
Analysis of Recursive Types in Lisp-1ike Languages

Edward Wang Paul N. Hiljinger

Computer Science Division

University of California

Berkeley, CA 94720

edward@CS. Berkeley. EDU

hilf ingr@CS. Berkeley. EDU

Abstract

We introduce a new algorithm to analyze recursive,

structured types. It derives information from object

uses (accesser functions with type checking), as well as

from object allocation. The type description is a form

of graph grammar and is naturally finite even in the

presence of loops. The intended use of the algorithm is

to discover and remove unnecessary type checks, but it

can be augmented to provide alias information as well.

1 Introduction

We are interested in the behavior of programs in an

untyped language with data structures constructed from

records containing pointers, typified by Lisp programs

that manipulate structures built from cons cells. In this

paper, we will introduce a new algorithm to analyze such

programs. Unlike many type-inference algorithms, it is

designed to work on partial programs (with or without

declarations) and to produce partial inferences. The

main goal is to remove unnecessary type checks.

The algorithm uses information from both object

creation and the implicit type checks in object uses, and

naturally produces a bounded description (bounded by

a function on program size) even for arbitrarily large

structures. As a result, it can gather more precise in-

formation than other algorithms. For example, it is ca-

pable of deducing a description of a list from a loop

over that list, and using this information to remove type

checks f~om subsequent loops over the same list.

To emphasize an intuitive understanding of the al-

gorithm, we begin this paper with a series of exam-

ples (Section 2), and a discussion of related algorithms

and theories (Section 3). The rest of the paper, begin-

ning with Section 4, deals with the formalism that is

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copxng is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

4

the foundation of the algorithm and shows some of its

consequences. Readers who wish only a general under-

standing of our work will find Section 2 sufficient and

painless.

2 Some Examples

These initial examples are in a form of Lisp assembly

language with assignment statements, labels, and condi-

tional and unconditional gotos. For now, we only con-

sider three types: cons, nil, and other. In Lisp, car

and cdr are overloaded on cons and nil. To avoid this

complication, we will use selector functions (called head

and tail) defined only on cons cells. Also, we will make

all type checks explicit. A type error is indicated by a

branch to ~n error routine that does not return.

Our type description is a form of grammar. At each

program point, the algorithm computes a set of pro-

ductions (called a p-set). In these productions, the ter-

minals are the type symbols (cons, nil, other). The

nonterminals are sets of variables and definitions (a def-

inition being a symbol that represents a particular as-

signment to a variable).1 We write a definition with a

numeric superscript over the variable symbol (like xl).

The empty set, @, is a legal nonterminal. As we will see,

it naturally represents an unknown value. All p-sets

contain the productions

0--+ cons00

0 -+ nil

0 -+ other

which we can also write more concisely:

@+ cons 0 @ I nil I other

We also require the right-hand side of a production to be

a single terminal followed by a sequence of nonterminals

(corresponding to the slots contained in the type).

1Each assignment to a variable is a different definition of that
variable. For example, a variable x has two definitions if it appears
on the left-hand sides of two assigmnent statements.

Machinery. To copy otherwise, or to republlsh, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA
@ 1992 ACM o-89791 -483 -X/9210006/02t 6...$1.50

21(5

cons

/

1 nil cons

/

nil 1
cons

1

nil I [nil

Figure 1: A list of three nils.
I

A variable x with an unknown value can be described

like this:

{x} + cons @ @] nil I other

~@+ cons 00 I nil I other

Without being too precise, we can see that every possi-

ble value in our domain corresponds to some derivation

of {x}. For example, let x be a list of three nils (Fig-

ure 1). The preorder traversal of the list (as a tree) is

the string

cons nil cons nil cons nil nil,

which is a derivation of {x}.

To illustrate the interaction between variables, we

use a p-set from a later example (Figure 2):

{x, y,xl, yl} + nil

{y, x’, y’}+ cons 0 {X2}

{y, xl, yl} + cons 0 {X,X2}

{X2} + cons 0 {X2}

{X2} + cons @ {x, x2}

{X,X2} + nil

@+ cons @ @ I nil I other

Let’s call the first six productions pl to P6. There are

two variables, x and y. Their possible values are de-

scribe by the same p-set. The nonterminals describing

a variable are those that contain that variable. The

nonterminals for y are {x, y, xl, yl } and {y, xl, yl}. The

first also describes x. Therefore, by expanding PI, we

see that one possibility is that both x and y are nil. We

get another possible value of y by expanding p3 then p6:

{y, xl, yl} +- cons 0 {X,X2}

* cons 0 nil

So y is a list of length one, and x is the terminating

nil (because it comes from {x, X2}). We get yet a third

value by expanding pz, ps, then p6:

{y, xl, yl} + cons 0 {X2}

+ cons 0 cons 0 {x, X2}

* cons 0 cons 0 nil

Here, y is a list of length two, and x is again the final nil

(because the only nonterminal containing x expands to

it). In general, for each variable, a derivation of a p-set

is only allowed to use a single nonterminal containing

that variable. Continuing the process, we can see that

y is always a list, and x is always the terminating nil.

