
Taming the Y operator

Guillermo Juan Rozas

email: jinx@ zurich.ai.mit .edu

MIT AI Laboratory, Cambridge, MA

Abstract

In this paper I present a set of conceptually simple but in-

volved techniques used by LIARI, the MIT SCHEME compiler,

to generate good code when recursive procedures are speci-

fied in terms of suitable versions of the Y operator. The tech-

niques presented are general-purpose analysis and optimizat-

ion tools, similar to well-known techniques used in the anal-

ysis and optimization of applicative languages, that combine

synergistically y to enable LIAR to generate identical machiue

code for ordinary recursive definitions written using letrec

and those written using suitable forms of Y.

1 Introduction: The problem

Modern programming languages allow programmers to

write local recursive procedure definitions. COMMON

LISP [17] provides the labels special form for this pur-

pose. SCHEME [13] provides the similar letrec special

form, as well as internal definitions, a syntactic alterna-

tive more akin to the internal procedure declarations of

ALGOL-60 [6].

Recursive procedures are described, and sometimes

implemented, particularly for top-level procedures, in

terms of assignment. For example, the first expression

in Fig. 1 can be considered shorthand for the second.

LISP compilers typically treat letrec (or labels) as

a primitive special form in order to generate good code.

The expansion shown in Fig. 1 would cause typical com-

pilers to emit code that would unnecessarily manipulate

and allocate closures from the runtime heap. Compiled

code might also allocate and initialize locations used to

1LI@ and in particular, the code whose effects are described
here, are the work of several people, primarily Chris Hanson and
the author.

Permission to copy without foe all or part of this material is

granted provided that the ccpies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA
@ 1992 ACM o-sg791-483-X/92 /000610226 . ..$l .50

(letrec ((fact (lambda (n)

(if (= n O)

1

(* n (fact (- n i)))))))

fact)

(let ((fact ‘anything))

(set ! fact (lambda (n)

(if (= n O)

1

(* n (fact (- n i))))))

fact)

Figure 1: Traditional letrec implementation

(let ((Y (lambda (f) ; lambda-l

((lambda (g) (g g)) ; lambda+

(lambda (x) ; lsmbda-3

(f (lambda () ; lambda-4

(x x))))))))

(Y (lambda (fg) ; lambda-5

(lambda (n) ; lambda-6

(if (= n O)
1

(* n ((fg) (- n l))))))))

Figure 2: Factorial using applicative-order Y

create the circular reference specified in the code (the lo-

cation for fact, which can be viewed as the local function

cell for fact).

Treating letrec as a primitive form is effective, but

aesthetically unsatisfying. LISP is notationally and se-

mantically based on Church’s lambda calculus [2], which

daea not include lek~~e or sa~ignment. The V cornbiny.

tor, written in the lambda calculus itself, can be used to

express recursive procedures. For example, the expres-

sion in Fig. 2 uses an applicative-order version of the Y

operator to specify a recursive procedure. This is the

primary example for the rest of the paper.

Although letrec could be de~cribed and implemented

in terms of Y, compilers rarely use this technique to im-

226

plement recursive procedures.

The typical LISP compiler, when given the code for Y

and recursive procedures that use Y as shown in Fig. 2,

produces much worse code than when the version that

uses assignment is compiled. The generated code con-

structs a runtime closure for each execution of a lambda

expression in the code being compiled, and does not

branch directly to the entry point of the code on the

recursive call.

Implementing letrec primitively in a compiler is al-

most a necessity because of the inefficiencies associated

with not doing so, yet it is not conceptually necessary.

This paper shows how a compiler can use independently-

useful general-purpose optimization techniques to effec-

tively eliminate Y from a program.

2 Overview

LIAR has a large collection of analysis passes in the front

end that guide back end code generation. In this paper,

I describe informally only those analysis techniques that

affect the structure of the code generated for recursive

procedures expressed with Y. These techniques are sim-

ilar to well-known techniques, and were added to LIAR

as part of its general-purpose bag of optimization tricks.

