n} p_{k}^{i} \preceq V_{k}\right)
$$

Direct implementation of these two representations for set $\mathcal{M}$ leads to data structures whose size grow exponentrally with the size of the input matrix $(P)$. Our approach, by directly computing directions, avoids such an exponential space behavior.

## 6 Conclusion

We have described a compiler for lazy pattern matching that produces a correct automaton whenever there exists one. When there are several correct automata, our compiler attempts to generate one with a reasonable size, using heuristic 3 above. When there
is no correct automaton, the compiler issues a warning message and outputs a partially correct automaton (in the sense of section 4.1), still attempting to minimize its size, using partial directions and heuristic 3 . Our work resulted in the first integration of the correct compilation of lazy pattern matching in a lazy ML compiler [6]. Furthermore, we developed a simple presentation of the theory of lazy pattern matching.

In some rare occasions, the heuristics we use can be defeated and the size of the automaton gets very large - In fact, as shown in the appendix, some set of clauses defeat any heuristic-- Other compilers producing tree-like pattern matching automata, such as SML-NJ or CAML [11], face the same problem. In $[1,10]$ an alternative technique of compilation is presented: pattern matching expressions are compiled using a backtracking construct. This technique leads to matching automata whose size is linear in the size of the input program. A similar approach may be possible in our case, but it would probably imply loosing the optimal run-time behavior.

In a preliminary version of this work, we suggested the following other direction for further work: analyze the complexity of the unused match case detection problem. We recently learned that this problem is NP-complete [9].

## Acknowledgements

I thank X. Leroy for his editorial help and A. Suárez for fruitful discussions.

## References

[1] L. Augustsson, "Compiling pattern matching". FPCA'85.
[2] G. Huet, J.-J. Lévy, "Call by Need Computations in Non-Ambiguous Linear Term Rewriting Systems". INRIA, technical report 359, 1979.
[3] G. Kahn, G. Plotkin, "Domaines concrets", Rapport IRIA Laboria 336, 1978.
[4] R. Kennaway, "The Specificity Rule for Lazy Pattern Matching in Ambiguous Term Rewriting Systems". ESOP'90.
[5] A. Laville, "Comparison of Priority Rules in Pattern Matching and Term Rewriting". Journal of Symbolic Computation (1991) 11, 321-347.
[6] L. Maranget, "GAML: A Parallel Implementation of Lazy ML". FPCA'91.
[7] R. Milner, M. Tofte, R. Harper, "The Definition of Standard ML". The MIT Press.
[8] L. Puel, A. Suárez, "Compiling Pattern Matching by Term Decomposition". LFP'90.
[9] R.C. Sekar, R. Ramesh and I.V. Ramakrishnan, "Adaptive Pattern Matching". ICALP'92.
[10] P. Wadler, chapter on the compilation of pattern matching in: S. L. Peyton Jones, "The Implementation of Functional Programming Languages". Prentice-Hall, 1987.
[11] P. Weis, "The CAML Reference manual" Version 2.6.1, INRIA Technical Report 1211990.

## Appendix

Let $n$ be a strictly positive integer. Let $I_{n}$ be the identity matrix of size $n$ by $n$. And let then $A_{n}$ be the pattern matrix of size $n(n-1) / 2$ by $n$ inductively defined as:

$$
A_{1}=0 \quad A_{n}=\left(\begin{array}{cc|c}
22 \ldots 2 & --\cdots- \\
\hline I_{n-1} & A_{n-1}
\end{array}\right)
$$

For instance, we have:

$$
A_{5}=\left(\begin{array}{cccccccccc}
2 & 2 & 2 & 2 & - & - & - & - & - & - \\
1 & - & - & - & 2 & 2 & 2 & - & - & - \\
- & 1 & - & - & 1 & - & - & 2 & 2 & - \\
- & - & 1 & - & - & 1 & - & 1 & - & 2 \\
- & - & - & 1 & - & - & 1 & - & 1 & 1
\end{array}\right)
$$

Given any column index $i$ in $A_{n}$, there are $n-1$ pattern rows in $A_{n}$ whose component number $i$ is 1 or _. Thus, as any two pattern rows in $A_{n}$ are incompatible, any value vector whose component number $i$ is 1 may possibly match $n-1$ pattern rows. This is also true for any value vector whose component number $i$ is 2 . Let us call $\mathcal{P}$ this property. As a consequence of property $\mathcal{P}$, whichever column index is chosen, the critical compilation step 4 will yield at least two recursive calls to function $\mathcal{C}$. And the pattern matrix given as an argument in these recursive call will have $n-1$ rows.

Now, apply the $\mathcal{C}$ compilation scheme to matrix $A_{n}$, not trying to produce a totally correct automaton (i.e., generate all possible automata). Because all intermediate pattern matrices that arise while compiling $A_{n}$ enjoy a property similar to property $\mathcal{P}$, it can be shown that the size of the generated automata. is greater than $2^{n}$. That is, if $N=n^{2}(n-1) / 2$ is the size of $A_{n}$, the size of these automata grows at least as $2^{\sqrt[3]{N}}$.


[^0]:    *INRIA Rocquencourt. This work was partially funded by DRET under grant $N^{\circ} 8780814$.

    Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
    1992 ACM LISP \& F.P.-6/92/CA
    © 1992 ACM 0-89791-483-X/92/0006/0021...\$1.50