In the rest of this section, we will omit the three

productions for 0 from the p-sets, since they are always

the same ~nd always present.

Because the specific definitions of variables are im-

portant to us, all examples will be annotated with def-

init ion indices. As we will see, most of the algorithm

involves the construction of nonterminals out of these

definitions and variables.

We can now analyze this piece of code:

if not consp(x) goto error

yl + tail(x)

Two things happen here. First, after the type check,

we know that x must be a cons cell. Second, after the

assignment we know that y and the tail of x point to

the same object.

The algorithm annotates the program points. We

represent this with a p-set between each pair of sequen-

tial statements, and two p-sets after each conditional

(one for the true branch and one for the false branch).

This is the result:

{{x, x’} + cons 0 @ I nil I other}

if not consp(x) goto error

{{x, x’} + nil I other}

{{x,x’} + cons 0 0}

yl + tail(x)

{{x, X1} + cons 0 {y, yl}

{y, y’} -+ cons @ 0 I nil I other}

Each p-set describes the possible program states at that

point in the program. They are not universal assertions

(like a variable declaration) or expectations that must

hold to prevent future errors. As before, every possible

value of a variable z is a derivation of some nonterminal

containing x.

In the example, the initial condition shows an un-

known x, from (an unseen) definition xl. The algorithm

is a forward flow analysis. The conditional filters out the

productions for x that fail the type check. The assign-

ment (yl + tail(x)) makes y equivalent to the tail of

x. The nonterminal {y, yl } is synthesized and takes the

place of 0 in the tail part of (x + cons 0 0), and the

three (omitted) productions for 0 are copied to make

the productions for {y, yl }.

A feature of the type description is that all variables

are described by the same p-set. This is indeed neces-

~ary if dructural information ig to be inferred. In the

above example, any subsequent restriction on the pos-

sible types of y will also add to the information on x:

217

{{x,x’} -+ cons 0 {y, y’}

{Y, Y’} + cons 00 I nil I other}
if not consp(y) goto error

{{x, x’} + cons 0 {y, yl}

{y, yl} + nil I other}

{{x, xl}+ cons O {y, yl}

{y, y’}--+ cons0 0}

y2 + tail(y)

{{x, x’}+ cons 0 {y’}
{yl}+ cons O {y, Y2}

{y, y2} + cons 0 0 I nil I other}

Now we know that x must be a list of at least two

elements—specifically, x is a cons cell, the tail of which

is an anonymous cons cell, and the tail of that is an un-

known object pointed to by y. The nonterminal {y, yl }

loses the y after the second assignment, because it no

longer describes the current value of y.

The general procedure for processing assignment

statements is defined in Section 6. We give a simpli-

fied version here. Let z and y be distinct variables,

and P the in-coming p-set. For the simple assign-

ment (zd + y), the algorithm first deletes x from all

nonterminals in P, then adds {~, Zd} to all nontermi-

nals containing y. For the statement (~d + tail(y)),

suppose y is described by a single production p E P

(P= (U + cons ~ ~) and Y E u). Again, we delete z
from all nonterminals. The rest depends on w:

● If w contains a variable, then replace all occur-

rences of w by w U {z, Zd} in all productions. For

example,

{{x,x]} + other

{y, yl} + cons 0 {2,21}

{z, 21} + nil}

X2 + tail(y)

{{x’ } + other

{y, y] } + cons 0 {x, z, X2, z] }

{x,2, x2, z’} + nil}.

● If w does not contain a variable, then replace w

by w U {x, Xd} in p, copy all productions with w

on the left-hand side, and replace w by w U {z, Zd}

on the left-hand sides of the copies. For example,

{{x, x’} + other

{Y>Y1} --+ cons 0

{z’} + nil}

x’ + tail(y)

{{x1 } 4 othm-

{y, y’} + cons 0

{X,X2,2’} + nil

{z’} + nil}.

{21}

{x, X2, 21}

The case of w = 0 is just one instance of this

general rule.

The reason for having two cases is that a nontermi-

nal with a variable is, roughly speaking, more specific.

