Tachyon Common Lisp: An Efficient and Portable
Implementation of CLtL2

Atsushi Nagasaka, Yoshihiro Shintani, Tanji Ito
Oki Electric Industry Co., Ltd, Systems Labuiatories
11-22, Shibaura 4-chome, Minato-kn, Tokyo 108, Japan

Hiroshi Gomni. Junichi Takahashi
OKI Techno Systems Laboratory

8-10, Uchiyama 3-Chome, Clikusa-ku, Nagoya 464, Japan

Abstract

Tachyon Common Lisp is an efficient and portable im-
plementation of Commeon Lisp 2nd Edition. The design
objective of Tachyon is to apply both advanced opti-
mization technology developed for RISC processors and
Lisp optimization techniques. The compiler generates
very fast codes comparable to, and sometimes fastes
than the code generated by UNIX C compiler. Com-
paring with the most widely used commercial Common
Lisp, Tachyon Common Lisp compiled code is 2 times
faster and the interpreter is 6 times faster than the Lisp
in Gabriel benchmark suit. Tachyon Common Lisp is
the fastest among the Lisp systems known to the au-
thors.

1 Introduction

One of the biggest problems of Lisp is its slow execution
speed. Current commercial Lisp systems on stock hard-
wares produce fairly good code using advanced compiler
techniques [Brooks 86], [Steenkiste 86]. In the authors’
experiences in the development of a Lisp dedicated ma-
chine ELIS [Okuno 1984}, originally developed by NTT
and later by NTT and OKI, which has a micrecoded
interpreter and a byte-code emulator for compiled code,
Lisp dedicated machines now have no advantages, at
least in compiled code speed. This is partly due to
lack of applicability of this advanced compiler technol-
ogy and partly to device technology available for special
purpose processors.

Permission to copy without fee all or part of this material
is granted that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given thet copy-
ing is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific
permission,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distnbuted for
direct commercial advantage, the ACM copynght notice and the
title of the publication and its date appear, and notice is given
that copying i1s by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

1992 ACM LISP & F.P.-6/92/CA

© 1992 ACM 0-89791-483-X/92/0006/0270...$1.50

270

However, this advanced compiler techuology developed
for RISC processors hias not heen fully applied for Lisp
systems so far. In Lisp world, the focuses were on Lisp
proper optimization techniques such as tail recursion op-
timization. Lisp has been behind Fortran and C in ma-
chine code level optimization, which is required in RISC
processors.

The another problemn of recent Lisp systems is the
slow »pred of their interpreters. Since Common Lisp
[Steele 84] is a comapiler orieuted lisp. designers of Com-
mon Lisp systems tend to lay emphasis on the speed of
compiled code. In addition, since portability or retar-
getability of a Lisp system is imnportant for implement-
ing a Lisp systemn on a variety of processor classes, the
large portion of the systemn is roded in a machine in-
dependent way, using C and Lisp itself. This results in
rather slow interpreters.

One of the strong points of Lisp is its interactive feature
and this is one of the sources of the high software pro-
ductivity of Lisp. The speed of the interpreter is crucial
for an interaclive enviromnent.

We developed an implementation of the second edition
of the Common Lisp language specification [Steele 90]
called Tachyon Common Lisp. In addition to the lan-
guage features defined in CLtL2. Tachyon Common Lisp
also provides some extended features which are required
in development of application software, including a for-
cign language interface facility, a graphical user interface
such as X-window toolkit and Motif interface, a support
of Japanese character set, and a software development
environment,

The design objectives of Tachyon Common Lisp are high
execution speed of both interpreter and compiled code,

and portability. Our strategy for optimization is to com-
pletely apply two kinds of optimization technique; Lisp
specific optimization and recent RISC processor opti-
mizations,

In Gabriel benchmarks, Tachyon Common Lisp is 6
times faster in interpreter and 2 times faster in compiler
than a widely used commercial Common Lisp. Tle com-
piled code is comparable to and for some benchinarks
faster than C code.