They combine profitably to eliminate certain forms of Y,

but were not devised with this purpose in mind.

The techniques involved in eliminating Y from the

code in Fig. 2 are the following:

● Data flow analysis allows the compiler to find the re-

cursive call, and allows it to deduce that code point-

ers are not necessary when representing the closures

of most of the lambda expressions that appear in the

code.

● Environment optimization allows the compiler to es-

tablish that environment pointers are not necessary

when representing the closures of most of the lambda

expressions that appear in the code.

● Side-effect analysis allows the compiler to eliminate

all of the code in Y proper because the circular ref-

erence and the return value have been established

by the data flow analysis, and the remaining code in

Y has no side effects.

In this paper I also examine some of the limitations

of the method presented, consider how they might be

overcome, and point out a somewhat surprising and con-

troversial consequence of the techniques presented here.

3 Data flow analysis

When presented with the code in Fig. 2, it takes some

observation to deduce that the expression (fg) al-

ways returns a closure of the lambda expression labeled

lambda-6 and thus that ((f g) (- n 1)) is a recursive

call. This section describes how LIAR arrives at that

conclusion.

Consider all the potential executions of a program,

and the potentially infinite set of values created, manip-

ulated, and passed around at run time. We can classify

these potential values into a finite number of sets, choose

a representative for each set and run the program oper-

ating on the representatives rather than on the actual

values. If our sets are chosen with sufficient resolution,

we may be able to prove, at compile time, properties

about the values that variables will hold at run time.

In the trivial classification, a single representative is

chosen for all potential values. JVe can call this repre-

sentative unknown. This choice would result in the same

effect as what many compilers achieve, Compilers usu-

ally handle variable bindings by generating code that al-

locates space to hold the value (in registers, the stack,

or the heap), and treat variable references and assign-

ment by fetching and storing into the location. After all,

nothing is known at compile time about the actual val-

ues that will be stored at run time and this prevents the

compiler from optimizing allocation and references.

A more interesting situation arises when we use rep-

resentatives with finer resolution. Within LIAR’S data

flow analyzer, constants appearing in the program rep-

resent themselves, each lambda expression represents all

its possible runtime closures, and an unknown value rep-

resents the values of top-level free variables and the re-

sults of procedures not visible at compile time, including

primitives. z

These values can be propagated by running the code

at compile time using the representatives rather than the

actual code, and accumulating the representative values

that arrive at each variable location until the system

reaches a steady state, that is, no variable receives a rep-

resentative value that had not already been accumulated

for it. At the end of the propagation process, associated

with each variable in the original program we will have

a set of canonical values representing the actual values

that may reach it at run time.

After this propagation, if one of the values accumu-

lated is the unknown value, then nothing can be assumed

about the value of the inst antes of the variable. The com-

2The resolution of the analysis can be improved in many ways.
We can choose a canonical pair object for all the values returned by
cons, a canonical unspecified number for all the values returned by
+, etc. and perform some limited form of type and range checking
based on the results of the propagation. LIAR does not currently
do this.

227

flamaa m) ; ouzer l.anmaa

(let ((f (lambda (g m) ; inner lambda

(if (=m O)

1

(* m (g g (- m l)))))))

(f f n)))

. \ . . (lambda (n) ; outer lambda

(<reference to inner lambda> n))

(lambda (m) ; inner lambda

(if (=mO)

Figure 3: Factorial using self-application

piler will have to represent the variable in the ordinary

way. Otherwise, the compiler can assume that the in-

tersection of the properties of the representatives will be

true of the actual values manipulated at run time. For

example, if all the canonical values that reach a partic-

ular variable are lambda expressions with three formal

parameters, then the compiler can assume that all run-

time values that will reach all instances of the variable

will be procedures of exactly three arguments, and thus

avoid checking the number of arguments for calls to the

values of the variable.