{{y, yl} + cons 0 0 I nil

xl+y

{{x, y,x’, y’} + cons 00

Ll:

I other}

nil I other}

{{x, y, x’, yl} + cons @ @ I nil I other

{y, xl, yl} + cons 0 {X2} I cons 0 {x,x’}

{X2} + cons 0 {X2} [cons 0 {x, X2}

{x, X2} + cons @ 0 [nil I other}

if null (x) goto L2

{.. }
{{x, y, x], y’} + cons 0 @ I other

{y, x’, y]} + cons 0 {x2} I cons 0 {x,x’}

{X2} + cons 0 {X2} I cons 0 {x, X2}

{x, X2} + cons 0 @ I other}

if not consp(x) goto error

{.. }
{{x, y,xl, y’} + cons 00

{y, xl, y]} --+ cons 0 {x2} I cons 0 {x,x2}

{X2} -+ cons 0 {x’} I cons 0 {x, X2}

{X,X2} + cons 0 0}

x’ + tail(x)

{{y, xl, yl} + cons 0 {x’} I cons 0 {X,X2}

{X2} + cons 0 {X2} I cons 0 {x, X2}

{X,X2} + cons @ @ I nil I other}

goto L1

L2 :

{{x, y,x’, yl} + nil

{y, xl, yl} + cons 0 {X2} I cons 0 {X,X2}

{X2} + cons 0 {X2} I cons 0 {x, X2}

{X,X2} + nil}

Figure 2: The loop after analysis.

Variable-free nonterminals are allowed to generate more

than one object. Ones with variables must generate a

single object, or none at all. The algorithm will still be

correct if it always follows the second case, but it will

be less precise.

The next example is a loop, for which a compact

description of an arbitrarily large structure will be gen-

er at ed:

Xl+y

Ll:

i.f null (x) goto L2

if not consp(x) goto error

x’ + tail(x)
goto L1

L2 :

In the loop, the index variable x is used to iterate down

the list y. We will analyze two such loops in sequence,

to show the p-sets generated and how they are used

to remove an unnecessary type check. The results are

shown in Figures 2 and 3. Because of the length of

this example, we have omitted some of the p-sets (those

218

{{x, y,x’, y’} + nil

{y, xl, yl} + cons 0 {X2} I cons 0 {x, x2}

{x’} + cons 0 {x’} I cons 0 {x,x’}

{x, X2} + nil}

X’+y

{{x, y,x’, x’, yl} + cons 0 {X2} I nil

{X2}+ cons 0 {x2} I nil}

L3 :

{...}
if null(x) goto L4

{..}
{{x, y,x’, x’, y’} + cons 0 {X2}

{X2,X4} + cons 0 {x’, x’] I. .
cons 0 {x,x’,;’}

{x, x2, x4}+ cons 0 {X2}

{x2}+ cons0 {X2} I nil}

if not consp(x) goto error

0

{..}
x’ +-- tail(x)

{{y, x], x3, yl}+cons0 {X2,X4} I

cons 0 {x, x’, x’}

{x2, x4}+ cons0 {X2,X4} I

cons @ {X7 X2JX4}
{x, x’, x’}+ cons 0 {x’} I nil

{x2} +cons0 {X2} I nil}

goto L3

L4 :

{{x, y,x’, x”, yl} +nil

{y, x’, x’, y’}+ cons 0 {x’, x’} [

cons @ {x>x’lx’}
{x2, x4}+ cons0 {X2,X4} I

cons 0 {X)X2)X4}
{x, X2, X4} + nil}

Figure3: The second loop. The initial condition is the

final condition of the first loop (Figure 2).

shown as {...}). At a few places, we’ve also removed

unused productions (those with variable-free left-hand

sides not referred to in any right-hand sides).

Since we have already used the final p-set of the first

loop in earlier discussions, we know that it correctly

shows that y is a list and x points to the final nil. The

end of the second loop (label L4 in Figure 3) shows the

same thing but with different nonterminals.

A simple trick makes the p-sets immediately usable

for optimization. When no production satisfies a condi-

tional (for example, the type check in Figure 3), we

simply make the entire p-set for that branch empty.

This serves as a marker for dead code and also pre-

vents information from (incorrectly) propagating fur-

ther. Thus, edges that can never be traversed at run

time are marked with empty sets. At the end of the

Xl+y

Ll:

if null(x) goto L2

if not consp(x) goto error

X2 + tail(x)

if not consp(x) goto error

x’ + tail(x)

goto L1

L2 :

{{x, y,x’, y’}+ nil

{y, xl, yl } + cons 0 {X2}

{X2} + cons 0 {x’} I cons 0 {x, x’}

{X3} + cons 0 {X2}

=1 {x, X3}+ nil}

+-Y
L3 :

if null(z) goto L4

if not consp(z) goto error

z’ + tail(z)

if not consp(z) goto error

z’ + tail(z)

if not consp(z) goto error

z’ +- tail(z)

goto L3

L4 :

{{x, y,z, xl, yl, zl} + nil

{y, xl, yl, zl} + cons 0 {x2, z2}

{X2,22} + cons 0 {X3,23}

{X3, Z3} + cons 0 {X2, Z4}

{X2, Z4} + cons 0 {x’, z’}

{X3,22} + cons 0 {X2, Z3}

{X2, Z3} + cons 0 {x’, z’} I

cons @ {X) ZjX3j z’}
{X3, Z4} + cons 0 {X2, Z2}

{x,2, X3, z’} + nil}

Figure 4: The /crn(2, 3) example. Not all p-sets are

shown.

analysis, it is a simple matter to delete dead statments

and remove conditionals with only one branch.