This paper describes the implementation architecture
adopted in Tachyon Common Lisp.

2 Language Kernel

The Language kernel of Tachyon Common Lisp called
Plisp is a small lisp which has machine independent
specifications to increase the portability of Tachyon
Common Lisp. Plisp also supports type specific primi-
tive functions for compiled code entries. We here explain
some of the designs adopted in the implementation of
Plisp to achieve a very efficient language kernel.

2.1 Implementation of Language kernel

To implement an efficient language kernel, the kernel
Plisp was coded in a lisp like macro assembler. Also,
the following implementation techniques were used.

Lisp object

A lisp object is represented in 32 bits and consists of
pointer part and tag part. The design of the tag scheme
in Plisp was developed so as to achieve both fast accesse
to lisp objects and a large address space. Tag part is of
variable length with 3, 6, or 8 bits including the GC
bit. The least significant bit is used as the GC bit. Tag
in Tachyon consists of 20 types and a part of them is
shown below.

Table 1: Tags in Tachyon Common Lisp (part)

Data Type Tag assignment
Symbeol B 01G
| Cons 11G
Fixnum 00000G
Simple Vector 00110G
Simple String 00010G
nction 10000G
ingle Float 1011110G

By placing the tag part in the lowest position of the
lisp object and assigning the tag “000” for fixnum, ad-
dition and subtraction of fixnums are executed without
extra operations. For cons cell and symbol, tags are as-
signed so that lisp objects point to their object bodies.

271

This assignment made it possible to access cons cells
and symbols without tag masking operations,

Type specific data structure

Vectors and arrays in Common Lisp have general pow-
crful features such as fill pointers and adjustable ar-
rays. These features make compiler and interpreter
slow. Tachyon Conmimon Lisp provides simple vectors
and simple arrays, separately implemented from general
vectors and arrays.

Register convention and argument passing

In RISC philosophy, it is important to decrease the num-
ber of memory accesses, provided that a large register
sct is given.

7 of 32 general registers are used as global registers.
These variables are permanently placed on the registers
and never saved onto stack. which reduces stack access
opcrations. Tachyon Common Lisp uses 8 registers for
parameter passing in function calling. In the case of
more than 8 arguments, the first 8 arguments are placed
in registers and and the rest of the arguments are placed
on the stack.

Table 2: Register Usage in Tachyon/i860

[Register | Usage |
0 All Zero
rl Return Address
r2 System stack pointer
3 Lisp frame pointer
14 Lisp stack pointer
5 Environmeut frame pointer
8 System mode
17 Global pointer
18 NIL
rl4 Address of &rest vaniables
r15 No of arguments/retutn values
r16 - 123 | Arguments/Retuin values
| rest Work registers

Multiple values are also returned in registers in the same
way to decrease memory accesses,

Stack overflow check

Using the page-wise meniory protection facility of UNIX
System V R4, stack overflow checks in stack accesses
can be removed, which significantly improves the speed
of stack operations, The memory page being placed
above the stack boundary is memory protected. Mem-
ory accesses exceeding the boundary cause a miemory
protection fault. Each stack access does uot require a
stack overflow check.

Global variable table
In i860 [Intel 89] and also many other RISC CPUs, load-
ing a datum into a register requires 2 instructions as

shown below.
orh addressdha, 0, r31

1d.1 address@l(r31), r31
For reducing the overhead in variable references, global
variables defined in Common Lisp and variables that
are frequently accessed by the interpreter are located
together on a global data table. Using a register which
points to the top of the table, these variables are ac-
cesged in one instruction,

1d.1 offset(r7), r3i

2.2 Type specific functions

One of the features of Common Lisp is its type generic
operations represented by sequence functious. To reduce
the overhead of run-time type checking, Plisp provides
type specific functions and functions with fixed number
arguments especially for compiled code,

When type and number of arguments is known to the
compiler at compilation time, the compiler produces
code that calls these type specitic Plisp functions.

