
Tachytm common ~kp: An EfHcient, and Portable

Abstract

Tachyon Common

Implementation of CLtL2

At sushi INagasaka, Yosliil)iro Shinlmi, T:tnji 110

Olci Electric Ind\l*t [y (h., Lt d, Sy*t{.In5 Laln):ntorirs

11-22, Shihurrt 4-t-home, hlmtito-ku, Tokyo 108, Japan

Hiroshi Gcmi. Junichi Taktihdi

OKI Techno Systems Laboratory

8-10, Uchiyama 3-C:hc)me, Chlkum-ku, Nngoya 464, Japan

Lisp is an efficient and portable im-

plementation of Common Lisp 2nd Edition. The design

objective of Ta.chyon is to apply both advanced opti-

mization technology developed for IUSC processors and

Lisp optimization techniques. The compiler generates
\,erY fmt ~d~ comparable to, and sometimes ftitel

than the code generated by UNIX C compiler. Conl-

paring with the most widely used commercial Common

Lisp, Tachyon Common Lisp compiled code is 2 times

faster and the interpreter is 6 times faster than the Lisp

in Gabriel benchmark suit. Tachyon Common Lisp is

the fastest among the Lisp systems known to the au-

t hors.

1 Introduction

One of the biggest problems of Lisp is its slow execution

speed. Current commercial Lisp systems on stock hard-
wares produce fairly good code using advanced compiler

techniques [Brooks 86], [Steenkiste 86]. In the authors’

experiences in the development of a Lisp dedicated n~a-

chine ELIS [Okuno 1984], originally developed by NTT

and later by NTT and OKI, which has a micrcwoded

interpreter and a byte-code emulator for compiled code,

Lisp dedicated machines now have no advantages, at

least in compiled code speed. This is partly due to

lack of applicability of this advanced compiler technol-

ogy ad partly to device technology available for special

purpose procemore,

Permission to copy without fee all or part of this materiat
is granted that the copies are trot made or r.fistribu~ecl for direct

commercial advantage, the ACM copyright notice and the title of

the publication and itB date appear, and notice is given that eCJPY-

ing is by permission of the Association for Computmg hfhchinery.

To copy otherwise, or to republish, requires a fee and/or specific

permission.

Permlsslon to copv without fee all or part of this material is

granted prowded that the copies are nor made or dlstribured for

direct commercial advantage, the ACM copyright notice and the

tbtle of the publtcatmn and Its date appear, and not]ce IS g]ven

that copying !s by permlss!on of the Assoclat!on for Computing

Machinery. To copy’ othecwlse, or to repubhsh, mqu, res a fee

andlor spec!fw permission.

1992 ACM LISP & F. P.-6/92/CA

o 1992 ACM O-89791 -483 -X/92 /0006 /0270 ...$l ,50

However, t hw advauced (c)mpiier ferhILoicrgy developed

for RISC processors has not lXWW fldly applied for Lisp

systems so far, In Lisp world, t !w focuses were on Lisp

proper optimization techniquw such as tail recnrsion op-

t imizat ion. Lisp has been behind Fort ran and C in ma-

chine code level optimization, which is required in RLSC

processors.

The al:ot her problem of rm-xwt Lisp systems is the

S1OW b~tYd of their interpreters. Since Common Lisp

[Steele 84] is a coli~pilcr oruwted lisp, designers of Com-

mon Lisp systems tend to lay emphasis on the speed of

compiled code, In addition, since portability or retar-

getability of a Lisp system is important for implement-
i!lg a Lisp System on a vuiety vf procwwr {]ww+ the

large portion of the systcm is roded in a nmchine in-
dependent way, using C and Lisp itself, This results in

rather slow interpreters.

one oft he strong points of Lisl) is its int wart ive featuro

and this is one of the sources of the high software pro-
ductivity of Lisp. The speed of the interpreter is crucial

for w iutelac{iw enviroiuurot.