One last example illustrates the power of this

method. The first part of Figure 4 (up to label L2)

is a loop that fails unless y is of even length. If this

is followed by a loop that forces y to be a multiple of

(in this case) three in length, then the combined result

should be a list of some multiple of six. As shown in

Figure 4, the algorithm is indeed capable of deducing

this.

3 Background

Some recent authors on type analysis for Lisp have di-

vided type inference algorithms into two classes: func-

219

tional and imperative [2, 11].2 The functional meth-

ods are typified by Milner’s type-inference algorithm

(and its variants) for ML [15]. They are for functional

languages (the only mutable objects in ML are refer-

ences, and they are not truly polymorphic), and they

are designed to find a single type (though possibly with

free type variables) for every expression in the program.

Type-correct Lisp programs are not always typable by

such algorithms. However, it is not impossible to adapt

ML type inference to an imperative language and to find

partial solutions. For example, Johnson’s type flow anal-

ysis includes an application of a unification algorithm

to Lisp [5], and Gomard has developed an algorithm

specifically for partial inference of otherwise untypable

functional programs [4]. Related to our work, there is

also the algorithm of Mishra and Reddy, which can deal

with recursive structures [16].

In this classification, the imperative methods are

based on algorithms of Kaplan and Unman [8, 9] and

of Miller [14]. In Common Lisp terms, they deal mainly

with generic functions (like arithmetic operators that

are overloaded on many types). As such, they must start

with values of known types (Iiterals or user-supplied dec-

larations), then infer the types of other values. The goal

is to reduce the cost of generic-function dispatch, and to

do it with only a few user-supplied declarations. When

applied to Lisp, these algorithms also tend to restrict

the programming style by imposing a type discipline.

Falling outside this taxonomy, our algorithm con-

centrates on structures built from record-like objects.

In Lisp, functions dealing with these types are typically

monomorphic or weakly polymorphic. The implicit type

operations are type checks rather than dispatches. They

succeed if and only if they are given objects of the right

types. Thus it is possible to deduce useful type infor-

mation without any declarations. The optimization re-

moves the unnecessary type checks. We seek not to

change the Lisp programming style, but rather to sup-

port it, by making Lisp programs more efficient.

The type information for this style of analysis comes

from two sources: object creation and object use. Alg~

rithms that use only creation information keep track of

structures as they are built (as in Jones and Muchnick

[7]). The result can then be used to remove type checks

when the same structures are used, This works well if

the entire program can be analyzed completely, and if

all data structures are created using allocation functions

within the program. Usage information for type analysis

is first noted by Kaplan and Unman (as side-way infer-

ence). It can locally augment a global analysis. It also

allows better results when fragments of a program are

analyzed in isolation, which is almost a necessity with

2And for their work, the same authors have chosen to use im-
perative algorithms.

Lisp. Our algorithm uses both kinds of information.

The origin of type analysis from usage can be traced

to constant propagation. Indeed, the algorithm of Weg-

man and Zadeck [17] can be used directly for type

analysis.3 However, this gives only the surface types of

variables, not entire structures. To analyze whole struc-

tures, an algorithm must keep track of the relationship

between variables. As we have seen in Section 2, the

deep structure of the value of one variable is inferred

from operations on other variables. A constant propaga-

tion algorithm that treats variables independently (e.g.,

using a constant-cross-variable product lattice) cannot

do this.

In addition to propagating type assertions forward,

some algorithms also propagate type expect ations back-

ward [6, 8, 9, 14]. This allows two useful optimization:

moving several identical type checks to a common point,

and hoisting loop-invariant type checks out of the loop.

For us, however, the advantage is small. Well-known op-

timization techniques, like common subexpression anal-

ysis and hoisting of loop-invariant computations, are

specifically designed for these tasks. In addition, if the

type checks for a list are moved out of the loop accessing

it, a new loop just for the checks will then be needed.

It is much better to share the loop overhead by leaving

them where they are.

The presence of usage information makes an algo-

rithm qualitatively different. The propagation of usage

information necessarily follows control jlow, because in

some sense the information derived from type checks is

a side effect of those checks. On the other hand, infor-

mation from object creation, declarations, and literals

follows the order of data flow from definition to use,

and from function arguments to function result.

Type analysis, alias analysis, and lifetime analysis

algorithms all employ structural description of some

form. Directed graphs [3, 7, 10], tree grammars [7],

and string grammars [10] have all been used. Whatever

the purpose, a common feature is that they all represent

possibly unbounded structures with a bounded descrip-

tion. The more elegant of the algorithms derive compact

descriptions naturally, without a forced cut-off at some

predetermined size. Our description is a grammar of di-

rected graphs, with some ad hoc features. It is naturally

bounded.