2.3 Lisp style macro assembler LT

To implement a fast language kernel and to improve the
portability of Plisp, Plisp was coded in a lisp like as-
sembler LT (short for Lisp Translator) which was newly
developed by the authors. Unlike ordinary macro as-
semblers, an LT program looks like a Lisp program. LT
keeps both the complete access to hardware capability
and the high readability of Lisp. Only 2 % of Tachyon
Common Lisp was coded in C and the rest was coded
in LT and Common Lisp in a metacircular way.

The features of LT are given below,

o LT can access all hardware capabilities.
Users can assign variables to registers so that reg-
ister saving and restoring overheads are minimized.
Inside Plisp, virtually no register saving or restor-
ing in function call is needed.

e Syntax of LT is close to that of Common Lisp.
LT has only 20 original constructs and can be easily
extended using Common Lisp macro facility. (LT
itself was developed in Common Lisp) Using this
extendibility, LT allows programs to be portable
and bighly readable.

¢ LT supports delayed branch
Combining a delay-expression of LT and macro fa-
cility, branches can be used without detailed knowl-
edge of the target processor. An example of delayed
branch is given below.

(detmacro goto (entry)
‘(delay (br ,entry)))

(setq 74 1) br label
(goto label) addu 1, r0, 14

An example of LT coding is given below.
(defmacro WHILE (¢ i 2rest body &aux label)
{setq label (create-temp-label))
‘(block nil
,1abel
(if (not ,c) (return))
,@(cons 1 body)
(goto ,label)))
(defmacro CDR (x) ‘(vord ,x -2))
(defmacro COKSP (x &optional (tmp x))
‘(progn (setq ,tmp (and ,x #b110))
(» .tmp ®b110)))

;: Function length returns the length
;; of a linear list.
(defun length (list Raux tmp count)
(setq count 0)
(WHILE (CONSP list tmp)
(setg count (+ count 1))
(setq list (CDR list)))

)

2.4 Memory management

The ratio of time consumed by garbage collection in
program execution is large and suspending program ex-
ecution caused by GC is not desirable for applications.
Tachyon Common Lisp emnployed Ephemeral GC as its
memory management scheme,

Heap memory space consists of a list of meniory regions,
which are allocated as needed. A Lisp abject 1s first al-
located in the youngest region. As the existing time pe-
riod of an object gets longer, the object is moved to the
older regions by GC. The memory manager usually exe-
cutes copying GC for the voungest regions and executes
compactifying GC for older regions in the direction of
the oldest.

A feature of the GC of Tachyon is that the number of
regions for the copying GC is dynamically varied de-
pending on the amount of garbage collected in the last
GC or on some meumory usage estimate. This improves
the efficiency of GC.

3 Intermediate code: Lcode

3.1 Register machine

Leode, the intermediate code for Tachyon Common Lisp
compiler, is based on the register machine model be-

272

cause Tachyon Common Lisp is targeted on comput-
ers with a RISC processor. Lcode is designed so that
Tachyon Common Lisp runs efficiently on RISC proces-
sors with a large set of registers{usually 32 registers).
As shown, the model 1s simple and generally reflects the
common features of RISC processors, which contributes
to its high portability and efficiency.

Stack

Lcode has a virtual stack for placing function frames
and data on. The actual implementation of Tachyon
Common Lisp on i860 has two stacks, Lisp stack and
system stack. However, system stack does not appear
in Lcode.

Registers
Lcode assumes that a processor has a sct of general pur-
pose registers, and the uses of some of the registers are
predefined as shown below.

¢ Arguments

¢ Return values

e Number of return values

o NIL

o Stack pointer

s Function body

3.2 Lcode primitives

Lcode consists of about 40 primitives. Primitives are
classified in the following categories;

(1) Function interface (6) Stack operation
(2) Argument check (7) Branches

(3) Multiple value (8) Non-local exit
{4) Function creation (9) Error handling
(5) Data transfer (10) Vector operations

Each primitives has an attribute code in its argument.
An attribute code provides information obtained in the
program analysis phase of the compiler, such as type of
arguments, recursion instruction, current stack depth.
This information is used in the code generation phase
and helps the code generator to produce efficient codes.