We developed au implementation of thewwond edition

of the Common Lisp language specification [Steele 90]
~~k.d Tachyon Common Lisp, In addition to the lan-

guage features defined in CLtL2. Tachyon Common Lisp

also provides some extended features which are required

in development of application software, including a for-

eign language interface facility, a graphical user interface
such as X-window toolkit knri .Motif interface, a support
of Japanrse character set, and a software development

environment.,

The design objectives of Tachyon Common Lisp are high

executioil speed rrf both interpreter and compiled code.

270

and portability. our strategy for optimization is to coul-

pietely apply two kinds of optimization t echuique; Lisp

specific optimization and recent RISC lJrwwsor opt i-

ionizations,

h Gabriel benchmarks, Tachyon Common Lisp is 6

times faster in interpreter and 2 times fast w in compiler

than a widely used commercial Common Lisp, The com-

piled code is comparable to and for some benchmarks

faster than C code.

This paper describes the implemental ion architert ure

adopted in Tachyon Common Lisp.

2 Language Kernel

The Language kernel of Tachyon Common Lisp called

Plisp is a small lisp which has machine independent

SpeCiflCatiOnS to increase the portability of TachyGn

Common Lisp. Plisp also supports type specific prinli-

tive functions for compiled code entries. \Ve h ere explain

some of the designs adopted in the implementation of

Plisp to achieve a very efficient language kernel.

2.1 Implementation of Language kernel

To implement. an efficient language kernel, the kernel

Plkp was coded in a lisp like macro assembier. Also,

the following implementation techniques were used.

Lisp object

A Iisp object is represented in 32 bits and consists of

Winter part zmd tag part. The design of the tag scheme
in Plisp was developed so as to achieve both fast acccsse
to lisp objects and a large address space. Tag part is of

variable length with 3, 6, or 8 bits including the G C

bit. The least significant bit is used as the GC bit. Tag

in %whyon consists of 20 types and a part of them is
shown below.

Table 1: Tags in Tachyon Comtnon LLSD—

Data Type I Tag assignment
1 C.r.%.l...l 1 nip I

a

-1-1
a

I -dUuulw
10000

This assigl:n]ent made it possible to access cons cells

and symlmls wit bout tag masking operations.

Type specific data structure

Vectors am! arrajs in Common Lisp hnvr general pow-

erful features such as fill pointers and adjustable ar-

rays. These feat ures make compiier and interpreter

40W. Taclqxm Commou Lisp provides simple vectors

and Si[ll})lc arrays, separately implemented from general

vectors ant] arrays.

Register convention and argument passing

In RISC philosophy, it is important to decrease the nun~-

bcr of memory a(ces5es, prot’idwi that a large register

set is given.

7 of 32 general registers are userl as global registers.

These variables are permanently placed on the registers

and newr saved onto stack. which red?lces stack access

operations. Tachyon Common Lisp uses 8 registers for

parame~e~ passing in function calling, In the case of

more than 9 arguments, the first 8 arguments are placed

in registers and and the rest oft he arguments are placed

on the stack.

TAle 2: Register Usage in “1’achyon/i860

[Register j Usage I
r(l All Zrro

t
.“

A I !Wstem mode “ I
t

-“

17 I Global pointer

*R I NIL

(part)

Multiple values are also returned in registers in the same

way to dccrwse memory accesses.

1

Is ingle Float, 101111OG

By placing the tag part in the lowest position of the

lisp object and assigning the tag “000” for fixnum, ad-

dition and subtraction of fixnurns are executed wit bout

extra operations. For cons cell and symbol, tags are as-
signed so that lisp objects point to their object bodies,

Stack overflow check

using the page-wise memory protection facility of UNIX

System V R4, stack overtlow checks in stack accesses

can be removed, which significantly improves the speed

of stack operations, The memory page being placed

above the stack boundary is memory protected. Mem-

ory accesses exceeding the boundary cause a nwnmry

protection fault. Each stack access does uot require a

stack overflow check.

271

Global variable table

In i800 [Intel 89] and also many other RISC CTK’s, load-

ing a datum into a register requires 2 inst rllrt ions as

shown below,
orh address@ha, rO, r3i

ld.1 address@l !r31) , r31

For reducing the overhead in variable references, global

variabl~ defined in Common Lisp and variables that

are frequently accessed by the interpreter are located

together on a global data table. Using a register which

points to the top of the table, these variables are ac-

cessed in one instruction.

ld.1 off set(r7), r3 i

2.2 Type specific functions

One of the features of Common Lisp is its type generic

operations represented by sequence functiol~s, To reduce

the overhead of run-time type checking, Plisp provides

type specific functions and functions with fixed number

arguments especially for compiled code.