To our knowledge, the only practical optimizing Lisp

compiler that uses real type analysis is the Python com-

piler of the CMU Common Lisp [13]. It uses an algo-

rithm based on constant propagation and imperative

type inference [12].

To summarize, our algorithm is new in that it derives

a structural description from both object creation and

3Our trick of marking unexecuted edges with empty p-sets is
a variant of the ezecu te flag in their algorithm.

220

object use. The algorithm is a traditional flow analysis,

and makes heavy use of the imperative aspects of Lisp.

Its goal is to remove unnecessary type checks.

4 General Notation

A function is a set of ordered pairs. The image of func-

tion ~ from a sub domain A is written f[A], and is equal

to {~(a) : a c A}. We also mean by $(~) the function

~ with the value at a replaced by b:

f(f) = (f - {(a, $(a))}) u {(~)~)}.

Note that j need not be already defined at a.

The power set of a set A is written P(A).

5 Formal Semantics

We begin by defining the meaning of variable and stor-

age. We assume a set of types, T. An object of type

t e T is a record of k slots (the arity of t, which may be

zero).

Definition 1 A storage graph is a directed graph G

with node labels and ordered out-edges. Specifically, G

is a function on a finite set of vertices (called IGI) to a

set of tuples, such that if G(n) = (t, nl, nk), then t

is a k-ary type in T, and ni E IGI for all 1 < i < k.

Also, we dejine typeG(n) = t, and dest~(n) = ni for all

I<i <k.

When the graph G is understood, we will often omit it

and simply write type(n) and dest ~(n). To avoid set-

theoretic difficulties later, we need to restrict the uni-

verse of vertices somewhat, Specifically, we say there

is a countably infinite set V, such that for any stor-

age graph G, IGI c V. Also, let the elements of V be

ordered.

Definition 2 Let X be the set of variables in a given

program. A storage state for the program is a pair

(G, f), where G is a storage graph and f is a function

on X to IGI.

We can now recast an earlier example in the new

machinery. The list of three nils in Figure 1 can be

redefined as a storage graph G (see also Figure 5):

G(nl) = (cons, n5, n2),

G(n2) = (cons, n6, n3),

G(n3) = (cons, n7, n4),

G(rq) = (nil),

G(n5) = (nil),

G(n6) = (nil),

G(nT) = (nil).

“L=LJ

nd nb

Figure 5: The storage graph for a list of three nils.

And if the value of variable x is the head of the list,

then we have the storage state (G, f), with f(z) = .1.

Here, we have chosen to make the four nils distinct

nodes. If they are to be a single node (as they are in

Lisp), then we will have

G(nl) = (cons, nA, nz),

G(n2) = (cons, nA, .3),

G(n3) = (cons, .4, nA),

G(.A) = (nil).

In general, storage states may contain nodes that are

inaccessible. Indeed, we can define the equivalent of the

garbage collection function:

Definition 3 Obs((G, f)) is the storage state (G’, f),

such that G’ is the maximum subgraph of G reachable

from f[X]. In other words, for every node in G’, there

exists a directed path from some f(x) to that node, and

G’ is the largest of all such subgraphs.

Of course, (G’, ~) always exists and is unique.

A program is a control-flow graph (S, E), where S

is a set of vertices and E is a set of edges. Each vertex

is a single statement. The input and output arities of a

vertex depend on its statement type. Most statements

have exactly one in-edge (called in(s)) and one out-edge

(called out(s)). The exceptions are listed below. There

is a distinguished start edge, eo. As in the examples,

each assignments of a variable is given a unique defini-

tion index (the Xd combination). For a given program,

we call the set of all definitions D.

Each statement s computes a new storage state

(G’, f’) from the input state (G, f):

pred’ (x)

A predicate has two out-edges, called out ~we (s)

and out~al~e(s).

Execution follows out,rtie(s) if typeG(f(z)) = t,

follows outfal$e (s) otherwise. The storage state is

unchanged:

(G’, f’) = (G, f).

221

Xd+y

An assignment to x changes ~(z):

()(G’, f’) = (h((G,f x .
f(~) ‘)

Xd t Slotj(y)

The behavior is undefined if typeG(~(y)) # t.

Otherwise,

Zd+- const(yl,y~)

Let c be a new vertex (i.e., c ~ IGI). Indeed,

to make the behavior deterministic, let c be the

smallest vertex in V – IG]. Then,

G“ ()=G (t, f(y,), :.. ,f(yk)) ‘

f“ = f (:)9

(G’, f’) = (h((G”, f’)).

join

A join statement is where paths of control flow

converge. It has an arbitrary number of inputs,

named inl(s), inn (s), for an in-degree of n.