4 Optimizing Compiler

The optimization strategy in Tachyon Common Lisp is
to exhaustively apply the following two kind of optimiza-
tion techniques, (1) Lisp proper optimization techniques
such as tail recursion optimization and program unfold-
ing and (2) recent optimization techniques developed for
the RISC processor such as instruction scheduling and
register allocation using the large register set.

4.1 The structure of Compiler
The compiler consists of the following phases.

1. Preprocessing phase
- Macro expansion and inline expansion of flet la-
bels and so on,
2. Syutax analysis and Variable analysis
- Syntax analysis
- Type inference for variables
- Constant folding etc
3. Translation to upper level intermediate language
- Tianslates functions into more primitive func-
tions: ex. map functions
- Removal of closures and cell consuming functions
4. Translation into Leode
- Translation into Lcode
- Global/local optimization

5. Translation into Assembly code
- Iuline substitution
- Local optimization

6. Translation into machine code

7. Luading onto memory

4.2 Optimization techniques

In addition to the following basic optimization tech-
nigues, Tachyon applies the more advanced optimizing
methods described below.

Machine code
(1) Remove Non-reachable

Lcode
(1) Removal of closures

(2) Removal of cell code

(2) Remove push/pop pain
{3; Remove double jumy:
(4) Direct call

(8) Branch optimization
(6) Instzinction schedule

consuming function
(3) Remove double jump
(4) Remove push/pop pair
(57 Constant folding
(G} Branch optimization
(7) Register allocation
{8) Tail recursion
optimization

Code generation through Data type inference

The absence of type declaration for variables is the cause
of inefficiency of Lisp, compared with other languages.
Data type inference has been studied and applied for
code optimization [Shivers 91). Tachyon Common Lisp
also applies the type inference techniques to improve
compiled code speed. The Compiler has a database
on the language specifications of Common Lisp. The
database contains the information on data type of ar-
guments and return values for each Common Lisp func-
tion and each Tachyon internal function including Plisp.
If the data type of a vaiiable is deterntined, the com-
piler generates type specific operations for the variable.
In addition, since Plisp provides type specific functions
and functions with a fixed number of arguments, the

273

overhead in the run-time libraries is minimized.

[Steele 78] showed that with knowledge on the language
constructs, a compiler can produce better code. The
compiler also knows the specifications oun coutrol {o
primitive functions (and special forms and macros). Us-
ing this knowledge, the compiler analyzes prograws to
produce more efficient code.

e Type specific functions
If the data type of arguments is determined, the
compiler produces a code which calls the type spe-
cific functions.

Example 1:

(delete item limt)

4
(deleate-list item list)

;3 item, list are lists

Example 2:

(setq x (length y)) ;; Function length returns
;; & fixnum.

;+ The compiler generates

;» fixnum addition.

" x;...

The compiler generates a fixnum addition followed
by intovr instruction. If the fixnum addition
causes an overflow, intovr detects the overflow and
the result is converted into a bignum in the overflow
handler.

Type of Arguments

If data type of arguments is determined. type check-
ing code can be removed and the cowpiler produces
code which call a function with no type checking.
Multiple values

If the number of return values of a function is
known, processing of multiple values will be sim-
plified. The next is the case of {multiple-value-setq
(x y z) (floor a b)) with 2 values,

Example 3:

(floor a b)

it number of values > @
x = valuel or nil

if number of values > 1
¥ = value? or nil

if number of values > 2
Z = values3 or nil

(floor a b)
x = valuel
y = value2
z = nil

=

Direct Function Call

In the direct function call [Zorn 90], a caller function
directly passes the control to the entry point of a callce
function to reduce the overheads in regular function calls
through function symbols. The problem in direct func-
tion call is the redefinition of callee functions. Tachyon

handles this problem by maintaining the information on
the calling functions,

274

Specialization

The aptimization, based on the knowledge of fuuction
specifications and ahout specialization by function com-
bination, is applied in the compiler. As an example,
for the inline substitution of a test-function in a condi-
tional branch, if the return value of the function is not
required, then the compiler produces a code to branch
without creating the return value.

