
A Confluent Calculus of Macro Expansion and

Ana Bove* Laura Arbillat

bove@incouy.edu.uy arbilla~incouy. edu.uy

Abstract

Instituto de Computaci6n

Facultad de Ingenierfa, Universidad de

Montevideo, Uruguay

Syntactic abbreviations or macros provide a

powerful tool to increase the syntactic expres-

siveness of programming languages. The expan-

sion of these abbreviations can be modeled with

substitutions. This paper presents an opera-

tional semantics of macro expansion and evalu-

ation where substitutions are handled explicitly.

The semantics is defined in terms of a confluent,

simple, and intuitive set of rewriting rules. The

resulting semantics is also a basis for developing

correct implement ations.

1 Introduction

The use of syntactic abbreviations in mathemat-

ics as well as in programming languages has two

advantages [16]. First, it allows the abstraction

over repeated syntactic components, and, there-

fore improves the readability and clarity of pro-

grams. Second, it eases the design of new lan-

‘Supported by a scholarship of Escuela Superior Lati-
noamericana de InformAtica, La Plata, Argentina.

‘Partially supported by a PEDECIBA (Programa de

Desarrollo de las Ciencias B&icas) grant. The Computer

Science Department of the University of Texas at Austin

generously provided facilities for preparing the final ver-

sion of this paper.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/o rspecific permission.

1992 ACM LISP & F. P.-6 I92ICA

01992 ACM 0-89791 -483 -)(192/000610278 . ..S1 .50

la Reptiblica

guage constructs, which can be defined by lan-

guage designers and programmers. The seman-

tics of these constructs is straightforward be-

cause they are defined in terms of previously de-

fined constructs that have well understood se-

mantics.

Syntactic abbreviations, or macros, improve

the syntactic expressiveness of programming lan-

guages but do not increase their semantic power

[8, 19]. These abbreviations enrich assembly as

well as modern high level languages such as C

[15] and Scheme [20]. A typical example of a

syntactic abbreviation in Scheme is let, defined

by the following notational definition:

(/et x be v in B) ~ ((~ (x) B) v) (1)

This equation indicates that the expression to

the left of the symbol ~ abbreviates the expres-

sion to its right. In this definition, let, be, and in

are keywords while x, v, and B are met avariables.

Synt attic abbreviations are defined over a core

language of well-lmown semantics. Our core lan-

guage is the A–calculus with numerical constants

[3].

Associated with the definition of a macro are

the notions of instance and expansion. An in-

stance of a macro is a term having the ‘(same)’

form as the expression appearing in the left of the

definition, where arbitrary expressions appear in

the places of the met avariables. For example,

(let y be 3 in (A (z) (+ z g))) (2)

is an instance of the syntactic abbreviation let,

where the expressions y, 3, and (A (z) (+ z y))

278

take the places of the metavariables x, v, and B,

respectively.

The expansion of an instance is the core ex-

pression that results from one or more steps of

expansion. In each step, an instance is replaced

by the right-hand-side of its notational defini-

tion, where metavariables are replaced by the ex-

pressions that take their places in the instance.

For example, the expansion of (2) is:

((A (y) (A (z) (+ 2 y))) 3) (3)

Traditionally, an interpreter or compiler ex-

pands all the instances appearing in a program

before evaluation (at parsing time or even earlier

when pre–processors are available). Observing

that the replacement of metavariables by expres-

sions when expanding an instance can be mod-

eled with substitutions, we develop a simple and

intuitive operational semantics of macro expan-

sion using the explicit substitution calculus of

Abadi et al [1, 2]. The resulting semantics re-

spects the binding strategy of the core language

and does not perform unwanted capture of iden-

tifiers during expansion [17].

In this method, the expansion is done com-

pletely before starting execution, although some

of the expansions may be avoidable. We avoid

unnecessary expansion by defining a straight-

forward extension of the semantics to one that

does expansion and evaluation at the same time.

This extension suggests an interpreter implemen-

tation where expansion is delayed as much as

possible. If the evaluation strategy of the core

language is lazy [12], the expansion of an in-

stance appearing as argument in an application

may never be performed if the argument is not

used.

The rest of the paper is organized as fol-

lows. Section 2 informally presents notational

definitions and introduces the main ideas behind

manipulating substitutions explicitly. Section 3

presents a macro declaration language and gives

a semantics of macro expansion using explicit

substitutions, In Section 4, we present a vari-

ation of this semantics that also evaluates ex-

pressions. Section 5 discusses related work and

future directions of research. Section 6 presents

conclusions.