The actual operation is a no-op:

(G’, f’) = (G, f).

For the sake of determinism, the garbage collector

(the function Ohs) is explicitly invoked at every state-

ment.

Since slot:(z) is undefined when fype(~(x)) # t, we

must always precede it with a type check:

Proposition 1 Let vertex S1 be the statement Xd +

slot~(y). The behavior of S1 is always defined, if

tn(sl) = Outtrue (s2) and S2 M pred’(y).

6 The Algorithm

For a program with variables X and definitions D, a p-

set is a set of productions of the form (u. + tul . . . Uk),

where the Ui’s are nonterminals, t is a terminal taken

from the set T of types, and k is the arity oft. A non-

terminal is a set of definitions and variables: an element

of P(Dux).

In the following discussion, when only selected parts

of a production are of interest, we will often write it

in an abbreviated form: (u + —), (u + t—), (– +

tul . . . Uk), and so on. For example, p = (– + t_)

means that p is of the form (u. + tul . . . Uk), where

UIJ, ..., uk are unrestricted.

Definition 4 Let Q be a set of productions, and x a

war-table. The subset of Q relative to x is written Q(x)

and is defined by

Q(’) = {(u -+ —)c Q:x Eu}.

We can now make precise the connection between

storage states and p-sets. Let (G, ~) be a storage state,

Q a p-set, and d a function on IGI to P(Q).

Definition 5 We say (G, f) is a d-instance of Q (writ-

ten Q ~ (G, f)), if for every n ~ IGI, every (UO --+

tul . . .Uk) E d(n), and every z ● X,

(i) t = typeG(n);

(ii) for all 1< i <k, there exists q c d(dest~(n)) such

that q = (ui --+ _);

(iii,) if n = f(x) then d(n)(z) M a singleton set;

(iv) if n # f(z) then d(n)(’)= 0.

We denote the set of all instances of Q by Inst(Q).4

To account for shared structures, we allow more than

one production to derive the same node in an instance

(i.e., d(n) is a set).

For example, given storage state (G, f), with G as

shown in Figure 5 and f(x) = nl, and given p-set

Q = {{x,x1} --+ cons $ @ I nil [other,

@+ cons @ 0 I nil I other},

then Q % (G, f) with

d(nl) = {{z, z1} + cons O 0},

d(n2) = {0 + cons @ 0},

d(n3) = {0 --+ cons 0 0},

d(n4) = {0 --+ nil},

d(n5) = {0 + nil},

d(n6) = {0 + nil},

d(n7) = {0 + nil}.

Definition 6 If r is a function mapping nonterminais

to nonterminals, then ? is the extension ofr to produc-

tions:

?((UO + tul . . .uk)) = (r(uo) + tr(ul) . . .r(u~)).

The domain of+ is the set of all productions that can be

formed from the domain of r and the set of types T.

4We use the term instance instead of derivation because our
notion is not quite the standard one.

222

For flow graph (S, E), variables X, and definitions

D, the analysis produces a function P on E. For each

program point e E E, P(e) is a p-set.

The algorithm finds a solution for P given the

statement-specific flow equations (stated below) and the

initial condition at the entry edge, eo:

P(e~) = [U /J({z, 20})] U U(O),

Zex

where

A
U(u)={(u-+ to.. .0) :t CT, t is k-ary}.

For example, if we have variables xl, Z2, X3 and types

tl, t2 (of arities O and 1, respectively), then

The algorithm we actually use is a forward propagw

tion. At each flow-graph node, the per-statement flow

equation is used to compute the p-sets at the exits from

the p-sets at the entries. Initially, P(e) = (?Jfor all e E E

except eo.

In the following, where the vertex s of interest is

understood, we will use the shorthand Pin to mean

P(zn(s)), Pout to mean P(M(s)). These are the per-

statement equations:

predt(z)

A predicate is a filter. First, we define the set Q

of productions in Piniz) that satisfy the predicate,

and its complement Q’:

Q = {P= pi.(”) 1P= (-+~—)},

Q’ = P$n($) – Q.

Then,

P~me =
{

0 ifQ=O

P,n – Q’ otherwise,

PfaIse =
{

0 if Q’=fl

P%. – Q otherwise.

Here, we can see how the rounding-to-0 rule works.

For Ptme, if Q is empty, then Q = P,n (’) and

(p,. - Q’)(z) =0. Therefore, we have

~ns~(pt. - Q’)= 0 = Inst(0).

This is not the only case in which productions can

be deleted from a p-set. Section 8 discusses two

general procedures for p-set simplification.

Xd+y

We first define a function r on nonterminals, then

POU~ itself

{

tJU{Z, Zd} ify Eu
r(u) =

w. – {2} otherwise,

P.., = F[P,n].

d t slot:(y)

This step is only defined when all productions in

Pin(y) are of the form (_+ t_).

