
Integrating the Scheme and C Languages

John R. Rose, Hans Muller

SunPro, a Sun Microsystems Business

JRose@Eng.Sun.COM, Hikfuller@Eng.Sun .COM

April 10,1992

Most implementations of Scheme (and other Lisp dialects)

provide some facility for calling functions defined in ANSI

C (or other popular languages) even if only to implement

Scheme’s primitive operations. Some relatively sophisti-

cated implementations provide access to non-Scheme data

structures, Taking a Scheme-centered view, we will refer to

these facilities as~oreign call-out, for both data and func-

tions access. Scheme implementations may also provide

ways for C code to use Scheme functions and data structures

more or less directly. We will refer to this as~oreign call-in.

Call-in is usually more difficult than foreign call-out,

because Scheme systems depend on a strong set of invariants

relating to storage management, safety, and runtime dis-

patching, and these invariant must be restored and main-

tained by foreign code which makes call-ins. For these

reasons, many Scheme systems are not packaged as libraries.

Rather, they are full environments which must take over the

management of the entire address space in which they run.

In practice, many foreign call-in and call-out mechanisms

are clumsy and limited, because of the sizeable gap between

the semantics of the two languages, and because of the addi-

tional invrtriants and runtime data required by Scheme. How-

ever, since Scheme and C have different and complementary

strengths as programming languages, one could wish instead

that hybrid applications were possible, with independent

modules written in different, independently chosen lan-

guages.

The “esh” (Embeddable SHell) project at Sun attempts to

make just such hybrid applications convenient and efficient,

Permission to copy without fee all or part of this material is

grantad provided that the copiee are not mada or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6 I92ICA

0 1992 ACM O-89791 -483 -X1921000610247 . ..SI .50

by implementing Scheme as a library rather than an environ-

ment, by reducing the invariants and runtime data required

by Scheme but not C, and by carefully designing the mecha-

nisms for foreign call-in and call-out to be complete, effi-

cient, and unobtrusive.

With the use of esh, modules written in C can supply effi-

cient programmatic primitives, and Scheme modules can

supply the control logic which glues an application together.

This glue can even include a Scheme interpreter usable after

the application is delivered, just as [GNUEmacs] supplies a

Lisp extension language. Because it is the role of glue that

allows it to add unique value to the Unix platform, we have

characterized our system as a “shell”. But Scheme also

makes a reasonable application language in its own right it

seems practical to use esh to deliver applications in which a

majority of the source code is Scheme. For example, one

internal Sun prototype contains 20k lines of new code, of

which more than 95% is Scheme. We do expect this propor-

tion to drop somewhat in the course of product implementa-

tion. One Sun product contains about 5k lines of C and 3k

lines of esh Scheme.

This paper deseribes the problems we found bridging the gap

between the languages, and how we addressed them.

1.

2.

3.

The esh Scheme data formats, run-time system, and pack-

aging were designed to be highly compatible with C and

Unix.

Scheme supports all C functions and data structures as

first-class objects. Based on information obtained from

the dynamic linker and from applying an interface com-

piler to C header files, esh Scheme creates tagged refer-

ences to arbitrary C values as needed.

System interfaces are translitemted from ANSI C into

Scheme by a set of rules and conventions designed to

express typical ANSI C interfaces concisely and nahually

in Scheme’s function-oriented style. The conventions

also make it easy for a C programmer to understand esh

Scheme programs.

247

1.0 Bridging the Gap

The main work in designing the interface between any two

languages is reconciling their data models. This is done by

putting data and function values into three categorie~

[A] peculiar to one language, and not legal at cross-lan-

guage interfaces

[B] peculiar to one language, but representable in the

other

[C] treated as common to both languages

1.1 All C Types Have Scheme Classes’

The esh implementation of Scheme makes the simplifying

assumption that all C data structures are interesting to

Scheme. We require that any declarable C function or vari-

able can be passed into and out of a Scheme variable or data

structure without loss of information, and preserving type

correctness. This goal is consistent with Scheme’s use as a

glue language.2 Thus, no C type is in category [A], and as

many as possible are in [C].

In fact, every C type gets its own tag for use with Scheme’s

system for runtime dispatch. Every C value is represented,

within Scheme, by one tag word, uniquely determined by its

C type, and one value word. For scalar C values which fit in

one word, the value word has a format dictated wholly by C.

Other C values (notably doubles) are boxed. Boxed values

consume storage managed by the garbage collector. All other

C values use only register or stack storage (depending on

optimizer vagaries), or are stored as 64-bit double words (of

C type TAG_MEM_T) inside composite heap objects.

1.2 Some Scheme Types are Foreign to C

Not all Scheme tags correspond to C types, although the very

fact that esh is implemented in C implies that there is at least

one C type which can hold an arbitrary Scheme value. In esh
Scheme, list, vector, and string are all abstract types

with multiple implementations. None of these objects

(except some strings) correspond to any C type; they even

signal a runtime type error if you try to pass them to a C

1. In this paper, the term abstract type or just type means a set of
vahres, but does not imply commitment to a concrete represenM-

tion. The term class or implementation refers to a specific, concrete
representation for values in some type. In C, classesand types are in
1-1 correspondence, and so we ususlly say “C type” instead of
“~plementation”. In C++ and Scheme a type can be implemented
by any number of classes.

2. We also admit that, whatever Scheme’s intrinsic merits, the use-
fulness of esh in the Unix world depends on its faithfulness to C.

varargs function like p r i nt f. Thus, these types are in cate-

gory m] because they can only be represented to C within a

the universal two-word box type f TAG_MEM_T J.

1.3 Identifying Common Types

Both Scheme and C have numeric, character, array, and

stream types. To maximize interoperability between lan-

guages, it is important to treat them as identir-’ .-Thereat all

possible.