2 Notational definitions and

explicit substitutions

Syntactic abbreviations are introduced by nota-

tional definitions, briefly described here. In ad-

dition, this section motivates the use of explicit

substitutions to model the expansion of these ab-

breviations.

2.1 Notational definitions

Notational definitions are equations of the form

1 ~ r, meaning that the meta–expression 1 abbre-

viates the meta–expression ~. Meta–expression 1

denotes the set of all possible instances of the

macro, while r denotes the set of “one-step ex-

pansions” of those instances. Mets-expression 1

is also called a syntactic abbreviation. An exam-

ple of a notational definition is equation (l).

Syntactic abbreviations are not terms of the

core and contain only keywords and metavari-

ables. Meta-expression r is formed with ele-

ments of the core language as well as previ-

ously defined syntactic abbreviations. Syntactic

abbreviations syntactically extend the core lan-

guage.

A macro processor is a virtual machine that,

given a set D of notational definitions and an

expression e of the core language extended with

the synt attic abbreviations defined in D, trans-

forms every instance of an abbreviation appear-

ing in e into its expansion (a core expression). In

Section 3, we present a formal specification of a

macro processor.

2.2 Explicit substitutions

In this subsection, we show how the practice of

macro expansion can be modeled through the

manipulation of explicit substitutions [1, 2].

Substitutions are fundamental in the A-

calculus, The classical D–rule [3]:

manipulates substitutions implicitly. If el and e2

are ~–terms, expression el {eZ/z} is not a ~–term

but a notation that represents the term el where

279

all the free occurrences of variable x are replaced

by ez.

Abadi et al. introduce a variation of the A-

calculus, the k-calculus, where substitutions

generated by ~–reductions are manipulated ex-

plicitly. Substitutions and substitution applica-

tion have a syntactic representation in the Aa–

calculus. The ~–rule is:l

((k.el) e,)+ el[{z +- ez, q$}]

where e[s] is a As–term denoting the term e to

which substitutions s is applied, and substitution

{z e e, 4} denotes a substitution where x is re-

placed by e. The empty substitution is denoted

by c/5.

Most implementations of macro expansion use

an environment where each metavariable in the

left-hand-side of a definition is associated to the

subexpression that takes its place in the instance

[17]. We propose to represent these environments

as explicit substitutions in a formal semantics of

macro expansion, as do Abadi et al. in the Ao–

calculus.

The use of substitutions in macro expansion is

best illustrated with an example.

following definition of freeze:

~reeze a ~ (Ax.a)

Consider the

(4)

To obtain the expansion of the instance jree.ze e,

for expression e, we substitute in the right–hand–

side of definition (4) the metavariable a for the

expression e. This can be represented by the ex-

pression (Ax.a)[{a + e,~}], where {a +- e,~} is

an explicit substitution. These are substitutions

of metavariables by expressions and not of vari-

ables by expressions as in the Ao–calculus.

This substitution on A–expressions cannot be

naive, however, because if the variable z appears

free in e, the A operator captures it. Abadi et

cd. introduce in the As–calculus a renaming oP-

erator (1’) for avoiding this capturing. We adapt

this operator so that it takes an argument x indi-

cating the conflicting name. The following rules

are needed for expansion:

(Ax.e)[s] -+ (Xr.e[stz])

1We slightly modify the syntax.

{a + e, s}~x + {a + e~x,s~x}

a{a+e, s} + e

q$~x - fb

Using these rules, the expansion of jreeze z, re-

sulting from (kz.a)[{a +- x, q5}] is (kz.z~z). The

expression z~z is similar to z[T’] in the ~a–

calculus, Instead of composition of operators

~, we use exponents on variable names. Thus,

we represent x~z with Z1, (z~z)~z with Z2, and

so on. With our notation, the above expansion

takes the form of (Ax.xl).

3 Macro expansion semantics

In this section, we formalize the ideas of Sec-

tion 2, and present an operational semantics of

macro expansion over the core language.

3.1 The core language

The syntax of the core language, An, is in Fig. 1.