Inline substitution of functions

Lisp primitive functions are inline substituted to reduce
the function calling overheads. User defined leaf func-
tions are also inline expanded according to the optimiza-
tion declaration.

Instruction Scheduling

Instruction scheduling for delayed slot and register as-
signment techniques for a large set of registers developed
for RISC processors are used. Intel 1860 has the three
tvpes of delayed slots; delayed jump, delayed branch af-
ter operation {a delayed slot for a conditional branch
immediately after an operation) and delayed load. The
comnpiler schedules instruction streams to fill these de-
layed slots.

5 Portability

Efficiency and portability are conflicting targets. To
achiceve the portability, Tachyon separated the machine
dependent part from the machine independent part.
Figure 1 shows the structure of Tachyon Common Lisp.
Only the macro definitions for low level primitives in
Plisp and Machine attributes file are machine depen-
dent.

For portability, Tachyon adopts the following design
schemes.

e Clear separation of wachine dependent and inde-
pendent part,

Implementation of Plisp in a Lisp like macro as-
sembler LT. Using macro facility of LT, porting
Plisp onto a different processor can be easily done
by rewriting machiue dependent macros.

Machine independent intermediate code Leode and
Machine attribute file

Leode is wmachine independent intermediate code
and the code generator produces machine code by
referring the information described in the Machine
attribute file,

Tachyon Commeon Lisp was first implemented on OK-
Istation7300 and later ported onto SparcStaion2. The
porting of the interpreter and the compiler required
about 2 man-months and 2 man-weeks respectively. The

Figure 1: Structure of Tachyon Comman Lisp

Common Lisp

Library Functions Translator

L Leode

Code Generator

Machine
Attributes

Plis

Eval Liep Memory
Prmtvs i Mge

Interpreter

Euembler/ Loader

Compiler

porting of the interpreter included redesign of inter-
nal structure of Plisp for improving the portability and
reimplementation of LT. This shows that Tachyon Com-
mon Lisp certainly has high portability.

6 Performance

Table 3 compares Tachyon Common Lisp on OKIsta-
tion7300 against Lucid Common Lisp (Version 3.0) on
SparcStation 2 in interpreter for Gabriel benchmark.
Tachyon Common Lisp on 1860 is 6.02 times faster than
Lucid Common Lisp after normalizing hardware per-
formance with SPECint. The superiority of Tachvon
Common Lisp interpreter ta Lucid Common Lisp mainly
comes fromn the efficient implementation of Plisp.

Table 3: Gabriel Benchmarks/Interpreter (scc)

Benchmark | Tachyon CL/i860 | Lucid CL7]
Tak 1.589 9.950
Stak 3.031 19.210
Ctak 2.317 12.250
Takl 12671 110.160
Takr 1.918 11.440
Boyer 26.600 135.820
Browse 39.910. 189.750
Destructive 7.350 46.090
Traverse-init 53.700 750.790
Traverse-run 267.400 | 2077.630
Derivative 4.090 22.130
Dderivative 4.940 19.870
Div2-iter ~ 5 480 38.900
Divirec 1520 21,7407]
FFT 2.170 10.390
Puzzle 40.340 231.630
Triangle 480.370 | 3486.160

T?.ble 4 shows the comparison of Tachyon Common
Lisp, Lucid Common Lisp, and CMU Common Lisp
{Version 15a) [MacLachlan 91},{Fahlman 91) in the com-
piled code for the same benchmark. In the table,

Tachyon/i860 is the version for OKIstation7300 and
Tachyon/Sparc is the version for SparcStation2. Lucid-
Development represents Lucid development mode com-
piler and Lucid-Production represents Lucid production
mode compiler. “1atio” means the relative speed against
Lucid production mode compiler. Tachyon/i860, Lucid
Common Lisp and CMU Common Lisp all runs on the
same SparStation 2.