When type and number of arguments is known to the

compiler at compilation time, the compiler produces

code that calls these type specific l-’lisp functions.

2.3 Lisp style macro assembler LT

To implement a fast language kernel and to improve the

portability of Plisp, Plisp was coded in a lisp like as-

sembler LT (short for Lisp Translator) which was newly

developed by the authors, Uniike ordinary macro as-

semblers, an LT program looks like a Lisp program. LT

keeps both the complete access to hardware capability

and the high readability of Lisp. Only 2 CZ,of Tachyon

Common Lisp was coded in C and the rest was coded

in LT and Common Lisp in a metacircular way.

The features of LT are given below,

●

●

●

LT can access all hardware capabilities.

Users can assign variables to registers so that reg-
ister saving and restoring overheads are minimized.

inside Plisp, virturdly no register saving or rest or-
iug in function call is needed.

Syntax of LT is close to that of Common Lisp,

LT hw only 20 original constructs and can be easily

extended using Common Lisp macro facility. (LT

itself was developed in Common Lispj Using this

extendibility, LT allows programs to be portable

and highly readable.

LT supports delayed branch

Combining a delay-expression of LT and macro fa-
cility, branches can be used without detailed knowl-

edge of the target processor. An example of delayed

branch is given below.

(rlefmacro goto (entry)

‘ (delay (br ,entry)))

(setq r4 1) br label

(goto label) addu 1, rO, X4

Ati rxample of LT codijig i~ given I),elow.

(defmacro WHILE (c i heat body &aux label)

(setq label (create-t einp-label))

((block nil

, label

(if (not ,c) (return))

,@(cons i body)

(goto , label)))

(defrnacro CDR (x) ‘ (word ,x -2))

(defmacro CONSP (x &optional (tmp x))

‘(progn (setq ,tmp (and ,x rrbllo))

(= ,tmp =bllO)))

;; Function length returns the length

;; of a linear list.

(defun length (list @aux tmp count)

(setq count O)

(HHILE (CO1’lSP list tmp)

(aetq count (~ count 1))

(setq list (CDRliet)))

,!4,

)

2.4 Memory management

The ratio of time consumed h~ garbagt’ collection in

prograln execution is]arge ald suspm~dillg prfJgraIl] tw-

ecution caused by GC is not clrsirab!e for applications.

Tachyon Common Lis}~eln\>loyrd Ephelllerti GC aa its

memory management scheme.

Heap memory space consists ofa list ofnlcnioryregions,

which are allocat’erl as needed. .4 Lisl) ohjw-t M first al-

]ocated in the youngest regiou. Astllecxisting timepe-

riod of au object gets longer, the ObJt>Ct is moved to t!~o

older regions by C,C. The mmnory Imw-@el usually exe-

cutes copying GC for the youngest rr=girrns and executes
compactifying GC for older regions in the direction of

the oldest,

.4 featureof the GCof Tachyon is that the numberof

regions for the copying GC is dynamically varied de-

pendingon the amount ofgarbage collected in the last

GC or on some memory usage mtinmt~. This improves
the dliciencyof GC.

3 Intermediate code: Lcode

3.1 Register machine

Lcodc, the intermediate code for Tachyon Common Lisp

compiler, is based on the register machine model be-

272

cause Tachyon common Lisp is targeted on cmnput-

ers with a RISC processor. Lcode is designed so that

Tachyon Common Lisp runs efficiently cm RISC Iuwcw.-

sora with a large set of registers(usaally 32 registers).

As shoWn, the model is simple and generally reflects the

common features of RISC processors, which contribute

to its high portability and efficiency.

Stack
Lcode has a virtual stack for placing fnnct ion frames

and data on. The actual implementation of Tachyon

Common Lisp on i860 has two stacks, Lisp stack and

system stack. However, system stack dots not appear

in Lcode.