Language A. is the language of the &calculus

with numbers [3] and labeled variables. A la-

beled variable has a name and an exponent. The

exponent is a non–negative number that defines

the variable’s distance (number of A operators

that bind a variable of the same name) from its

binding instance. Binding instances are not la-

beled. For example, the expression:

(AZ.(AW.(AZ.((ZO z’) We))))

would be written in the simple A–calculus as:

(AU.(AW.(AZ.((% u) w))))

The use of exponents in variable names efficiently

implements the a–conversion, as does de Bruijn)s

technique [5], but the use of names improves leg-

ibility. In this paper, z occasionally denotes X“.

3.2 The macro definition language

We define language C as A. enriched with nota-

tional definitions and instances of macros. The

syntax of Z is in Fig, 1. We use a different font

for metavariables, to distinguish them from vari-

ables. The symbol c denotes the empty string

280

Syntactic domains:

a,b G Mets

U,W, Z E Var

num, n, m, m’ E Nat

b G Boo/= {t, f}

y E Mets U Var

Kw ~ Var

Mets n Var = Var(l Nat= Mets n Nat = 0

Syntax of An:

e ::= num I Zn I (k.e) [(e e)

Syntax of L:

P ::= D r s.t. MV(r) = @

d ::= [/~ r]

Figure 1: Languages syntax.

(Metavariables)

(Variables)

(Natural numbers)

(Booleans)

(Keywords)

Pgm

Ndef

Lhs

Rhs

LNdef

LRhs

and MV(r) denotes the set of metavariables ap-

pearing in expression r.

A program p (E F’grn) is a possibly empty list

D (C LIVdej) of notational definitions followed

by an expression that does not contain metavari-

ables.

Notational definitions are as described in Sec-

tion 2. A notational definition d (< Ndej is

enclosed wit hin square brackets ([]). The left-

hand-side expression 1 (E Lhs) is a list of vari-

ables and metavariables. The right–hand–side

expression r (E IUM) is a natural number, a vari-

able, a metavariable, a functional abstraction,

an application, or a list of expressions of Rhs

between angle brackets (()). Users may intro-

duce fresh identifiers in the right-hand-side of

macro definitions. Names appearing in the left

hand side that are not metavariables are key-

words (E Kw). For instance, in the definition of

freeze (equation (4)), z is a fresh identifier and

freeze a keyword. We treat fresh identifiers and

keywords as variables for convenience.

Functional abstractions bind variables and

met avariables. Angle brackets enclose an in-

stance of a syntactic abbreviation.

An example of a valid program is:

[let x be v in B ~ ((Ax.B) v)]

(kc.(~w.(let u be z in (u w))))

cent aining notational definition (1). The body

of the program contains an instance of let.

To simplify our study, we restrict the set of

notational definitions as follows. Let dl ..0 dn be

the list of definitions of a program, and 11 . . . Jn

and berl . . . rn their respective left and right–

hand-sides. The following conditions must hold:

1. (non-recursive)

● rl is an expression of the core language

A n.

●r~, j= 2.. . n, is formed with expres-

sions of An and instances of definitions

d, where i < j.

2. (linear) A met avariable appears only once in

a left–hand–side. Formally,

281

3.

4.

We

3.3

foranyih =wl. ..w~, h=n. ..n.

(i # J“ and Wi, wl G Mets + Wi # WJ)

(unambiguous) The set of notational defini-

tions does not contain two left–hand–sides

that are equal modulo a renaming of the

met avariables.

Two left–hand–sides lh = WI . . . Wn and

lk=u~.. . Um, where h # k are equal mod-

U1O a renaming of metavariables iff

1 . . . m (W~ = Ui or Wi, Ui G Mets)

No new metavariables are introduced

rhs: MV(r~) ~ MV(lh)), h = 1...n

refer to these restrictions as ND.

vi=

by the

Instance and instance substitution

Before we can formulate the operational seman-

tics of macro expansion in an expression of lan-

guage 2, we need to formalize the notions of

macro instance and instance substitution.

Definition 1 (Instance)

An expression (tl . . . tn) is an instance of a

macro definition [1 ~ r], where 1 z WI . . . Wm >

if the following conditions hold:

● (w, c Var and tiE Var) + ti = w,

● Wi E Meta + t, E Rhs

We define a predicate Z? : Rhsx Ndef -+ Boolean
dj

such that Z?((Lr), 1 s r) is true if (Lr) is an in-
dj

stance of 1 = r, and false otherwise.