Each programs was compiled with the same opti-
mization optien; speed=3, safety=0. space=0. and
compilation-specd=0 except for Lucid development
mode compiler{compilation-speed=2). The ephemeral
GC is disabled in Lucid Common Lisp. The Sparc ver-
sion of Tachyon 1s not fully optimized vet and does not
use the register window architecture of Sparc. The table
shows that Tachyon Conmimen Lisp is 2.01 times faster
than Lucid production mode compiier and 3.53 times
faster than Lucid development mode compiler. Both
are geoimetiic weans over the benclunarks.

Figure 2 1s the graph of Table 3. The two graphs
of Tachyonu/i860 and Tachyon/Sparc are of the simi-
lar figure. Speed improvement of Tachyon/Sparc over
Tachyon/i860 in Takr is due to the size of cache memo-
ries.

Table 5 is shows the effects of cach optumization tech-
niques. Optimization techniques are divided into the
three categories; Inline substitutions, Direct function
calls, and Instruction scheduling including peephole op-
timizations. The effect of type inference is not given here
because its code is spread out over the compiler and it is
difficult to measure its effect. In the table, *All" means
that all the optimizations are apphed. “None" means
that noue of the above three is applied. and “All 2 Di-
rect call” means that direcr function call is not applied.

The optimization techniques are listed in order of effec-
tiveness; Instruction scheduling and peephole optimiza-
tion (30%), Inline substitution (20%) and Direct func-
tion call (147). It should be noticed that these values
are geometric mean over the benchmark suit and that
each optimization technique is not independent from the
others. For example, direct function call doubles the
speed of Boyer but does not effect to Tak, though both
are function call intensive programs, because tail recur-
sion optimization gives the same effect.

Even without applyving the three optimization tech-
niques, the speed of Tachyon compiler is still comparahle
to Lucid production mode compiler. It is concluded that
type inference and other optimization techniques includ-
ing the implemnentation of Plisp greately contribute to
the efficiency of Tachyon Commeon Lisp.