Registers

Lcode assumes that. a processor has a set of general pur-

pose registers, and the uses of some of the registers are

predefine as shown below.
o Arguments

● Return values
Q Number of return values

● NIL

● Stack pointer

● Function body

9.2 Lcode primitives

Lcode consists of about 40 primitives. Primitives am

classified in the following categories;

(1) Function interface (6) Stack operation

(2) Argument, check (7) Branches

(3) Multiple value (8) Non-local exit

(4) Function creation (9) Error handling

(5) Data transfer (10) Vector operations

Each primitives has an attribute code in its argument..

An attribute code provides information obtained in the

program analysis phase of the compiler, such as type of

arguments, recursion instruction, current stack dcpt h.

This information is used in the code ~~ll~lbiibhi phase

and helps the code generator to produce efficient codes.

4 Optimizing Compiler

The optimization strategy in Tachyon Common Lisp is

to exhaustively apply the following two khld of opt inliza-

tion technique+ (1) Lisp proper optimization techniques

such as tail recursion optimization and program unfold-

ing and (2) recent optimization techniques developed for

the RISC processor such as instruction scheduling and

register allocation using the large register set.

4.1 The structure of Compiler

The compiler consists of the foilowing phases,

1.

2

3.

4.

5.

6.

7.

4.2

PrepromwsinS l~h.ase

- Ilacro expansion and iuline expansion of flet la-

tJels iirld so IJllt

Syntax analysis and Variable analysis

- Syntax au:ilysis

- Type inference for variables

- Constant folding etc

Translation to upper level illtemmdiate Ianguagc

- Tlauslates functions into more primitive func-

tions: ex. map functions

- Removal of closurm and cell consuming functions

Trans]atioc into Lcode

- Translation into Lcode

- Glol.ml/local optimization

Translatio]l imo Asss=mbly code

- Mine sul.mti tution

- Local optimization

Translation] into machine C(JdC

Luading onto memory

Optimization techniques

IN addition to the fcllowing basic optimization tech-

niques. Tachyon applies the more advanced optimizing

methods drscribecl below.

Lcode Machine code

\ I) RFXZIOWL1of closures (1) Remcsve Son-reachable

(2) Remo~al of cell code

consuming function (2) Itenlovi- push/pop pail

(3) Remove double j!lmp (3j Remo~c doubk jump

(4) Remove push/pop pair (4) Direct call

(5 j Constant folding (~) Br~Kl] optimization

(G) Bra:lch optnnization (6) Instl Nrt]on schedule

(7) Register aliocatlox

(8) Tail recursion

optimization

Code generation through Data type inference

The abseuce of type declaration for variables is the cause

of inefficiency of Lisp, compared with other languages.

Data type inference has been studied and applied for

code optimization [Shivers 91]. Tachyon Common Lisp

also applies the type inference techniques to improve

compiled code speed. The Compiler has a dat.abaw

on the language specifications of Common Lisp. The

database contains the information on data type of ar-

guments and return values for each Common Lisp func-

tion and each Tachyon iuterna.1 function including Plisp.

If the data type of a wuiabk is determined, the com-

piler generates type specific operations for the variable.
In addition, since Plisp provides type specific functions

and functionq with a fixed nun]ber of arguments, the

273

cwerhead in the run-time libraries is minimized.

[Steele 78] showed that with knowledge on the language

constructs, a compiler can produce better code. ThL.

compiler abio knows the specifications ou wutrol fol

primitive functions (and special forms and macros). Us-

ing this knowledge, the compiler analyzes programs to

product more ef%cient code,

●

●

b

Type specific functions

If the data type of arguments is determined, the

compiler produces a code which calls the type spe-

cific functions.

Example 1:

(delete item list) ; ; item, list are lists

4

(delete-list item lint)

Example 2:
(setq x (length y)) ;; Function length returns

;; a fixnum.
(1+X)’”” ;; The compiler generates

;; fixnum addition.

Thecompiler generates aftxnumaclclition followed

by intovr instruction. If the fixnum addition

causea anoverflow, intovr detects theoverflowaud

theresult iscon~-ertecl into abignumin thcowrfiow-

handler.