Avery important and common case occurs when only

one representative reaches a given variable. We say that

such a variable has its value known at compile time,

meaning that the class of values to which actual runtime

values belong is known at compile time. Anything that is

true of all values in the class of the representative can be

assumed about the values that will arrive at run time. In

particular, the variable can be completely eliminated if

the value is a constant. If the single value is a lambda ex-

pression the representation of the closures corresponding

to the lambda expression may be optimized. For exam-

ple, a procedure call whose operator is such a variable

can transfer control by a direct branch instruction to the

code location for the known lambda expression found at

compile time - the compiler has proven that the call will

only be able to invoke closures of the known lambda ex-

pression.

If the lambda expression is only propagated to vari-

ables whose value is known to be the lambda expression,

no code pointer is necessary in the runtime representa-

tion of the lambda expression’s closures, since all call

points will directly branch to the target code. In ad-

dition, if the free variables of the lambda expression are

available at all points where the closures might be called,

there is no need to create runtime closures at all for the

lambda expression. The environment preparation can be

done at each call point, and the free variables need not be

collected at the point where the lambda expression ap-

pears. The compiler can eliminate those variables whose

known values ale found to be lambda expressions that

do not require runtime closures.

Consider the code in Fig. 3. After representative

1

(* m (<reference to inner lambda>

(- m l)))))

Figure 4: Self-applicative factorial after data-flow analy-

sis

value propagation, variables f and g will have a known

value, namely the inner lambda expression. Since this

lambda expression has no significant free variables, i.e.

its free variables are those (namely =, *, and -) that

are free at top-level and accessible through simple di-

rect mechanisms, there is no need to capture an envi-

ronment, and the compiler can deduce that the inner

lambda expression need not be closed at run time. Vari-

ables whose only value is this lambda expression (namely

f and g) can be safely removed. In addition, the expres-

sion (g g (- n I)) has been proven to be a call to (the

single closing of) the inner lambda expression, in which

the g parameter has been dropped. The remains of the

code are now as in Fig. 4.

Note the similarity between the end result of the anal-

ysis and what would have occurred if the recursive defi-

nition had been written using letrec.

Consider again the example in Fig. 2. After repre-

sentative value propagation, the compiler will have es-

tablished that f will have as its only values closings of

lambda-5, x and g will only take closings of lambda-3,

and f g will only have closings of lambda-4. The propaga-

tion will also prove that the value returned by the com-

plete expression and the values returned by lambda-4,

and therefore the procedures to which the values of

(- n 1) will be given, will all be closings of lambda-6.

Examining the significant free variables immediately re-

moves the binding for Y (its value has no free variables),

but it is not clear that any other variables can be re-

moved. The remaining lamb da expressions have free

variables whose values are closings of lambda expressions,

and we have not yet proven that the free variables of such

a lambda expression are either known at compile time or

available at the point of their calls. That is the subject

of the next section.

4 Environment optimization by

Lambda drifting

Consider the simple code in Fig. 5. Since lambda-2 has

228

(lambda ()

(let ((f (lambda (x)

(if (=x O)
4

L

(+ x (*

(lambda (x y)

(* (fx) (f y)))))

; lambda-O

; lambda-l

x x))))))

; lambda-2

Figure5: Simple Environment optimization example

(letrec

((foo (lambda (x) . . . bar .

(bar (letrec

((baz (lambda (y)

(quux (lambda (z

. .

(lambda (w)

. ..quux . . .))))
. . . foo . . .)

.))

.,. quux . ..))

. . . foo . . .

baz . . .)))

Figure6: Circular environment dependencies

a free variable, a simple-minded compiler would collect

the runtime values of the variable in the corresponding

closures generated for lambda-2. However, the lexical

structureof thecode is used onlyforhiding the procedure

namedf. Iflambda-1 and lambda-2 appeared (and were

defined) at top level, a simple minded compiler would

know not to close them.