1.3.1 Numbers and Characters

C ints are Scheme integers. (This means our Lisp has 32-bit

fixnums.) C chars are Scheme chars. C doubles are Scheme

inexact numbers. Other C numeric types are faithfully

tagged, and coerce safely among each other, just as they do

in C. Scheme arithmetic is generic, as in C, but has addi-

tional flexibility due to rtmtime dispatching.

The Scheme arithmetic operators detect integer overllow, as

required by the language. However, unsigned integers,

whose semantics are not specitied by Scheme, get their arith-

metic rules from C, and hence never overflow. Also because

of C, Scheme character objects can take part in arithmetic,

although number? is never true of them.

For the sake of C functions like f get c, the Scheme EOF

object is tagged as a C character, with the normally impossi-

ble value of-1.

1.3.2 Arrays and Vectors

C array values appear to Scheme as vectors. Accesses from

Scheme via vector-ref are bounds-checked. An indetermi-

nate array looks like a zero-length vector. Open-ended arrays

must be accessed, more clumsily, through unsafe primitives.

This limitation has not been a problem in practice since array

types per se don’t play a large part in C interfaces.

The standard Scheme vector class (produced by make-vec-

tor, etc.) is not a C array, This was done for reasons of per-

formance and implementation simplicity: We could have

chosen to represent Scheme vectors as C arrays, but this

would require vector-producing primitives to retrieve a dif-

ferent tag for each distinct length encountered. Standard
Scheme vectors are represented as a count and a pointer to a

vector of TAG MEM T cells. Homogeneous narrow vectors

in the same fofiat m—ealso supportd, they have been useful

only occasionally, to conserve storage. At the present time,

neither narrow vectors or stings are treated specially by the

garbage collector.

248

1.3.3 Strings and Bignums 1.3.4 Streams

The standard Scheme string class (produced by make-

string, string-append, etc.) contains a count and a

pointer to a vector of bytes. This allows strings to contain

nulls, and allows them occasionally to share bytes with other

structures. The C string type is char*, which is null termi-

nated rather than counted. This means that the Scheme string

type is implemented by at least two classes, one of which

cannot be directly processed by C, In essence, the set of val-

ues supported by C’s string class is a strict subset of all pos-

sible Scheme string values.

We handle this embarrassing situation by allowing Scheme

strings to coerce implicitly to the char* class whenever

their contents and memory organization allows. 1 Thus,

although string constants in Scheme programs are counted

arrays, the following program works as expected

(puts “Hello, world. \n”)

However, if the string constant had contained a null, an

exception would be raised at run time when the coercion to

char * failed. (Varargs does the right thing too: We could

also have used print f instead of put s.)

All strings constructed by Scheme are both counted and null

terminated. Our attitude toward C is enthusiastic compro-

mise, rather than capitulation. That is why we insist on using

the more powerful counted string type in Scheme, rather

than using only char *.

It has proven useful to allow even Scheme strings with nulls

in them to coerce safely to void*, yielding a base address.

The idea is that C is going to do something shady with the

void*, so there’s no use adding an integrity check.

A similar situation will arise when multiple precision rtrith-

metic is supported in the future: Integer overflow, which cur-

rently leads to an immediate exception, will generate a

correct result, represented as a bignum. As far as Scheme is

concerned, int is just a class of the type integer, and

simple arithmetic is closed for integer but not int. A

bignum result, like a counted array with null in it, will raise

an exception later (in an implicit coercion) if Scheme tries to

pass the value back to a C function expecting an int.

In effect, most Scheme strings and integers are in category

[C], but some are in category [B].

1. This coercion merely produces the base addressof the string;
there is no copying.

Another type in category [C] is Scheme’s port type, which

is directly represented by C‘s F I LE *. This leads to great

flexibility intermixing Scheme and C input and output opera-

tions. Easy 1/0 is most important for a glue language. But in

order to support Scheme correctly, we had to enhance C‘s

stdio package. Fortunately, this was possible to do (and with

binary compatibility!). The Scheme function char-

ready ? required us to implement a C subroutine we called

flisteno. We also wanted our Scheme to include the capabil-

ity to read and write from in-memory strings (the Scheme

functions are open-output -st ring, open-input-

string, and get-output-string), so we enhanced

the C library again to support this.2

This good integration leads to a compromise: The C type

FILE * is unsafe! This is shown by the following programx

(let ((fp (fopen “file” “r”)))

(fclose fp)

(fgetc fp))

{ FILE* fp = fopen (“file”, “r”) ;

fclose (fp) ;

return fgetc (fp) ;

}

Our choice to faithfully render C interfaces leads us to faith-

fully provide access to unsafe features of those same inter-

faces. (See the section “Keeping Safety” below.) Storage

management problems such as the preceding one area prime

source of unsafe interfaces. In the future, we may experiment

with a handle-like representation that has an extra level of

indirection. Such a handle would be zeroed safely when

fclose is called, and in other circumstances would implicitly

COerCetO FILE*.

1.3.5 Void

The humble C type (void) is adopted into esh Scheme, and

finds new life there. Every Scheme primitive which returns a

result undefined by the standard actually returns a C void

value. The interactive command loop special-cases void val-

ues by printing nothing when a command returns void.

2. The lack of first class in-memory FILE* objects in Unix, where
other platforms have had this for years, is significant evidence of a
tendency toward parochialism in Unix platform wmdors, which the.
Lkp community can have a role in correcting.

249

1.3.6 Booleans

Since C identifies booleans with integers, and Scheme does

not, we could not put these in category [C]. In fact, Scheme

booleans do not even coerce to C ints. This has not been a

problem in practice. Our header file processor specially

treats the type ix_boo lea n_t, nominally a typedef of

int, to allow C functions to produce and accept Scheme

booleans.

This splitting of one C type into multiple Scheme types

appears to be a promising technique for dealing with type-

deficient interfaces like the XView GUI toolkit, where all

object references are of a typedef type that expands to

unsigned.