Q = Pan(y),

R = Pin – P$n(y)j

Pout = U Ag.

gEQ

Each Aq is a set defined in terms of q and R. Let

q=(uo-+tul . . . Uk). If ~i nX # 0 then

Aq = ti[RU {q}],

{

WU{z, zd} ifv=u~
a(v) =

u - {z} otherwise.

Ifuifl X= Othen

A, = &[R] U r[$[{q}]] U /[;[S]],

S’ = {~EP*~:~=(Ui+_)},

and

b(?)) = v – {z},
?’((VO+ t?)l . . . ?l~)) =

(I@+ tv~ . .. WjU{Z. Zd}. ..’Vk)j

i((vo + t’vl . . . v~)) =

(Vo u {Z,zd} -+t’v~...v~).

Xd - cons~(yl,y~)

r(u) = 24– {z},

Q = { ({x, zd} + Ww). r(w)) :
for every 1< i < k

some (uj + —) E P,n(y’)},

Pout = ?[P,.] u Q.

join

A join node is just the union of all inputs.

pout = (Jpm,.
i

We again need a theorem on the effectiveness of type

checking:

Proposition 2 Let vertex S1 be the statement Xd +

slot;(y). Then the jlow equation for S1 is always de-

jined, if in(sl) = outtme(s2) and S2 is predt(y).

223

7 Correctness

Given a program, we can also define M(e) to be the

set of all possible run-time storage states at e G E.

Specifically, a state (G, j) is in M(e) if and only if there

exists some execution of the program (starting at the

entry with some initial storage state) that produces the

state (G, ~) when control reaches e.

The algorithm is correct if for all e c E and z c X,

T,unt,m.(e, X) C ~predtcted(e, ~),

where

Trunttme(e, z) = {typeG(f(x)) : (G, f) E M(e)},

TPr.&C~.d(e, ~) = {t: (_ + L–._) E P(e)(”)}.

We can, however, state a stronger theorem:

Theorem 1 (Correctness) At every program point e,

M(e) c Inst(P(e)),

The algorithm’s precision is measured by lnst(P(e)) –

M(e).

With the machinery developed so far, the proof of

Theorem 1 is straightforward, but too long to include

in this paper.

8 Simplification and Approximation

As stated, the basic algorithm will sometimes introduce

unused productions into the generated p-sets. These

stray productions can, at best, slow down the analysis

and, at worst, lead to imprecision, For example, con-

sider this sequence of statements:

X1 + nil

yl + nil

if C goto L1

yz + cons(y, y)

X2 + cons(y, y)

Ll:

{{x, X1} + nil

{X,X2} - cons {y, yz} {y, y2}

{Y, Y’} + nil
{y, y2} + cons {yl} {yl }

{yl} + nil}

if consp(y) goto error

L2 :

{{x, x’} + nil

{x, x2} + cons {y, y2} {y, y’}

{Y, Y1} + nil

{y’} + nil}

if consp(x) . . .

{~~, ~~~ + cons {y, y2} {y, y2}

{y; } +~iy~l

{{x, x’} + nil

{y, y’} + nil

{y]} + nil}

If the condition C is unknown at compile time, we get

the p-sets as shown. At label L2, since y cannot be

a cons, x cannot be one either. The final conditional

should always fail. The analysis, however, fails to pre-

dict this.

There is a simple and efficient procedure for elimi-

nating such obviously unusable productions. We state

it as a theorem:

Theorem 2 (Bottom-up Simplification)

Given a p-set Q, p E Q, and p = (UO + ful . . .uk),

If for some ui there exists no production of the form

(u, +_) in Q, then Inst(Q - {p})= lnsi(Q).

Another class of unused productions is illustrated by

the last three occurrences of ({yl } + nil) in the above

example. The production serves no purpose in those p-

sets, because it is never used to generate any observable

storage state:

Theorem 3 (Top-down Simplification)

) andufl X= O,ifuGwen Q,p~Q, p= (u+-,

does not occur on the right-hand side of any production

in Q, then Obs[Inst(Q – {p})] = Obs[Inst(Q)].

Because nonterminals are drawn from the set P(X U

D), there can be exponentially many of them. Indeed,

the basic algorithm is exponential in the worst case, in

both space and time. We can, however, keep the algo-

rithm well-behaved by sacrificing some of the precision.

Again, we state this as a theorem:

Theorem 4 (Approximation) Let Q be a p-set, and

r a function on nonterminals to nonterma’nals. If r(u) n
X = u n X for ail u, then Inst(Q) c lnst(?[Q]),

In other words, we can rename nonterminals as long

as the variables in them are preserved. Some of the

precision will be lost, but the result remains correct.