Definition 2 (Instance Substitution)

Given [1 ~ r], where 1 = W1 . . . Wn, and (Lr) ~

(t~... tn), an instance of [1 ~ r], we define the

instance substitution s as follows:

s = {Wi - t, s.t. Wi E Mets}

Substitution s relates the metavariables in 1 to

the corresponding expressions in (Lr). We also

write instance substitutions as S((Lr), 1 ~ r),

Given an instance substitution s, the expression

{a +- r, s} denotes the substitution {a + r} us.

3.4 Operational semantics

The operational semantics of macro expansion

is given by a function expan that maps correct

programs to An–terms. A correct program is

an expression D r s Pgm, where D is a list

of notational definitions satisfying restrictions

ND, and r is an expression where every (Lr)-

subexpression is an instance of a definition in D;

that is:

Y (Lr) appearing in r (3 d G D s.t. Z?((Lr), d))

The ezpan function is defined through a rewrit-

ing system *E as follows:

ezpan(ll T) = e iff r +~D e and

e is in E–normal form

where + fi+ is the reflexive transitive compatible

closure of relation %E, defined in Fig. 2. The

set of rules %E is really parameterized over the

set of notational definitions ~. occasionally *E

and +fi denote + ~ and +&D respectively. The

definition of compatible closure is in Fig. 3. An

expression e is in E–normal–form if there does

not exist e’ such that e~E e’ [3]. For a gen-

eral introduction to rewriting systems and their

properties see [3, 13, 14].

As we show later, the *E relation is Church-

Rosser; that is:

~ zy. (32. z+~ z A z+~ y) +

(%. z+; u A y+~ u)

and strongly normalizing (S N), i.e. there is no

infinite sequence el~E ez~E . . .*E en~E . . .

Thus, ezpan is a total function. We also prove

that the set of E-normal forms is the language

An; therefore, ezpan expands all macro instances

in the program.

For defining the -E relation, we extend the

syntax of language L to manipulate substitutions

explicitly. The extended syntax is in Fig, 2,

The set of rewriting rules consists of three

groups: the substitution introduction rule, sub-

stitution elimination rules, and the rules for the

shift operation on substitutions and expressions.

Rule Intro formalizes the expansion of macro

instances using Definitions 1 and 2 and explicit

substitutions.

282

Syntax:

Rules:

Substitution Introduction:

(Lr) +E r[s], if 2 d = i ~ r c D such that

Z?((Lr), d) and s = S((.Lr), d)

Substitution Elimination:

Figure 2: Expansion System

Exprs

Subst

(Intro)

(EAm.1)

(’7knv2)

(Eafw)

(Ssm,)

(ss)

(Senum)

(Sevarl)

(Se.ar2)

(Se.ar3)

(Se.ar4)

(Se.ar5)

(Semu)

(seAw.1)

(seL7r2)

(’$’Am.)

(Sea,,)

Among the substitution elimination rules, ent cases. First, when the binding instance is a

rules EAVar ‘0 ‘Amv2
explain how substitutions variable x, the exponents of all free occurrences

operate on ~–abstractions and deserve detailed of z in substitution s must be updated since

explanation. In general, the substitution erz- their distance from their corresponding binding

ters the scope of the identifier (binding instance) instance is incremented by 1; operation ~.z”’f on

bound by the A operator. There are three differ- substitution s performs this updating. Second,

283

The compatible closure - of *E is inductively

defined as follows:

r> r’, z

S,st

T*E #

S+E S’

r+ r’

r-- r’

r--+ r’

r- r’

r- r’

r.+ r’

r-+ 7-’

s-+ s’

s+ s’

s- s’

=5

=+’

Exprs

Subst

r-+ r’

s+ s’

(Az.r)+ (Az.r’)

(Aa.r)-+ (Aa.r’)

(2 r)+ (z r’)

(r .z)~ (r’ z)

r[s]-+ r’[s]

r~x m,m ’,b ~ r~zm,m’,b

{a + r,s}- {a - r’, s}

r[s]-+ r[s’]

{a - r, s}+ {a - r,s’}

s~ Xm’b + s’~xm’b

Figure 3: Compatible closure.

when the binding instance is a metavariable a

that appears in .s associated to a variable Zn,

variable a must take the place of a and become

a binding instance. All occurrences of Zn in the

substitution must be captured because they ap-

pear replacing other metavariables of the same

macro. In this case, the use of the same names

is not a coincidence but indicates the intention

of capturing according to the macro definition.