1.4 Implicit Coercions

As we have already seen, sometimes Scheme objects in cate-

gory [B] can be coerced into a C type in category [C]. This

allows users of Scheme to benefit from specialized non-C

value representations, while staying as compatible as possi-

ble with C interfaces.

C itself has a moderately complex system of coercions

between types. Many are implicitly applied when an actual

parameter does not match a formal parameter, or in similar

sitations when a local variable is bound. Scheme models

these coercions accurately, but on the basis of runtime tag

information, rather than statically.

C also has a curt construct which can cause unsafe represen-

tation punning; Scheme never does this implicitly. Unsafe

operations are dealt with below.

Thus, the process of calling a C function from Scheme works

like this: If there is a mismatch between the number of actual

and formal arguments, signal an error. For each actual, deter-

mine the tag representing the C type of the corresponding

formal. If the formal calls for a tagged value, just accumulate

the tag and value into a new argument list we’re building for

the C function. If the formal tag is not identical with the

actual tag, call a coercion routine to ensure a match or signal

an error. Then, accumulate the actual’s value field, saris tag,

into the C argument list and unbox if necessary. When the

new, untagged argument list is complete, call the function on

it, When the function returns, box and add a tag as necessary.

The runtime cost of this is essentially linear in the number of

tagging and untagging operations. For simple functions, it

amounts to a few tens of machine instructions. Many C func-

tions implementing Scheme primitives receive and return

fully tagged values. For this extremely simple case, the dis-

patching overhead is less than ten instructions. Keeping this

overhead low is important to system integration, and is

enabled by encoding C types as ordinary machine words,

rather than bitilelds or memory structures requiring a tra-

versal at run time.

1.5 Common Functions

Since we represent C functions directly in esh Scheme, it

would seem that Scheme functions are in category [C].

Indeed, many important ones are just C functions. For exam-

ple, length takes a tagged value and return an integer.

Most Scheme predicates are C functions which return the

almost-C type boolean.

However, Scheme sometimes requires functions to do things

impossible to ordinary C functions. What C type could

Ii st have, since it takes any number of arguments? The

answer is to represent a gathered restarg as its own C type

(struct call_ args*), which is never visible to

Scheme. (This data structure is organized so as to support

efficient stack allocation.) Thus, the C declaration of the

function underlying list is approximately:

extern TAG_MEM_T list_make_list Ov

(struct call_args* res;arg) ;

The schema of tags for C functions is mirrored by another

schema for C functions which of similar type, but add the

extra restarg. Here’s another more complex example

extern tag_t func_static tag Iv— —
(tag_t ret, struct call_args* restarg) ;

This is the function underlying esh Scheme’s +f unct ion

constructor, which takes a tag and a restarg (of tags), and

returns the tag representing the requested C function type.

There is a third large schema of C function tags, to support C

varargs functions like print f. As mentioned above, esh

Scheme handles calls to these by spreading extra arguments

on the stack, after coercing each of them to a special C type

called”. . .”. As a special favor to the many C varargs func-

tions which treat a zero word as an argument terminator,

Scheme silently adds a zero every time it builds an argument
list for such a function.

1.5.1 Procedure Call Protocol

Scheme’s internal function calling protocol is a schema of

operations parameterized by number of arguments and pres-
ence or absence of a restarg. Each operation has its own

methods for all the various classes of Scheme procedure.

The function calling protocol takes restargs into account

transparently to Scheme, gathering and spreading restargs as

needed, and signaling errors when argument counts cannot

be reconciled.

For example, the Scheme code (list 123 345) speci-

fies invocation of an operation known as

ca 1 l_key (2, O) , where the O means “no restarg”. The

operation is invoked against the function class

f unc_tag (O, 1) , which represents the C type for

list make_li.st_O v described in the previous section.

The fiismatch is handled by a default handler for

call _key (2,0), which determines that

f unc_tag (O, 1) will accept a call_key (O, 1) opera-

tion, and gathers the two arguments accordingly.l

Optional arguments are handled either via restargs, or by a

special procedure class which adjusts the argument list and

delegates the call to a corresponding function without

optional arguments. In any event, they add no complexity to

the procedure call protocol.

Also, statically typed arguments are not taken into account

by the call protocol, which assumes that all arguments and

return values are fully tagged. Tagging and untagging is the

sole responsibility call methods for individual functional

tags.

1.5.2 Uncommon Functions

As Scheme is a relentlessly function-oriented language, it is

not surprising that we found ourselves introducing even

more classes of Scheme procedure. For example, lexical clo-

sures cannot be represented directly as C functions. (And our

optimizing native compiler exercises considerable freedom

in its selection of representations for them!) Also, many

generic Scheme operations like car are in fact low-level

dispatchable operations, tagged as such, with call methods

that perform the runtime dispatch; this dispatch can be done

from C code too, but it is not the same as C function invoca-

tion. These additional classes of procedure are all in category

[B], since they don’t correspond to C functions of any sort.

However, the trick of using implicit coercions, combined

with the abstraction naturally afforded by machine-level

functions, gives us a very convenient solution: Whenever a

category [B] Scheme function is presented as a formal

parameter to a C function expecting a functional argument

(or is otherwise coerced to a functional C type), it is boxed

within a C procedure of the required type. The C procedure

is created on the heap, and subject to the garbage collector.

This boxing is always possible, since all the C procedure

1. The optimizing compiler handles this reformatting statically.

needs to do is run a Scheme call operation against the boxed

Scheme object.

This convention makes the programming of foreign call-ins

extremely simple. In particular, the use of call-ins from GUI

toolkits with Scheme-generated callbacks is easy and natu-

rak

(define (start-me button

client-data call-data)

. . .)

(XtAddCallback start-button XtNselect

start-me (+void* O))

This example is taken from working X Window System tool-

kit [Young] code, and occurs within a subroutine whose local

variables are fully accessible to start-me, and hence to

the button widget. A pleasant side effect of this is that client-

data values tend become superfluous (and can be initialized

to O, which is what the last argument to XtAddCallback

does).