LIAR’S environment optimizer drifts such lambda ex-

pressions towards the root, to avoid closing over variables

that could otherwise be available. The example in Fig. 5

is too simple, since the drifting can be accomplished by

first noticing that lambda-l has no free variables and

can therefore drift to the root. lambda-2 can then drift

to the root since the value of its only free variable is

available there. LIAR’S drifting algorithm handles more

complicated cases - it was designed to reduce the num-

ber of closures in code with circular dependencies such

as that appearing in Fig. 6.

In this example, all lambda expressions can be drifted

to the root simultaneously, because all their free vari-

ables are known to have as their value some of the other

lambda expressions, which have also drifted to the root,

and thus the values of their free variables are available at

their position in the new environment tree. Access to the

variables is not necessary since the values that they hold

are known. Since the variables are no longer necessary,

the names are removed by another of LIAR’S passes.

LIAR’S drifting algorithm is based on the following two

constraints:

1. A lambda expression must not drift past the frame

that binds one of its free variables if the value of the

variable is not known at compile time.

2. A lambda expression must not drift past the frame

that binds one of its free variables whose value is

known at compile time to be (a closure of) another

lambda expression unless the latter is positioned at

the same level or closer to the root, and therefore

directly accessible.

LIAR initializes the target position for each lambda ex-

pression to be that frame farthest from the root in the

environment tree that binds one of the lambda expres-

sion’s free variables whose value is not known. As long as

the lambda expression does not drift closer to the root,

the first constraint will be satisfied. The iterative phase

described below will only move them further from the

root.

LIAR then constructs the graph of lambda-expression

dependencies based on the second constraint, and pro-

ceeds to iteratively examine all the lambda expressions to

guarantee that the second constraint is satisfied. When

LIAR finds a lambda expression for which the second con-

straint is not satisfied, it changes the lambda expression’s

target position to be the frame closest to the root at

which the constraint is satisfied, and uses the graph of

dependencies to queue for re-examination those lambda

expressions that may have been affected by the change.

When the queue is empty, both constraints are satisfied

for each lambda expression and the target position has

been found.3

The algorithm always terminates because no lambda

expression ever drifts deeper than its position in the

source program, and the depth of the target position of

each lambda expression never decreases after the initial

assignment.

In the example from Fig. 2, the first constraint is moot,

since there are no variables bound in inner frames whose

values are not known. The initial target posit ion for all

the lambda expressions is the root environment, where

the second constraint is satisfied for each lambda expres-

sion, and none is queued for re-examination.

After lambda drifting and removing now-unnecessary

names because their values are known and accessible,

LIAR’S internal model of the code is approximately

what appears in Fig. 7. Note that the residual calls

to the paremeterless procedures derived from lambda-1

through lambda-5 would now be only executed for effect,

since the value returned by them is known.

3A later pass of the compiler, namely the closure-format de-
signer, occasionally undrifts some lambda expressions further to
avoid generating more closures at run time. This paas of the com-
piler, although interesting on its own, is not relevant to the issue
at hand.

229

;; top level expression:

(begin

(<reference to lambda-l>) ; for effect

<reference to lambda-6>)

(lambda () ; lambda-l (Y)

(<reference to lambda-2>) ; for effect

<reference to lambda-6>) ; returned value known

(lambda () ; lambda-2

(<reference to lambda-3>) ; for effect

<reference to lambda-6>) ; returned value known

(lambda () ; lambda-3

(<reference to lambda-5>) ; for effect

<reference to lambda-6>) ; returned value known

(lambda () ; lambda-5

<reference to lambda-6>) ; returned value known

(lambda (n) ; lambda-6 (factorial)

(if (=nO)
4
L

(* n ((begin

(<reference to lambda-4>) ; for effect

<reference to lambda-6>)

(-n 1)))))

(lambda () ; lambda-4

(<reference to lambda-3>) ; for effect

<reference to lambda-6>) ; returned value known

Figure7: Code after environment optimization

(lambda (n) ; top-level lambda

(let ((accum 1))