Type of Arguments

If data type of arguments is determined. type check-

ingcode can be removed and thecompilm protlucvs

code which call a function with no type checking.

Multiple vaiues

If th; number of return values uf a fuuct.iou is

known, processing of multiple values will be sinl-

plified. The next is the case of (multiple-vulur-wtq

(x y z] (floor a b)) with 2 values,

Example 3:
(floor a b)
if number of values
x = valnel or nil

if number of values

y = value2 or nil
it number of values

Z “ value83 or nil

Direct Function Call

In the direct function call

(floor a b)

>g x = valu*l

* y = value2

>1 z a nil

>2

[Zorn 90], a caller function
directly passes the control to the entry point of a callce

function to reduce the overheads in regular function calls

through function symbols, The problernin direct. func-

tioncall is the redefinition of calleefunct.ions, Tachyon
handles this problem by mainttinillg the information on

the calling functions.

Specialization

The olltimization, bawd cm tlw kncnvled~r of fuurtiuo

specifications and about specialization by function com-

bination, is app!ied in the compiler, As all example.

forthcinli]] csubstitution of atwt-function in acoudi-
tional branch, if tile return value of the’ function is not

required, then the compiler produces a code to branch

Ivithout creating the return value.

Inline substitution of functions

Li~p~~ril~~itive fu~lctio]~s areililille sul>stitl1ted to reduce

the function calling owxheatls. User ddinwl leaf func-

1ions are also inline expanded according to the opt imiza-

tlou declaration.

Instruction Scheduling

Instruction $cheduliug for delayed slot tt]id register as-

sigmnent techniques foralargesct ofrcgis(crs de~clol>ed

for RISC processors are used. Intel 186Ct has the three

tvpesofrielaywl slots; delayed jump, delaywlb ranch af-

ter operation (a delayed slot for a conditional branch

immediately after an operation) and delayed load. The

compiler schedule> imtrurtion streams to fill these de-

layed slots.

!5 Portability

Efficiency and portability are conflicting targets. To

achieve the portability, Tachyon separated the machine

dependent part from the machine incicprndcnt part.

Figure 1 shows the structure of Tachyon Common Lisp.

Only the macro definitions for low level primitives in

Plisp and Machine attributes file are machine depen-

dent ,

For portability, Tachyon adopts the following design

schemes,

●

●

Clear separation of machiuc dependent and inde-

prndcnt part.

Implementation of Plisp in a Lisp like macro as-

sembler LT. Using macro facility of LT. porting

Plisp onto a different ptocessor can bees.sily done

by rewriting machine tlepeuclent macros.

Machine independent intermediate rode Lcode and

Machine attribute file

Lcode is machine independent intermediate code

and the code generator produces machine code by

referring the information described in the Machine

attribute file.

Tachyon Conm]on Lisp wa.. first implemented on OK-

Istation7300 and later ported onto SparcStaion2. The

I,orting of the interpreter and the compiler required

about 21~lal~-mollt.lls ~~d2~lla1~-wecks res~}ectively. The

274

Figure 1: Structure of Tachyon t%nnmn Lisl~

l=
Code Generator 1Machine

Attributes

Interpreter Compiler

porting of the interpreter included redesign of inter-

nal structure of Plisp for improving the portab~lity and

reimplementation of LT. This shows that Tachyon Conl-

mon Ltsp certainly has high portability.

6 Performance

Table 3 compares Tachyon Common Lisp on OI<Ista-

tion7300 against Lucid Common Lisp (Version 3.0) on

SparcStation 2 in interpreter for Gabriel benchmark.

Tachyon Common Lisp on i860 is 6.02 times faster than

Lucid Common Lisp after normalizing hardware per-

formance with SPECint. The superiority of Tachyon

Common Lisp interpreter to Lucid Common Lisp mainly
comes from the efticient implementation of Plisp.