During coercion to a C function type, a check is made that

the object being boxed is in fact a procedure, but (at present)

no other checks are made, regarding argument types and

counts. This does not compromise safety, since a call-in from

C results in a fully checked call to the object.

Note that coercion of a Scheme function to a C varargs func-

tion type always fails, since there is no way for the boxing

code to know how many C arguments to retag and pass to the

Scheme function.

This section completes the account of how we handle the

runtime mechanics of foreign call-in and call-out of proce-

dures. The remaining issues of data structure access and

name management will be addressed below.

1.6 Types as Values

C types are available in Scheme as first-class values. They

are accessible from bindings, either via builtin names such as

+int for primitive types, or ix-generated names correspond-

ing to typedefs or structure types. These values are in cate-

gory [C], because they all have the C type tag_t. Derived

types can also be created from Scheme library functions.

Here is a summary:

Scheme Expression C Type

+i.nt int

+Short +char +float +double +void

(similarly to int)

251

+unsigned +unsigned+short +unsigned+char

(unsigned types)

+boolean i.x boolean t— —

(+function +R +A . ..)

R(A . ..)

(+function. +R +A . ..)

R(A

struct call_args* restarg)

(+functi-on. . . +R +A . ..)

R(A... . ..)

(+pointer +T) T*

+char* char*

(a convenience)

+void* void*

(a convenience)

(+array +T N) T [N]

(+array +T -1) T[]

(+lvalue +T) T lvalue

(C global variables only)

+typedefname typedefname

+/structname struct structname

+* +TA(3 MEM T

(a c;nve;ience)

Theplus signs are merely anaming convention, much like

the question marks at theend of Scheme predicate names.

These values represent C types, which are implementation-

Ievel classes. There are no tag objects which correspond to

generic Scheme types like listand vector.

Type values may be used to request type-safe or type-unsafe

coercions. Type-safe coercion is requested by using the type

name asaunary function (this follows the C syntax, and

seems programmer friendly):

(+int 1.2) => 1

((+pointer +int) O)

=> <a null int pointer>

(+void anything) => <a void value>

(+boolean anything-true) => #t

This is the same coercion that happens when Scheme calls a

statically typedC function. Itisintemally implementedby a

runtime dispatch which takes both the current and desired

tags into account.

Type-unsafe coercion is requested using the unsafe %ca st

function, which retags its argument willy-nilly, without

touching the argument’s value field. This is roughly equiva-

lent in power to the C cast syntax, but is separated cleanly

fiomtype-safecoercion:

(%cast +int 1.2)

=> <address of a boxed double>

(%cast +int (+float 1.2))

=> <bit pattern of a 32-bit float>

(%cast +boolean O) => #f

The %cast function is anecessary evil when dealing with

interfaces that are not fully strongly typed, such as XView

llieller]:

(define mylabel

(%cast +char*

(xv_get mywi.dget XV_LABEL)))

Here is a more complex example, in which a call-in function

is described with aninaccurate C type (this happens tobea

pre-ANSI interface). In this case, the Scheme function must

becoercedtothecorrect Ctype(whichthe interface’sheader

file fails to mention, and must therefore be constructed by

hand), and then the result must be tasted to the false type

expectedbythe interfacti

(let ((truetype

(+functi.on +Notify_value

+Notify_client +int)))

(notify_set_input_func O

(%cast +Notify_func

(truetype input-ready))

0))

1.7 TypesPeculiarto C

We have discussed category [C]and Scheme types incate-

gory [B]. We now list the remaining C types in category [B].
All of them are representable as Scheme objects, although

there is in some cases a loss of functionality.

1.7.1 Structs and Unions, Enumerations

Cstructs and unions arerepresentedin Scheme as tagged
references, which support field access primitives generated

by “ix” as described below. Because Scheme represents them

as references, they are not passed by value among Scheme

functions the way C functions do. When a C function returns

astructor union to Scheme, itisboxed inanewcell on the
heap.

252

Each enum type is a separate Scheme type, which can be

coerced to its integer value. Apart from this, Scheme hides

the fact that enum values are really ints. The coercion from

int to enum requires a cast.

1.7.2 Pointers and Lvalues

As with the other C types, the representation of C pointers in

Scheme preserves their strong typing.

The Scheme primitives pointer-ref, pointer-, and

%point e r+ correspond to C *, -, and + operators. (Note

that the last is unsafe.) There are also predicates PO int e r ?

and pointer-null?.

The number O coerces to a null of any pointer type. Any

pointer coerces to the pointer type +void*. The const and

vo 1 at i le attributes of the pointer’s type are ignored. (This

is the largest departure we make from the ANSI C.) Unlike

in C, a null pointer is not a boolean false.

Finally, a C global variable is treated as an explicit lvalue

object which can be used with the accessor lva lue - re f to

fetch the current value of the variable. For the benefit of C

functions, lvalues also coerce to their base types with an

implicit lvalue-refi

(if (= (lvalue-ref errno) EINTR)

(try-again)

(printf “errno = %d! “ errno))

We did not want to represent C global variables as Scheme

global variables, in order to reserve the implementation of

Scheme variables per se to the Scheme compiler, rather than

tying their representation to that of C.

2.0 Invariant Required by Scheme

After reconciling the divergent data models of the two lan-

guages, we must also take into account their differing

requirements for runtime support. In particular, there are

three system invariants required by esh Scheme but not by C:

1.

2.

3.

it must be possible for the garbage collector to locate all

busy storage

it must be possible to perform tail-calls without

unbounded stack growth

it must not be possible to perform an unchecked unsafe

operation

2.1 Garbage Collection

Scheme requires automatic storage management, and esh

Scheme needs to extend this management to C data struc-

tures, since we allow Scheme data structures to contain C

values and vice versa. Most implementations of garbage col-

lecting languages give the GC intimate knowledge about the

runtime structures of the language, The state of the art in

smart garbage collectors is surveyed in [Appel]. More

recently, work like [Boehm] and [Detlefs] addresses conser-

vative garbage collectors with limited knowledge of the sys-

tem they operate on. The more limited the collector’s

knowledge, the more conservative it must be in leaving data

structures untouched.