(letrec ((loop

(lambda (i) ; inner lambda

(if (> in)
accum

(begin

(set! accum (* i accum))

(loop (l+ i)))))))

(loop 1))))

Figure8: Aside-effect free procedure

5 Side-effect analysis to elimi-

nate useless code

The side-effect analysis performed by the front end of

LIAR is straightforward. It is currently used only to elim-

inate calls that return known values and has no under-

standing of procedures that return values that may be

affected by other procedures. A richer model would be

necessaryto allow LIAR to share the results ofcalls, and

to re-order code when side effects do not interfere.

The LIAR front end classifies side effects into variable

assignments (via set !), which are syntactically visible

and therefore simpler to manage, and mutation of ar-

guments or hidden state performed by primitives (e.g.

set-car! or write).

Primitive procedures of the language are classified ac-

cording to whether they are side-effect free or not. A

primitive is considered side-effect free if it does not per-

form side effects itself, even though its operation may

observe the side effects of other procedures (e.g. The

mutation of the first component of a pair is charged to

the set-car! operation that causes it, not to the car

operation that notices it). The unknown procedure is

treated as a side-effecting primitive.

The dataflow analysis described above isusedtocom-

pute the complete call graph, which may include the un-

knovm procedure. Once a procedure, primitive or not,

has been tagged as potentially side-effecting, all of its

callers are contaminated transitively. After the side-

effect information is propagated, user-defined procedures

that have not been contaminated are assumed to beside-

effect free, and calls to them can be eliminated if their

values are known.

The contamination is careful to mask the effects of

variable assignment to local variables. For example the

top-level lambda expression in Fig. 5 is considered to

be side-effect free although it performs its operation by

using variable assignments internally. The inner lambda

expression is not side-effect free, obviously.

230

;; top level expression

<reference to lambda-6>

(lambda (n) ; lambda-6 (factorial)

(if (= n O)
1

(* n (<reference to lambda-6>

(-n l)))))

(lambda () ; lambda-l (Y)

<reference to lambda-6>)

Figure9: Code after side-effect analysis

(let ((Y (lambda (f)

((lambda (g) (f (g g)))

(lambda (g) (f (g g)))))))

(Y (lambda (f)

(lambda (n)
(if (=nO)

1

(*n (f (-n l))))))))

Figure lO: Recursive factorial using normal-order Y

In our ongoing example, after side-effect analysis, the

code would be modeled by the code in Fig. 9, with

lambda-2 through lambda-5 identical to lambda-1. The

compiler would then eliminate the useless lambda ex-

pressions (lambda-1 through lambda-5) by only emit-

tingcode for those that are transitively reached from the

top-level expression, arriving at the desired code.

6 Unexpected consequences

Given the techniques described above, the expression

in Fig. 10 compiles into the same code as the expression

in Fig. 2, even though without the analysis and opti-

mization, the version that uses the normal-order version

of the Y combinator would never terminate!

The difference in behavior with respect to termina-

tions not specific to the normal-order version of Y: we

(letrec ((cdrloop

(lambda (x)

(if (null? x)

>DONE

(cdrloop (cdr x))))))

cdrloop)

Figure 11: A trivial cdr loop

run into it with simpler programs such as cdrloop from

Fig. 11. Thecompiler turns therecursive callincdrloop

into a return of the constant DONE, since cdrloop has no

side effects, and can only return DONE. Thus cdrloop

immediately returns DONE for all arguments, including

circular lists and non-lists.

LIAR only performs this transformation in the pres-

ence of suitable declarations that allow it to early-bind

null? and cdr so that it knows that they are side-effect

free and therefore that the whole lambda expression is

free of side effects. In addition, the transformation is

only performed if the code is compiled unsafely, that is,

with type-checking in primitive operations such as cdr

disabled. The type-checking version immediately intro-

duces an unknown side-effect in the implicit call to error,

and under these circumstances, the compiler will not con-

sider cdrloop side-effect free, and the recursive call will

not be eliminated.