On the other hand, all occurrences of Zn in the

body of the abstraction are updated as in the

first case because they appear in the definition

of the macro and do not relate to the expres-

sions that instantiate the met avariables. Other

occurrences of ~ (with a different exponent) in

the substitution are also updated as in the first

0 ‘,f performs this updatingcase. Operation ~Z ‘

on expressions. Afterwards, every occurrence of

a in r must be replaced by x. Third, when the

binding instance is a metavariable that rewrites

to another metavariable, no updating is needed.

This latter case occurs when instances of previ-

ously defined macros appear in right–hand-sides

of macro definitions.

The shift operation on expressions, r~zm~m’~b,

means: rename all free occurrences of Xn in r by

Xn+l, when n>morn=mandb=f, and by

Xm’ when m = n and b = t. Rules Ssmt to Se~PP

give the semantics of operator ~ on substitutions

and expressions.

3.5 Properties of the semantics

Only proof sketches are included. We refer the

reader to the Technical Report [4] for detailed

proofs.

Theorem 1 (Strongly Normalizing) The

relation *E on correct programs is SN.

Proof Sketch: We define a positive measure

function on terms, ~, that is strictly decreas-

ing for every rule. Formally, ‘v’ rl+E rz, ~(rl) >

f(r~) ❑

Theorem 2 (Church–Rosser) The relation

~E on correct programs is Churclz–Rosser.

Proof Sketch: This theorem directly follows

from Theorem 1 and from the fact that *E on

correct programs is Weakly Church–Rosser [3,

14], i.e.:

The proof of WCR follows from the observation

that the rewriting system does not have critical

pairs [13, 14]. ❑

Theorem 3 (Normal forms = An)

The set of E-normal-forms of correct programs

is language An.

proof Sketch: (+) Rules of *E cannot be ap-

plied over An–terms because they do not contain

instances of macros or substitutions; thus, An–

terms are E–normal–forms.

(+) Let p be a correct program and e its E-

nf. The correctness of p assures that every in-

stance appearing in p can be eliminated using

Rule Intro since there always exist a correspond-

ing notational definition in p. Also, the set of

notational definitions satisfies restrictions ND;

284

thus, every met avariable int reduced by Intro can

be replaced by an expression. By case analysis,

we prove that e does not contain substitutions,

or shift operators. Thus, an E–nf is in An. •l

4 Mixing expansion and re-

duction

Traditionally macro expansion is completed be-

fore evaluation. We explore the possibility of

mixing expansion and evaluation by adding the

@-rule to relation *E. It turns out that the mix-

ture is not trivial because rules for manipulating

new operations are needed.

The inclusion of the ~–rule adds a new type

of substitutions to the system: substitutions of

variables by expressions. The elimination rules

for these substitutions force the definition of a

new renaming operation analogous to shift (~).

When a &reduction is done, a ~ operator disap-

pears; therefore, the exponent of identifiers must

be updated accordingly. The renaming unshift

operator (J) performs this updating, decreasing

the exponent of variables. The expression rj, Xm

means rename every free occurrence of xn in r by

x ‘-1 when n > m. z O. In the As–calculus, com-

position with the id substitution performs this

unshift operation using the de Bruijn notation.

Specifically, the @–rule in the extended system

(+-~~) is:

The set of rules +ER is also parameterized over

the set of notational definitions D. The complete

set of rules is in the full version of the paper

[4]. Note that ~, is the empty substitution of

variables by expressions.

The new system, which naturally mixes evalu-

ation and expansion, has two advantages over the

traditional systems that expand macros and eval-

uate the expanded code in two different passes.

First, our system evaluates the program in one

pass obtaining the same result. This equivalence

can be stated:

where ~P is the relation that defines the seman-

tics of An, Second, the expansion of some in-

stances may be avoided by defining a strategy

of rewriting where ~–rules are applied first. The

following example illustrates this optimization:

((kr.y) (let u be 1 in (y u)))

*ER (Y[{z +- (let u be 1 in (Y u)),+t}])~x”

+ER (y[~~])JZO

*ER y J,$O

*ER y

Here, the expansion of let is avoided.