Theorem 4 can be applied to the intermediate p-sets

in the running algorithm, if r is chosen judiciously to

preserve monotonicity. Specifically, because T need not

be one-to-one, the theorem can be used to reduce the

number of distinct nonterminals within a p-set, thus

reducing its size. This procedure can only affect the

definitions; it cannot reduce the number of variables in

a nonterminal. There is indeed an orthogonal method

that can deal with the variables. However, we have

found Theorem 4 to be sufficient in practice. For ex-

ample, simply limiting the number of definitions in a

nonterminal to one leads to good performance with ac-

ceptable precision.

Thus we can say that Theorem 4 generates a family

of algorithms, each at a different complexity-precision

tradeoff.

224

9 Final Comments

A first implementation of the algorithm exists. It ac-

cepts a subset of Common Lisp, and produces an anno-

tated program.

Selective update (slot;(z) * y) can be handled by

the algorithm. However, in the most naive implemen-

tation, it may affect every production of the same type.

An algorithm can do better if it can answer these ques-

tions for every pair of productions in a p-set:

● Can they map to the same node in some instance?

● Can they map to different nodes in some instance?

The first question is exactly the sharing information

sought by alias analysis. Just as Baker has shown that

Milner’s algorithm can produce sharing information [1],

we believe p-sets can be similarly augmented. Even

without modification, productions introduced by two

different cons statements can never map to the same

node in an instance. We believe this information can be

of comparable quality to that provided by the algorithm

of Chase, Wegman, and Zadeck [3]. How this interacts

with p-set approximation in a real implementation is yet

to be seen.

References

[1]

[2]

[3]

[4]

[5]

[6]

Henry G. Baker. Unify and conquer (garbage, up-

dating, aliasing, . ..) in functional languages. In

Proceedings of the 1990 ACM Conference on LISP

and Functional Programming, pages 218–226, June

1990.

Randall D. Beer. Preliminary report on a practi-

cal type inference system for Common Lisp. Lisp

Pointers, 1(2):5-12, June-July 1987.

David R. Chase, Mark Wegman, and F. Kenneth

Zadeck. Analysis of pointers and structures. In Pro-

ceedings of the SIGPLA N ’90 Conference on Pro-

gramming Language Design and Implementation,

pages 296-310, June 1990.

Carsten K. Gomard. Partial type inference for un-

typed functional programs. In Proceedings of the

1990 ACM Conference on LISP and Functional

Programming, pages 282-287, June 1990.

Philip Johnson. Type Flow Analysis for Ex-

ploratory Software Development. PhD thesis,

University of Massachusetts, Amherst, September

1990.

Neil D. Jones and Steven S. Muchnick. Bind-

ing time optimization in programming languages:

Some thoughts toward the design of an ideal lan-

guage. In Conference Record of the Third Annual

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ACM Symposium on Principles of Programming

Languages, pages 77-94, January 1976.

Neil D. Jones and Steven S. Muchnick. Flow anal-

ysis and optimization of Lisp-like structures. In

Steven S. Muchnick and Neil D. Jones, editors,

Progmm Flow Analysis: Theory and Applications.

Prentice-Hall, 1981.

Marc A. Kaplan and Jeffrey D. Unman. A gen-

eral scheme for the automatic inference of variable

types. In Conference Record of the Fifth Annuai

ACM Symposium on Principles of Programming

Languages, pages 60-75, January 1978.

Marc A. Kaplan and Jeffrey D. Unman. A scheme

for the automatic inference of variable t ypes. Jour-

nal of the Association for Computing Machinery,

27(1):128-145, January 1980.

James R. Larus and Paul N. Hilfinger. Detecting

conflicts between structure accesses. In Proceedings

of the SIGPLAN ’88 Conference on Programming

Language Design and Implementation, pages 35-

46, June 1988.

Kwan-Liu Ma and Robert R. Kessler. TICL—

a type inference system for Common Lisp.

Software-Practice and Experience, 20(6):593-623,

June 1990.

Robert A. MacLachlan, April 1991. Private com-

municant ion.

Robert A. MacLachlan, editor. CMU Common

Lisp user’s manual. Technical Report CMU-CS-91-

108, Carnegie-Mellon University, February 1991.

Terrence C. Miller. Type checking in an imper-

fect world. In Conference Record of the Sixth An-

nual ACM Symposium on Principles of Program-

ming Languages, pages 237–243, January 1979.

Robin Milner. A theory of type polymorphism in

programming. Journal of Computer and System

Sciences, 17(3):348-375, December 1978.

Prateek Mishra and Uday S. Reddy. Declaration-

free type checking. In Conference Record of the

Twelfth Annual ACM Symposium on Pn”nciples

of Programming Languages, pages 7–21, January

1985.

Mark N. Wegman and Frank Kenneth Zadeck.

Constant propagation with conditional branches.

In Conference Record of the Thirteenth Annual

ACM Symposium on Principles of Programming

Languages, pages 291-299, January 1985.

225