Table 3: Gabriel Benchmarks/Irlterpreter (SCC)

, . .
i-m

Eoyer
rows(
es

Table 4 shows the comparison of Tachyon Common

Lisp, Lucid Common LISP, and Chit,l common Lisp

(version Ma) [h&Lachlall 91],[Fahlman 91] in the com-
piled code for the same benchmark. In the table,

Tiully{>ll/i%60 is tlic versiol; for OKIstation7300 and

Tarlym/Spare is the versiuu for SlmrcStation2. Lucid-

Development reinwellts Lulid dev(:lolJ]nenl nlode conl-

piler and Lncid-Production r~prwents Lucid production

mmlr compiler. ‘“latio”]ilean~ tllc relative speed against,

Lucid production mode coml)iler. Tachyon/i860, Lucid

Common Lisp and CllU Common Lisp all runs on the

same SparStatioll 2.

Each progra)ns waa compiled with the same opti-

mization ol)tion; speed =3, safety=O, space=O. and

con~pilation-specd=O except for Lucid development

nlode coll~~lileI (collllJilatioll-s]] eed=2). The ephemeral

GC is d]sablerl in Lucid Common Lisp. The Spare ver-

siou of Tachyon M not fu!]y opt imiml yet and does not

me the register v:inctow architvt urc of Spare. ‘Me table

shows (hat Tachyon Col]il)]oll Lisp is 2.01 times faster

than Lucid procluctioli mode compiivr and 3.53 times

fast m t hm Lucid developmtwt mode compiler, Both

are gcoJ1iFt L ic nwans over the bench malk~.

Figure 2 :s the graph of Table 3. The two graphs

of Tachyon/i860 and Tachyrm/Spare are of the sinli-

lar figure. Speed impro~’ement of Tachyon /Spare over

Tachyon/i860 in Trikr is due to the size of cache nlenlo-

ries.

Table 5 is shows the effect ~ of each opt uniztit ion tech-

niques. Optimization techl]iqws arc diwded into the

three categories; Iniine substitutions, Direct function

calls, and Instruction scl]eduiing including peephole op-

timization, The effect of tjpe iufemnce is]iot given here

because its code is spread out over the c(]ulpiler and it is

difficult to measure its effect, In the table, “AU” means

that all the opt imizat iom are apl)hed. ‘sXone” means

that none of the above three is applied. and “All 8 Di-

rect call” means that direct function call is not applied.

The opt imizat ion t echnigues am list w] in order nf effec-

tiveness: Instruction scheduling and peepho]e optimiza-

tion (30fi,), Inline substitution (20%) and Direct func-

tion call (14X). It should be noticed that these ~alues

are geometric mean over the benchmark suit and that

each optimization technique is not independent from the

others. For example, direct function call doubles the

speed of Boyer but does not effect to Tak, though both

are function call intensive programs, because tad recur-

sion opt imizat ion gives the satne effect,

Even without applying the three optimization tech-

niques, the speed of Tachyon compiler is still comparable

to Lucid production mode compiler. It is concluded that

type inference and other optimization techniques includ-

ing the implementation of Plisp grcately contribute to

the efficiency of Tachyon Common Lisp.

275

Table 4: Common Lisp l?m-fornmnm Comparison

9r I 1 I f I I i 1 1 I 1 I I I i
I

8

1 AI

T.cb Pr, /i860 _

T’,<hyon{.pare _

7

A

CMUCL k..

6
Lucid -tqro —

L.cid-Dev ~

5 -

4 -

3 -

n

_.
d

Tak Stak Ctnk Takl Takr BOW Browse Dslfu Twx-) Tr~+r Jj~rl~ Dd@~ I>ivai ~]~zt ‘~]’ 1’U7ZipTri8”@

Figure 2: Common Lisp I’erformallce Comparison

Table 5: Effect of Optiuiization Techniques

276

For performance comparison of ‘Mchyon Common Lisp

and C, some benchmark programs in Lisp and C were

run on 0KIstation7300. Lisp programs were converted
into the equivalent C programs and C programs were

rewritten in Common Lis. Type declarations are given

for Lisp programs.

Table 6: Comparison Tachyon and C

Table 6 shows the result of the compariwm. In crm]-

parison with C, Tachyon is faster than C code in some

benchmarks such as Tak, As shown in Sieve, array ref-

erences and loop constructs of Lisp are slower than C.

but they can be improved for typical simple arrays.