The difference in behavior with respect to termination

(and errors in the case of cdrloop) occurs because the

compiler eliminates calls to procedures without side ef-

fects whose returned values are known, but it is not both-

ering to prove that the procedures would actually ever

return. In other words, there is no termination analy-

sis, and the optimization is performed without regard to

maintaining this behavior. The compiler has not really

proven that a particular value will be returned, but has

proven instead that no other value can be returned, and

takes this to mean that the value is in fact returned.

Termination analysis is, of course, undecidable in the

general case (see [9], for example), and attempting to

make code such as the above behave as when compiled

naively (as, for example, by the compiler in [1]) would

in all likelihood break the optimization for the cases in

which it is not controversial.

Whether optimization under these circumstances is al-

lowable is debatable, but defensible. Informally, code

where calls have been removed in this way will behave

identically to the original code for those values for which

the original terminates normally (i.e. without errors),

This means that ordinary code that merely uses the orig-

inal version will not notice if the optimized version is

substituted for the original. In the absence of error (and

interrupt) handling facilities or a language requirement

that all errors be detected and reported, the optimiza-

tion is safe within the system, since no program will ever

report different answers if the optimized version is sub-

stituted for the original.

Somewhat less informally, programs P and Q are equiv-

alent if there does not exist a function @ such that

@(Lf[P]) = 1 while @(&f[C/]) = 2, where ill is the se-

mantic function that maps programs to their functional

meaning.

I do not view this definition as useful or particularly

231

desirable when considering program optimization, since

it translates into whether an external observer who pos-

sesses an oracle can distinguish between both programs.

In the long run, we will want programs to design, write,

and test other programs with no human intervention,

and therefore not constrain what an optimizer can do to

satisfy a human who will never directly interact with the

components of the program.

Consider the following definition: Programs P and Q

are indistinguishable by other programs if there is no pro-

gram F such that Af[FoP] = 1 while J4[FoQ] = 2.

In my view, an optimizer’s job is not to produce a

program equivalent to its input but to produce a program

indistinguishable from its input by other programs, which

runs faster (or at least not more slowly) than the original.

Of course, a program whose meaning is the divergent

computation is indistinguishable from any other program

by other programs, but runs more slowly than they do,

and thus no optimizer should ever produce a program

that does not terminate or is in error when the input

terminates normally.

This non-standard notion of program equivalence

is related to the concept of observational equivalence

(see [11]).

To satisfy those who desire more predictability from

their compiler, LIAR currently provides a switch that

turns off the side-effect analysis pass by marking every-

thing as potentially side-effecting. By using it, the user

can prevent LIAR from removing procedure calls that

may not terminate or cause an error at run time.

7 Comments and limitations

The techniques presented above are useful as general-

purpose analysis and optimization tools, and were in-

cluded in LIAR independently to allow it to generate

better code in general. Nevertheless, they combine con-

structively to effectively remove some versions of Y and

of its mutual-recursion cousins from programs.

The data flow analyzer waa originally written in or-

der to perform escape analysis leading to procedure ob-

ject representation. In addition, it is now used to deter-

mine environment representation, and to perform various

classical optimizations such as constant folding and copy

propagation. As an example of one of its other uses,

examining the set of potential CPS-continuations4 that

may be passed to a procedure allows the compiler to de-

termine whether the free variables of lambda expressions

are always present at constant offsets on the stack when

~CPS is continuation passing style, a rewriting technique used

to make control explicit in the program, and often used by %IIEMZ

compilers. See [16] for a description of the rewriting process and

its use it in a compiler.

(let. ((Y (lambda (f) ; lambda-l

((lambda (x) ; lanbda-3a

(f (lambda () ; lambda-4a

(x x))))

(lambda (x) ; lambda-3b

(f (lambda () ; lambda-4b

(x x))))))))

(Y (lambda (fg) ; lambda-5

(lambda (n) ; lambda-6

(if (= n O)

L

(* n ((fg) (- n l))))))))

Figure 12: Another applicative order version of Y

they are invoked, and the compiler can use this informa-

tion to avoid generating code that passes environment

pointers to lexically inferior contexts.