The esh garbage collector is extremely ignorant of the data

structures it reclaims, and so may be considered hypercon-

servative. It knows the layout of the data areas maintained by

ma 110 c, the system, and the dynamic linker, but makes no

assumptions about where pointers are in the system. It there-

fore never relocates data. It also deems a heap block to be

active if there are any active pointers to any byte within the

block. We have yet to find a C program which causes this

stodgy thing to free a blwk erroneously. Its performance is

not a bottleneck for the medium-sized applications we use

esh in, although occasionally large buffers will cause prob-

lems. (The unsafe C function free k available for such

cases.)

2.2 Tail Calls

The following Scheme program should execute forever with-

out blowing the control stack, even if the definitions are in

separate modules:

(define (even x) (odd (+ x 1)))

(define (odd x) (even (+ x 1)))

(even O)

There is no corresponding requirement on similar C pro-

grams, and the existing C control stack and stack frame for-

mats do not take into account the need for such low-

overhead tail-calls into account.

In esh we use the C control stack for all function invocations.

(Even within the interpreter we use the C library routine

a 110 c a to manage a frame-local stack.) To have defined

our own value stack would have made system integration
much more difficult, especially with threads coming.

Thus we needed a way for one C function to call another,

giving up its stack frame for the use of the callee. This was

accomplished with assembly-coded subroutines. The hardest

253

problem with this stems from the fact that, in most C imple-

mentations, a callee does not know how many words of argu-

ment storage the caller has allocated, and the caller is

responsible for deallocating those words. However, a tail-

caller may need to perform this deallocation immediately,

and allocate a differing number of argument words, overlay-

ing the storage of the previous argument words. To work

around this, we devised an assembly-level protocol for

building specially marked, self-sizing, expandable stack

frames. If a tail-caller notices that his caller is expandable, he

can reformat the stack with confidence. Otherwise, he makes

his own frame expandable and performs a regular call.

In the worst case, one out of two stack frames must be

expandable; in practice we find only a few turn up. Other

tricks keep down the need for expandable stack frames: The

interpreter specially recognizes tail calls to interpreted func-

tions, and the native compiler analyzes away many common

cases such as loops.

2.3 Keeping Safety

One of the principal advantages of Scheme over C is safety.

This means, roughly, that a Scheme program will not force

the machine to do anything that cannot be accounted for

within Scheme semantics. In particular, the machine cannot

be broken. Compare this to C, where out-of-bounds pointers

routinely trash unrelated data structures.

Safety is embodied by a set of system invariants, and a set of

checks to ensure those invariants. Like the GC-related
invariants, if one module fails to be safe, it can potentially

compromise the correctness of all other modules.

When coexisting with C programs, safety must be compro-

mised, if only because a C module is only as safe as the skill

and attentiveness of its programmer. More to the point at

hand, C modules often expose unsafe interfaces, This can

take the form of incomplete typing, as in the case of
print f and the generic XView accessors. The following

esh Scheme programs are unsafe

(printf “%s” n)

(xv_get mybutt on XV_LABEL)

In such cases, explicit coercions or even casts are needed

(printf “%s” (+char* n))

(%cast +char*

(xv_get mybutt on XV_LABEL))

Where possible, it is best to place such code in subroutines

which present safe interfaces, so that the problem is local-

ized as much as possible, Here is an abbreviated example

from our XView utilities:

(define (xv-get-string xvh attr)

(string-append

(%cast +char* (xv_get xvh attr))))

Another problem with C interfaces is that they expose deal-

location operations, so that it is possible to create invalid

handles to data structures. In a previous example, this was

seen with the C function f c 10 se.

Our approach to safety in esh has been to limit breaches of

safety to explicit uses of C functions and specially marked

unsafe Scheme functions. Unsafe esh Scheme functions, like

%cast, are all spelled with a leading percent sign. If percent

signs are avoided, and C functions are used intelligently,

applications will be safe.

This leads to interesting results when designing Scheme

primitives that operate on C types. The reader will now see

that pointer-ref and pointer- are safe functions,

while %pointer+ is unsafe. This is because only

%po int e r+ can creates questionable pointers. The

point e r- re f primitive is safe by virtue of the system

invariant we chose for pointers: A safe object tagged as a C

pointer is either the address of a valid object, or a null

pointer. This means that point e r- re f need merely per-

form a runtime check for null before indirecting, in order to

maintain safety.

The design described in the section ‘Wrings and Bignums” is

also determined by considerations of safety. The relevant

invariant is that strings and signed integers do not lose preci-

sion when converted to their C representations. This invari-

ant does not apply to the +unsigned and +void* types,

which therefore provide the means for losing precision,

when that is desired.

The coercions (as opposed to %ca st usage) are uniformly

safe, in that they do not produce new values which could be

used with safe operators to corrupt the system,

Other unsafe primitives create shared and unshared strings

and vectors from pre-existing blocks of memory. In that

case, the length of the block in question is taken on faith

from the programmer.

2.3.1 Regarding Type Safety

The correct use of representations is a fundamental and all-

encompassing invariant which ensures safety. This invariant

is usually called type correcmess, In languages like C where

every type has only one representation, static type checking

254

is a feasible way of ensuring the correct use of representa-

tions. In Scheme, static type checkers are harder to build.

Moreover, since Scheme supports multiple representations

per type (at least for number and top types), type checking

alone cannot ensure correct use of representations. This

leads to the use of dynamic dispatch to sort out representa-

tions at run time.