275

Table 4: Common Lisp Performance Comparison

Benchmark Tachyon /1860 Tachyon/Sparc Lucid-Development | Lucid-Production | CMU Cominon Lisp
time(sec) | rafio | time(sec) | ratio | time(sec) ratio | tmefsec) | ratio | time(sec) ratio
“Tak 0.051 0.90 0.041 1.12 0.100 0.46 0.049 1.00 0.120 0.38
tak 0.243 3.47 0.287 2.94 1.020 0.83 0.855 1.00 0.300 2.81
~Ctak 0.170 | 1.63 0.189 | 1.49 0.420 0.67 0.292 1.00 0.449 0.63
akl 0.115 1.78 0.122 1.68 0.640 0.32 0.200 1.00 0.346 0.59
akr ~ 0,115 0.45 0.045 1.44 0.100 0.65 0.069 1.00 0.232 0.28
Boyer 0.770 2.23 0.660 | 2.61 2.950 0.38 2.331 1.00 2.250 0.76
Browse 0.460 5.17 0.480 4.98 4.190 0.57 3.101 1.00 7.790 0.31
Destructive 0.198 1.40 0.160 1.74 0.480 0.58 0.389 1.00 0.465 0.60
Traverse-init 1.281 1.12 1.387 1.03 5.430 0.26 1.425 1.00 2.420 0.39
averse-run 3178] 1.15 3.207 | 1.4 20.740 0.19 4.045 1.00 4.970 0.80
Derivative 0.280 1.64 0.270 1,70 0.740 0.62 0.565 1.00 0.450 1.02
Dderivative 0.390 | 1.51 0.320 1.84 0.860 0.69 0.633 1.00 0.680 0.87
Div2-iter 0.170 1.41 0.170 1.41 0.320 0.75 0.264 1.00 0.260 0.92
Div2-rec 0.150 | 8.80 0.160 | 8.25 1.170 1.13 1.114 1.00 0.380 3.47
CTET 0.109 | 2.66 0.159 | 2.09 0.490 0.55 0.397 | 1.00 0.640 0.45
uzzle 1.430 2.61 2,301 2.54 4.590 (.81 4.066 1.00 10,900 0.34
Triangle 16554 | 1.78 14.398 | 2.05 42,000 0.70 32.220 1.00 106.490 0.28
[Geometric mean | T 1.98 | T 2.01] T 0.57 1.00 | i 0.66 |
9 T T T T T T T T T T T T T
8 = Techyon/iBED mmem _]
Tlch)'cn/-plrc ——
TF CMU L % »]
6 L Luycid-'re = _J
Lucid-Dev
5
4
3
2 b
1 4
0 L T e S e A T S
Tak Stak Ctak Takli Takr Boyer Browse Dstre Trvs-i Trvs-r Deriv Dderiv Div2i Div2r FFT Puzzle Triangle
Figure 2: Common Lisp Performance Comparison
Table 5: Effect of Optimization Techniques
Benchmark All All & Direct call All & Inline All © Schedule None
“timeisec) | ratio | time(sec) | ratio | tume(sec) | ratio | time(sec) | ratio time{ser) | ratio
ak 0.051 1.00 0.051 1.00 0.700 0.73 0.090 0.57 0.109 0.47
Stak 0.243 1.00 0.243 1.00 0.288 0.84 0.261 0.93 0.306 0.79
Ctak 0.170 1.00 0.170 1.00 0.188 6.92 0.213 0.81 0.232 0.74
Takl 0.115 1.00 0.196 0.59 0.115 1.00 0.443 0.26 0.524 0.22
Takr 0.145 1.00 0.254 .57 0.152 0.95 0.216 0.67 0.338 0.43
Boyer 0.770 | 1.00 1.610 | 0.45 T.070 | 0.72 1.I60 | 0.67 2480 | 0.31
Browse 0.460 1.00 0.470 0.98 1.220 0.38 0.610 0.75 1.590 0.29
Destructive 0.198 1.00 0.198 1.00 0.269 0.74 0.265 0.75 0.363 0.55
Traverse-init 1.281 1.00 1.424 0.90 1.741 0.74 1.705 0.75 2.342 .55
‘Traverse-run 3.178 1.00 3.477 1.00 3.49% 0.99 5.235 0.66 5.246 | 0.66
Derivative 0.280 | 1.00 0.410 | 0.68 0.3¢0 | 0.78 0.360 | 0.78 0.580 | 0.48
Dderivative 0.390 1.00 0.490 0.80 0.480 0.81 0.420 0.93 0.760 0.57
Div2-1ter 0.170 1.00 0.170 1.00 0.150 0.94 0.210 0.81 0.240 0.71
Div2-rec 0.150 1.00 0.150 1.00 (.190 0.79 0.210 0.71 (.230 0.65
FET 0.109 1.00 0.114 0.96 0.120 0.91 0.132 0.83 0.149 0.73
Puzzle 1.430 [1.00 1.478 17 0.97 1.683 | 0.85 1.884 | 0.76 2187 | 065
" Triangle 16.554 1.00 16.59% 1.00 21.682 0.76 25.138 0.66 29.924 0.55
e —————
[Geometric Mean | T 1.00 T 086 | [0.80 | [o70 [T 057]

276

For performance comparison of Tachyon Common Lisp
and C, some benchmark programs in Lisp and C were
run on OKlstation7300. Lisp programs were converted
into the equivalent C programs and C programs werc
rewritten in Common Lis. Type declarations are given
for Lisp programs.

Table 6: Comparison Tachyon and C

Benchmark Tak Takr Sieve
Tachyon/i860 0.031 0.083 0.018
Tachyon /Spare 0.024 0.033 0.017
PCC/i860 0.047 0.105 0.010
SUNC 0.078 - 0.084 0.022
SUNCwith-0 0.026 0.041 0.007

Table 6 shows the result of the comparison. In com-
parison with C, Tachyon is faster than C code in some
benchmarks such as Tak. As shown in Sieve, array ref-
erences and loop constructs of Lisp are slower than C,
but they can be improved for typical simple arrays.