7 Concluding Remarks

An efllcient and portable Common Lisp bawd on the

CLtL2 language specification was developed. Conlpar-

ing with other Common Lisp systems, Tachyon Conl-

mon Lisp is 2 or more times faster and its code is conl-

parable to and sometimes faster than C code, Tachyon

Common Lisp is the fastest among the Lisp systems

known to the authors, In the current version of Tachyon

Common Lisp, machine code level optimization and

some of the planed optimization techniques have not

been finished and there is a room to improve the per-

formance.

Tachyon Common Lisp shows that there arc many op-

portunities to improve the performance of Lisp systems

by applying the advanced compiler techniques developed

for RISC processors and Lisp specific optimization such

as type inference.

References

[Brooks 82] Rodney A. Brooks, Richard P. Gabriel, al,d

Guy L. Steele Jr. An Optimizing Compiler for Lex-

icaily Scoped LISP, Proceedings of the f 982 ACM

Conference of LISP and Functeona[Pr~grarnmmg.

pp.261-275, 1982

[Brooks 86] Rodney

A. Brooks, D, B. Posner, J. L. McDonalcl, and ,J.L.

~’bite. Design of An Optimizing, Dynamically Rc-

targetable Compiler for Common Lisp, Proceedings

of the 1986 ACM Conjeren ce on LISP and Fun c.

t:onal Progrummtng, pp.67-85, 1986

[Fahlrnan 91] Scott E. Fahlmzw mid David B, Mc-
Donald. Design Co:i~ideratiwlb for Ch4V ComnioN

Lisp, Topzcs in Aa%zn.cxd Language Incplementa-

t?on, pp. 137-156, MIT Press, 1991

[Gabriel 85] Richard P, Gabriel. “Pefornlalice and Ev~.

uation of Lisp Systems.” MIT Press, 1985

[Intel 89] Intel Corporation z8tJ0 64-bit Microprocessor

Programmer’s Reference Munual, Intel Corpora-

tion, 1989

‘MacLacldan 91) Robert .4. hIacLacldan. CMU C!Om-
1’

rnon Lisp User’s ?&mual, ChIU-CS-91- 106, 1991

[okuno 1984] Hiroshi G, Okuno. Ikuo Takeuclii,

Nobuyasu Osato, Yrwshi Hibino, and Kazufurni

Watanabe. TAO: A Fast Interpreter-Centered Lisp

System on Lisp h4achine ELIS, Conference Record

oj the 1984 Symposium on Ltsp and Functional

Programming, pp. 140-149, August 1984, ACM

[Stc@e 78] Guy L. Steele Jr. “RABBIT: a Compiler for

Scheme.” hfIT AI-TR No. 474, 1978

[Steele 84] Guy L. Steele Jr. Common Lisp:

guage, Digital Press, 1964

~Steele 90] Guy L. Steele Jr. Common Lisp

guage, 2ud Edition, Digital Press, 1990

t lw Lan-

the Lan-

[Steenkiste 86] P. Steenkiste and J. Hennessy. LISP on

a reduced-inst.ructio~l-set-processor. Procwdtng$ 0~

the 1986 Conference oIi Lisp and Ftmctional Pro.

grumming, pages 192-201. August 1986, ACh,f

[Steenliiste 91] P. A. Steenkist e. The Implementation of
Tags and Run-Tinle Type Checking. Toptcs tn Ad.

wanted Language Implementation, pp, 3-24, MIT

Press, 1991

[Shivers 91] Olin Shivers. Data-Flow Analysis and Type

Recovery in Scheme, Topics h Adt:anced Language

Imp[ementa.tton, pp.47-87, MIT Press, 1991

[Takeuchi 86] L Talieuchi, H. Okuno and N. Ohsato. A

List Processing Language TAO with Multiple Pro-

gramming Paradigms, New Generation Computing,

\;O]. 4, ~0, 4, pp.401-444, 1986

[Zorn 90] B, hNL and P. Hilfinger. Direct Function

Calls in Lisp, LISP AND SYMBOLIC G’OMPU-

TATION: An Intwnattonal Journal, 3, pp.13-20,

1990

277