In the case where Scheme objects are of C types, the

dynamic dispatch merely emulates the same checks an ANSI

C compiler would perform statically. The runtime check is

guided by the same information that the compiler uses stati-

cally: The C type information contained in header files.

Thus, esh Scheme loses no C type safety.

3.0 Packaging and Naming Issues

We have reconciled the C and Scheme data models suffi-

ciently, and ensured that mixing Scheme and C will not vio-

late system safety, at least in an uncontrollable manner. The

final step is to enable Scheme and C modules to be packaged

in a form accessible to each other. For C running on Unix,

this means that there must be Scheme and header tile compil-

ers which can run in batch mode, can be driven from Unix

utilities such as “make” and “sit”, and turn source files into

Unix object modules.

This also means there must be conventions for naming inter-

face parts across module boundaries. We discuss this point

first.

3.1 Naming Conventions

When a compiled header file is linked or loaded into an esh

Scheme application, along with the library implementing the

interface, all names defined in the header file are available to

Scheme. The Scheme syntax used to access a given interface

part depends on the type of that part. Usually this syntax is as

close as possible to the syntax used by C clients, allowing for

lexical differences between Scheme and C, and allowing for

Scheme’s dynamic typing.

In order to avoid loss of precision in names, we had to com-

promise the Scheme standard. The esh Scheme reader nor-

mally preserves Unix alphabetic conventions, and does not

fold case. C names in Scheme keep their underscores.l

For the most part, names from header tiles are presented in

Scheme unchanged. However, since C puts certain names

1. This hss the useful effect of making C functions stand out

slightly from Scheme code.

into different namespaces or syntactic categories, while

Scheme has a uniform namespace and syntax, it was neces-

sary to add prefixes to certain C names. Here are the rules:

n

n

n

n

n

n

n

n

function

C functions are presented as Scheme functions of the

same name.

function-like macro

This works the same as a C function, but requires a hand-

written declaration of its effective type.

enum constant

This is just a Scheme variable of the same name, bound

tQ the constant’s value.

macro constant

This works the same as an enum constant (the macro

value is evaluated sometime before the first use).

typedef

The tag for a typedef name is available by prefixing the C

name with the “+” character, as for the builtins like

+int.

structure type

A structure type is obtained fkom its C struct tag by pre-

fixing the two characters “+/”, e.g., +/_iobuf.

structure member

A structure member tnmm is accessed using a unary

Scheme function of the form . mmm. For convenience,

there is also the unary Scheme function ->mmm, which

applies to struct pointers, and just dereferences the

pointer first.

variable

A C global variable, such as errno, is represented in

Scheme as an explicit lvalue object.

3.2 Accessors Revisited

An important part of the flavor of C comes from the notion

of an lvalue, which is a syntactic unit that may be used as

either the source or destination of an assignment. This means

that one operator, such as pointer indirection, can be used

two ways: both to load and store a value.

Standard Scheme uses a different, more verbose idiom.

When a data structure is updatable, there is a pair of func-

tions, one for loading and one for storing updatable values.

We have extended Scheme with a frequently-seen notion,

that of a settable operation. This allows us to avoid creating

separate functions for getting and setting pointer values and

structure elements. All accessor functions mentioned in this

paper are settable. All standard Scheme accessors are also

settable, and there is an easy way to build your own acces-
sor-based interfaces.

255

While a more detailed account of accessors can be found in

the comparison with Oaklisp, a single example here will

serve to convey the usefulness of accessors. It is a settable

version of the function xv-get-string introduced above:

(define xv-get-string

(make-accessor

(lambda (xvh attr)

(string-append

(%cast +char’ (Xv_get Xvh attr))))
(lambda (value xvh attr)

(xv_set xvh attr

(string-append value)))))

3.3 Interface Extractor

The interface extractor program “ix” scans C header files and

stores the information it finds therein Unix object files,

whichthencan belinkedwith orloaded into Scheme, impre-

cisely the same ways that a compiled C or Scheme module

can.

All examples of C interfaces in this paper rely on a previous

run of “ix” against a header file. For example, the X Window

System toolkit example works only when the proper toolkit

intrinsic files have been compiled and linked into Scheme.

We find it useful to batch-compile whole sets of header files

at a time, and link them into shared libraries, where the cost

of their code and read-only data can be amortized across

multiple esh-using client processes. This hasdone for large

modules, such as XView, the X Window System client inter-

face and toolkit, and the standard C libraries.

The header file compiler also works well for small modules.

For us, a minimal mixed language application requires not

two different compilers, but three. The application requires

an ANSI C header file which formalizes the interface

between the modules. The C compiler handles both the inter-

face and the C modules, but while Scheme code is compiled

by a batch Scheme compiler, the interface is processed sepa-

rately, by “ix”.

3.4 Native Compiler

Not much needs to be said of the esh Scheme batch compiler,

“eshc”, except that it packages its result as a Unix binary file.

Scheme load time operations are handled by SVR4 . init

sections, which contain module-specific code to be run at

application startup, or by a corresponding OS-specific fea-

ture.1

3.5 Other Capabilities

3.5.1 Block Compilation

As in all Schemes, modularity is enhanced by block compi-

lation. Block compilation can dramatically reduce the stor-

age and CPU time footprint of a Scheme module. We support

block compilation via two simple macros and one Scheme

extension. The extension allows define forms and other

forms to be intermingled arbitrarily within any lambda body,

with the same meaning as they have at file top-level. The two

macros are best illustrated by an example, which should be

sdf-expanatory. This file of code is used during interactive

developmerm

;;;; factorial-private. scm:

(define (ifact n ace)

(if (= n O) acc

(ifact (- n 1) (* acc n))))

(define (factorial n)

(ifact n 1))

(define (safe-factorial n)

(cond

((nOt (number? n)) (error “NAN!” n))

((negative? n) (error “negative ! “ n))

(else (factorial n))))

The following file of code is compiled for production use:

;;;; factorial-public. scm:

;; repackages factorial-private. scm

;; exposes factorial and safe-factorial

(define-block (factorial safe-factorial)

(include-file “factorial-private. scm”))

3.5.2 Loading Object Files

The Scheme load function operates on Unix shared

libaries, and merely dynamically opens the named module,

and ensures that the Scheme symbol binder is made aware of

it. Due to limitations in Unix, there is no unload or reload

functionality.