As mentioned earlier, the environment adjusting code

was originally written to reduce the number of proce-

dures represented as closures. The overall informal goal

of the escape analysis and environment adjustment was

that if a piece of SCHEME code could be easily transcribed

into PASCAL code (requiring no closures) then the cor-

responding SCHEME code should be translated into code

that manipulates no closures.

The techniques, however, do not work as well as would

be desirable. They are particularly sensitive to the de-

tails of the code used to represent the Y operator. For

example, the minor variation on our ongoing example

that appears in Fig. 12 does not generate the same code.

The problem arises from the introduced ambiguity in the

value of f g. Variable f g may now take as values closures

of lambda-4a and closures of lambda-4b. In fact, it will

have a closure of lambda-4a as its value in the outermost

level of recursion, and closures of lambda-4b in all inner

levels. Given that the value off g is not known, lambda-6

is represented as a closure over fg, and this contaminates

some of the other lambda expressions. The compiler still

proves that the call with argument (- n i) is a call to

a closure of lambda-6, and generates code that directly

branches there, but there is added overhead to create and

manipulate the closure objects.

This particular case could easily be solved by a

front-end redundant subexpression elimination pass that

merged lambda-3a and lambda-3b before the data-flow

analyzer was invoked. On the other hand, if we are

only interested in replacing letrec by macro-expanding

it into uses of Y, the writer of the macro could choose

expansions that do not confuse the compiler.

232

8 Comparisons with other work

The data flow analysis method mentioned above is an

example of abstract interpretation (see [3]) of the pr~

gram at compile time. It is essentially the same as Olin

Shivers’s OCFA as described in his Ph.D. dissertation [15]

but they were developed independently. Our version has

been in place in the LIAR compiler since late 1983 [14].

In [15] Shivers also describes a finer resolution analysis,

which he calls lCFA, adding some finite trace informa-

tion to the propagated representative values that allows

him to resolve cases where the simpler analysis described

here fails. He also discusses how to use the results of

the analysis to implement several optimizations. LIAR

implements variants of many of these using the simpler

analysis, which appears sufficient in practice. With re-

spect to eliminating the Y operator from code, his anal-

ysis should work at least as well as ours, and may be

able to eliminate other forms without the need for source

common-sub expression elimination or similar tricks.

The environment optimization technique described is

only one of several present in LIAR and is also used

to reduce the number of static and dynamic links [7].

The most closely related technique is lambda lifting [12].

Both techniques migrate lambda expressions toward the

root of the environment tree in order to simplify environ-

ment structure. When lambda lifting, parameter lists of

migrated procedures are extended to include their free

variables. Calls to migrated procedures must pass their

values in addition to the original arguments. Lambda

drifting, the technique described above, does not extend

parameter lists, since lambda expressions are only moved

outside of enclosing lambda expressions if the free vari-

ables no longer accessible have known and accessible val-

ues. In essence, lambda lifting is a technique for flatten-

ing environment structure and making variable reference

more regular without removing any variables. Lambda

drifting is a technique that simplifies environment struc-

ture by moving lambda expressions to places where they

can be accessed directly by others and thus eliminating

the need for variables to hold their closures. Both tech-

niques can be profitably used, using lambda drifting to

reduce the number of free variables, and then lambda

lifting to collect the remaining variables. LIAR implic-

itly performs lambda lifting when designing the format

of procedure objects after using lambda drifting.