7 Concluding Remarks

An efficient and portable Common Lisp based on the
CLtL2 language specification was developed. Compar-
ing with other Common Lisp systems, Tachyon Com-
mon Lisp is 2 or more times faster and its code is com-
parable to and sometimes faster than C code. Tachyon
Common Lisp is the fastest among the Lisp systems
known to the authors. In the current version of Tachyon
Common Lisp, machine code level optimization and
some of the planed optimization techniques have not
been finished and there is a room to improve the per-
formance.

Tachyon Common Lisp shows that there are many op-
portunities to improve the performance of Lisp systems
by applying the advanced compiler techniques developed
for RISC processors and Lisp specific optimizations such
as type inference.

References

[Brooks 82] Rodney A. Brooks, Richard P. Gabriel, and
Guy L. Steele Jr. An Optimizing Compiler for Lex-
ically Scoped LISP, Proceedings of the 1982 ACM
Conference of LISP and Functional Programming.
pp-261-275, 1982

[Brooks 86] Rodney
A. Brooks, D.B.Posner, J.L.McDonald, and J.L.
White. Design of An Optimizing, Dynamically Re-
targetable Compiler for Common Lisp, Proceedings
of the 1986 ACM Conference on LISP and Func-
tonal Programmang, pp.67-85, 1986

277

[Fahlman 91] Scott E. Fahlman and David B, Mec-
Donald. Design Considerations for CMU Commnion
Lisp, Topics in Advanced Language Implementa-
tion, pp.137-156, MIT Press, 1991

[Gabriel 85] Richard P. Gabriel. “Peformance and Eval-
uation of Lisp Systems.” MIT Press, 1985

{Intel 89] Intel Corporation. 1860 64-bit Microprocessor
Programmer’s Reference Manual, Intel Corpora-
tion, 1989

[MacLachlan 91) Robert A. MacLachlan. CMU Com-
mon Lisp User’s Manual, CMU-CS-91-108, 1991

[Okuno 1984] Hiroshi G. Okuno. Ikuo Takeuchi,
Nobuyasu Osato, Yasushi Hibino, and Kazufumi
Watanabe. TAO: A Fast Interpreter-Centered Lisp
System on Lisp Machine ELIS, Conference Record
of the 1984 Symposium on Lisp and Functional
Programming, pp. 140-149, August 1984, ACM

[Steele 78] Guy L. Steele Jr. “RABBIT: a Compiler for
Scheme.” MIT AI-TR No. 474, 1978

[Steele 84] Guy L. Steele Jr. Commen Lisp: the Lan-
guage, Digital Press, 1984

(Steele 90] Guy L. Steele Jr. Common Lisp the Lan-
guage, 2ud Edition, Digital Press, 1990

[Steenkiste 86] P. Steenkiste and J. Hennessy. LISP on
a reduced-instruction-set-processor. Proceedings of
the 1986 Conference on Lisp and Functional Pro-
gramming, pages 192-201. August 1986, ACM

[Stoenkiste 91] P. A. Steenkiste, The Implementation of
Tags and Run-Time Type Checking. Topics in Ad-
vanced Language Implementation, pp, 3-24, MIT
Press, 1991

[Shivers 91] Olin Shivers. Data-Flow Analysis and Type
Recovery in Scheme, Topics in Advanced Langusge
Implementation, pp.47-87. MIT Press, 1991

[Takeuchi 86] I. Takeuchi, H. Okuno and N. Ohsato. A
List Processing Language TAO with Multiple Pro-
gramming Paradigms, New Generation Computing,
Vol. 4, No. 4, pp.401-444, 1986

[Zorn 90] B. Zorn and P. Hilfinger. Direct Function
Calls in Lisp, LISP AND SYMBOLIC COMPU-
TATION: An International Journal, 3, pp.13-20,
1990