3.5.3 Named Call-in Functions

We support foreign call-in of a named entry point. When

generating native code, use of a special form define-c-

c a 11 ab 1 e wilt allow that a Stheme function to be bound to

a given C name and C type:

(define-c-callable (esh fact n)

(+ function +int +Tnt)

(let loop (n ace)

1. Thii feature was designed to support C+ static constructors.

256

(if (= n O) acc because global variables have to be used to pass information

(loop (- n 1) (* acc n))))) from the caller to the callback.

This encourages synergy with developers that are committed

to writing exclusively in C or C++.

3.5.4 Kernel Packaging

esh Scheme is packaged as a small Unix shared library. It

can be linked with a read-eval-print loop module to provide a

conventional interactive Scheme system or with other C/

Scheme object files to build arbitrary Unix applications.

3.5.5 C-Oriented Scheme Utilities

Certain library functions turned out to be useful. A C++-like

function new allows dynamic allocation of arbitrary C

objects. The +t ypeo f function yields the C type of a C

value. The s i ze o f function, applied to a C type, does the

expected thing.

There are also utilities for dealing with C arrays, especially

argv-style arrays.

(define (find-big-files dir minsize)

(define uid

(let ((pwd (getpwnam (cuserid O))))

(if (pointer-null? pwd)

(error “no user id”)

(->pw_uid pwd))))

(define (eachfile name stat entry-type)

;; Verify that this entry is a file,

;; itt s our file, and itl s big

(if (and

(= FTW_F entry-type)

(= uid (->st_uid stat))

(> (->st_size stat) minsize))

(printf “%s: %d KBytes\n”

name (->st_size stat)))

-- 0 means continue tree walking

i;

;; start the tree walk

(if (= -1 (ftw dir eachfile 32))

(perror “find-big-files failed’’)))

4.0 Example 5.0 Comparisonswith Previous Work

Theexampleesh function below prints the names offiles

found in the directory tree rooted atdir whose size,in

bytes, islargerthan minsize.Onlyfiles ownedbythecur-
rent user are reported. The function makes useofC types,

including some structtypes, and a collectionof functions

fromtheUnixClibrary:

cuserid, getpwnam

return the current user id (string) and password entry

respectively. The latter is used to lookup the integer user

id.

printf, perror

utility functions for printing text and error messages.

ftw

recursively descends a directory tree, breadth first, and

applies a callback function to each file and directory

name, a pointer the corresponding stat struct, and a flag

that roughly characterizes the entry.

It is useful to compare our problem space and our solutions

with those of similar systems.

5.1 Common Lisp

All of the commercial implementations of Common Lisp

(CL) include support for what is usually called a foreign

function interface (FFI) that supports calling functions

defined in other languages, usually C and Fortran. [Sexton]

reviews the FFI’s for Franz ExCL, DEC Vax Lisp, and Lucid

Common Lisp.

Our work goes beyond the typical Common Lisp FFI in three

ways. First, we support all C types accurately, where the typ-

ical FFl handles a small set of scalar types, augmented by a

space of memory layout types corresponding to C structs.

That is, we allow full foreign call-out. Second, we can

dynamically generate call-in functions, which makes all

Scheme functions effectively accessible to call-in. Third, our

packaging techniques allow Scheme code to run unobtru-

sively within libraries, even presenting a C interface to other
modules.

This example is interesting because how one can pass an

inner function, each file in this case, directly to a C func-

tion. Writing something comparable in C is relatively clumsy

257

5.2 Oaklisp

The internal architecture of esh Scheme is similar to that of

Oaklisp Pearlmutter]. Both are “object-oriented at the ker-

nel”, in that user-visible types routinely have multiple

classes representing them.

Oaklisp supports classes in the “classicat” Smalltalk [Gold-

berg] sense: It has an explicit inheritance hierarchy, a uni-

form object representation system known by the garbage

collector, and a metaobject protocol [Kiczales] powerful

enough to build a universal data inspector.

Our Scheme makes do without any of these things. We

achieve modularization and code sharing “the old fashioned

way”, with subroutines and abstract data structures, control-

ling the semantics of runtime dispatch via callbacks into a

tiny metaobject protocol. The garbage collector knows only

about ma 11 oc blocks, and within that loose framework we

are free to use whatever representations are required for con-

venience, performance, or consistency with C.

Oaklisp has explicit notions of setter and coercer which esh

Scheme also uses, to better model C coercions and Ivalues.

There are differences in detail:

Oaklisp esh Scheme

((coercer string) x) (+char* x)

(set! (car x) y) same

((setter car) x y)

((accessor-setter car) y x)

Our coercion syntax is simplified by making tags implement

Scheme procedure protocol.

Both systems support settable functions. Both support a

generic setter operation which retrives the method for set-

ting.

In esh Scheme, as in CLOS, the value precedes the other

arguments to the setter. More fundamentally, the semantics

of set! are not defined in terms of the setter protocol, but

rather the reverse: The setter operation has a default method

(written in C) which acts like this:

(define ((accessor-setter f) v . a)

(set! (apply f a) v))

The type characterized by procedure? has a subtype

characterized by access or ?. The usual way to make an

instance of this type is to call the esh Scheme function

make -access or on two fictional arguments. ‘fhe resuh-

ing object works like its first procedure argument, by virtue

of delegation, not inheritance. Our acces sor-set t er is

not a settable operation, and is not even guaranteed to pro-

duce equal results for equivalent calls.