The side-effect analysis in the front end of LIAR is

straightforward and was added with Y in mind. Other

SCHEME compilers [16] have used more complex analy-

sis to reorder expressions at the source level. The FX

language [10, 8], a derivative of SCHEME, has been de-

signed with effect analysis and effect masking at its core,

and its syntax includes effect declarations that are propa-

gated and checked statically by the compiler much in the

same way that types are propagated and checked. Recent

versions of the language include a type and effect recon-

structor that reduces the need for declarations. With

respect to eliminating Y, the simple side-effect analysis

described appears to suffice.

The tension in LIAR between aggressive optimization

and conformance with low-level models of execution is

present in other compiler and optimization work. For

example, [5] describes an aggressive optimizer based on

partial evaluation which does not preserve the termina-

tion properties of the input program. This tension is also

present in modern computer architecture. See, for exam-

ple, [4] for a description of an architecture with imprecise

traps.

9 Conclusion

In this paper I have presented a set of simple techniques

that allow LIAR to effectively eliminate uses of the Y

combinator. Although the techniques presented are not

perfect, they show that it is feasible to define recursive

procedures purely in terms of suitable versions of Y,

with no performance penalty, and thus compilers need

not implement letrec or labels primitively. The tech-

niques involved are general-purpose optimization tech-

niques, desirable for their applicability to general code,

but they combine constructively to effectively remove Y.

References

[1]

[2]

[3]

[4]

[5]

[6]

Harold Abelson, Gerald Jay Sussman, and Julie

Sussman. Structure and Interpretation of Computer

Programs. MIT Press, 1985.

Alonzo Church. The calculi of lambda-conversion.

Princeton University Press, 1941.

P. Cousot and R. Cousot. Abstract interpreta-

tion: A unified lattice model for static analysis of

programs by construction or approximation of fix-

points. In Proc. 4th Principles of Programming Lan-

guages, Los Angeles, California, 1977.

Digital Equipment Corp. Alpha Architecture Refer-

ence, March 1992.

D. Weise et al. Automatic online partial evaluation.

In Proc. of the Conference on Functional Program-

ming Languages and Architectures. Springer Verlag,

1991.

Peter Naur et al. Revised report on the algorithmic

language Algol-60. Communications of the A CM,

6(1):1-17, January 1963.

233

[7] Chris Hanson. Efficient stack allocation for tail-

recursive languages. In Proceedings of the 1990

ACM Conference on Lisp and Functional Program-

ming, Nice, France, June 1990.

[8] P. Jouvelot and D. K. Gifford. Algebraic reconstruc-

tion of types and effects. In Proc, 18th Principles of

Programming Languages, 1991.

[9] H. R. Lewis and C. H. Papadimitriou. Elements of

the Theory of Computation. Prentice-Hall, 1981.

[10] J. M. Lucassen and D. K. Gifford. Polymorphic ef-

fect systems. In Proc. 15th Principles of Program-

ming Languages, 1988.

[II] Ketan Mulmuley. Full abstraction and semantic

equivalence. MIT Press, 1986. ACM Doctoral Dis-

sert ation Award, 1986.

[12] Simon L. Peyton Jones. The Implementation of

Functional Programming Languages. Prentice-Hall,

1987.

[13] Jonathan Rees and William Clinger (editors).

Revised3 report on the algorithmic language

Scheme. ACM Sigplan Notices, 21(12), December

1986. Also available as MIT AI Memo 818a.

[14] Guillermo J. Rozas. Liar, an Algol-like compiler

for Scheme. S. B. thesis, Mass. Inst. of Technology,

Dept. of Electrical Engineering and Computer Sci-

ence, January 1984.

[15] Olin Shivers. Control-Flow Analysis of Higher-

Order Languages, or Taming Lambda. Ph.D. thesis,

Carnegie Mellon University, May 1991. Available as

CMU-CS-91-145.

[16] Guy Lewis Steele Jr. Rabbit: A compiler for

Scheme. S.M. thesis, Ma-w. Inst. of Technology,

1978. Also available as MIT AI Memo 474.

[17] Guy Lewis Steele Jr. Common LISP The Language,

,%zd Edition. Digital Press, 1990.

234