In our implementation, this requires a schema of low-level

set-call operations, parallel to the schema of call operations

supported by the procedure type. This replication of dispatch

operations tends to make set ! of comparable efficiency to

procedure catl, an important goal when C data structures&e

being updated.

The Oaklisp operation make is too high-level to correspond

to any esh Scheme construct. Also, we treats et ! of a vari-

able as a primitive, rather than elegantly deriving its value

from locatives and setters as Oaktisp does.

5.3 Scheme->C

The Scheme-based work most similar to our interface extrac-

tor is the declaration compiler catled “cdecl”, which is a part

of DEC’S Scheme->C [Bartlett] system. The output of cdecl

contains function, constant and type declarations, like that of

ix. Like the Common Lisp systems described above, cdecl

defines a sub-language for declaring functions and types

within Lisp. This language is further processed by the Lisp

compiler. The type system it describes is neither Lisp nor C,

but a judiciously chosen system of machine-level representa-

tions, which overlaps strongly with C. Finally, the runtime

representation of Scheme values in this type system uses

boxing mechanisms for representing the C values in terms of

Lisp types. C functions are boxed in Lisp stub functions, and

C pointers are boxed ti~oreign pointer structures.

By contrast, the esh implementation of Scheme represents all

C functions and data structures as first-class Scheme objects.

‘Ibis is made possible by a very large space of tags, including

one for each ANSI C type. In fact, tags are pointers to type

description objects with their own metaobject protocol

Rose], and each tagged value consists of a two words, a tag
and an opaque value. Because of this, only multi-word C

data need to be boxed on the heap. The output of ix is not a

separate Lisp-oriented declaration language, because there is

no need for a human-readable specification of interfaces

other than ANSI C header files. The output of ix is a Unix
object file which contains the runtime structures necessary to

represent the ANSI C types, functions, variables, and con-

stants of the desired interfaces.

Because of these tagging techniques, access to C interfaces

is very efficient, as efficient as access to native Lisp func-
tions and data, C data structures rarely require boxing on the

258

heap, and functions can be called with minimal tag-checking

overhead, usually a few tens of instructions. (Our optimizing

compiler will perform these checks statically, if the opportu-

nity arises, generating code equivalent to that of the C com-

piler.)

Like esh, Scheme->C supports mixed-language applications,

and even libraries implemented in Scheme. Like esh,

Scheme->C uses the C control stack directly. This limits the

ability of both languages to perform some tail calls. In the

case of Scheme->C, only inlined functions can be tail-called,

while esh gets even cross-module calls right, by the use of

some assembly code, if there is no need for reformatting

argument lists (apply currently does not perform tail calls).

Scheme->C gives ca 11 / cc continuations indefinite life-

time--a nice trick since the C stack is involved--while esh

does not.

5.4 ParcPlace Smalltalk

The Objectkit(TM)Wmalltalk C Programming product from

ParcPlace Systems is able to assimilate C header files in such

a way as to allow C data structures and functions to be

accessed from Smalltalk methods. Because this is an auto-

matic process, call-out from Smalltalk is very easy, as with

Scheme->C and esh, and unlike the Common Lisp systems.

Since Smalltalk is fundamentally object-oriented, C func-

tions are normally represented as methods on objects. How-

ever, since Smalltalk defines a protocol for “closure” objects,

C functions can optionally be represented as objects in their

own right. For example, this allows a Smalltalk program to

pass C functions as arguments to other C functions. As in

esh, a Smalltalk closure object can also be passed as an argu-

ment to a C function that expects a C function as an argu-

ment; Smalltalk constructs the necessary thunk on the C

heap automatically, to provide proper calling back into

Smalltalk [Deutsch].

graphic database. Thanks also to Peter Deutsch for up-to-

the-minute information on Smalltalk FFIs.

8.0 References

[Appel] Andrew W. Appel, “Garbage Collection,” ch. 4 of

Lee], 1991.

&Mrtlett] Joel Bartlett, “Scheme->C a Portable Scheme-to-C

Compiler”, Research Report 89/1, DEC Western Research

Laboratory, January 1989.

I?30ehm] Hans Boehm & Mark Weiser, “Garbage Collection
in an Uncooperative Environment,” Software, Practice and

Experience, Sept. 1988.

Petlefs] David L. Detlefs, “Concurrent Garbage Collection

for C++,” ch. 5 of De], 1991.

~utschl L. Peter Deutsch, personal communication.

[GNUEmacs] Richard Stallman, GNU Emacs Manual, Sixth

Edition Version 18, March 1987.

[Goldberg] Adele Goldberg & David Robson, Smalltalk-80:

The Language and its Implementation, Addison Wesley,

1983.

~eller] Dan Heller, Xk?ew Programming Manual, O’Rielly

and Associates, 1990.

[Kiczales] Gregor Kiczales, J. de Reveres, and D. Bobrow,

The Art of the Metaobject Protocol, MIT Press, 1991.

Lee] Peter Lee, Advanced Programming Language Imple-

mentation, MIT Press, 1991.

pearlmutter] Barak A. Pearlmutter & Kevin J. Lang, “The

Implementation of Oaklisp~ ch. 8 of [Lee], 1991.

6.0 Conclusion

The esh implementation of Scheme provides a fresh look at

foreign language interfaces, by endeavoring to make C/Unix

look as un-foreign as possible, without compromising the C

type or value systems.

7.0 Acknowledgements

We would like to thank Peter C. Damron, Robert. R. Henry,

and Steven Muchnick, for the use of over lMb of biblio-

mose] John R. Rose, “A Minimal Metaobject Protocol for

Dynamic Dispatch: 00PSLA ’91 Reflection Workshop.

[Sexton] Harlan Sexton, “Foreign Functions and Common

Lisp: Lisp Pointers v. 1, n. 5, March 1988.

[Young] Douglas A. Young, X Window Systems Program-
ming and Applications with Xt, Prentice-Hall, 1989.

259