The set of ~ER-rules is obviously not SN,

since ap is not SN in An. But it is strongly

confluent:

Notation ~2R means zero or one steps of reduc-

tion. The proof of strong confluence is by struc-

tural induction on the terms. A detailed proof

can be found in [4]. As a corollary of strong con-

fluence, *ER is Churcll-Rosser.

5 Related and future work

We base our macro definition language on the

work by Kohlbecker [16, 17, 18]. It preserves

the expression structure of the core language, as

does Kohlbecker’s, but it does not consider el-

lipsis or recursive macro definitions. Recursive

macros have been omited for simplicity. Their

incorporation does not change the essence and

properties of the systems as long as notational

definitions are restricted so that the expansion

of instances always terminates. The formulation

of this restriction is difficult and complicates the

proofs of Church–Rosserness. The use of ellip-

sis in defining such recursive macros complicates

the definition of instances and instance substitu-

tions. In this case, metavariables are associated

to lists of expressions. Therefore, we need new

operations on substitutions and rules to manip-

ulate them, Further detailed work needs to be

done in this direction.

Work has been done in designing powerful

tools for defining macros and efficient algorithms

285

for their expansion [6, 7, 16, 17, 18]. These works

provide a good diagnosis on the problems that

must be solved at macro expansion. Kohlbecker

defines hygiene in macro expansion; that is, lo-

cally introduced identifiers should not been cap-

t ured by expansion, and identifiers global to the

macro definition should not be renamed. Our

systems are hygienic according to these crite-

ria. We have not intended to define a new tool

for defining macros, but attempted to provide a

clean operational semantics of macro expansion

and of the interleaving of macro expansion and

program evaluation on the A–calculus. Further

work includes adding more language constructs

to our systems, particularly local macros [6].

Our formal semantics of L is based on the Aa–

calculus of Abadi et al. Two types of substi-

tutions interact in the calculus: reduction sub-

stitutions (introduced by the application of the

~-rule), and expansion substitutions (introduced

by the application of the Intro-rule). We adapt

Abadi’s shift and unshift operations to work with

names of identifiers instead of de Bruijn notation

and we add rules for eliminating shift and unshift

operators. Hardin and L6vy [11] also eliminate

them, but they use de Bruijn notation. Explicit

substitutions can be used for macro expansion

on other languages as well.

Formal semantics of macro expansion has been

studied in depth by Kohlbecker [16] and Griffin

[9, 10]. Kohlbecker uses a denotational frame-

work to explain macro expansion. Our work is

closer to Griffin’s. He uses an extended typed

J-calculus to encode a language comparable to

our language L. Notational definitions are en-

coded as new functional constants, that when

applied produce the expansion of an instance.

Thus, the resulting encoding also mixes expan-

sion and evaluation.

We explicitly manipulate substitutions to

model macro expansion. Our semantics directly

and dynamically generates such substitutions

from not ational definitions, avoiding the need of

encoding the language and of adding binding in-

formation to the macros, as does Griffin [9, 10].

The binding structure of a macro is in the right-

hand-side of its definition and the system per-

forms the necessary renamings when eliminating

the substitution created by rule Intro. However,

the lack of explici t binding information in macros

causes substitution elimination not to commute

with macro expansion. In other words, an ex-

pression of the form (Lr) [s] forces the expansion

of (Lr) before substitution s can be eliminated.

Thus, macro instances are expanded, and evalua-

tion functions cannot be derived for them. How-

ever, their expansion interleaves with the evalu-

ation of a program in our system.

6 Conclusions

We present a language L for defining macros over

the A–calculus with numerical constants and la-

beled variables (An). A formal semantics of a

macro processor, which maps Z into An, is de-

fined using explicit substitutions. A rewriting

semantics of C results from mixing expansion

of macros and evaluation. This semantics has

three advantages. First, it is an uni~orrn frame-

work for ~–reduction and expansion of macro in-

stances. Second, it is based on a well–known

theory: the A–calculus. Third, it is intuitive and

closely models the practice of macro expansion.

We implemented a prototype of the ~ER–

system in Lazy ML where we experimented dif-

ferent evaluation strategies. Our “lazy” proto-

type delays macro expansion as long as possi-

ble. The full paper [4] contains the documented

source code.

We believe our calculus that expands and eval-

uates expressions is close to practice and im-

plement ation. Although restricted to the A–

calculus, it provides a good basis for a deeper

study of macros in programming languages,

Acknowledgements

Thanks to Erik Crank for helping with the de-

tails of formal proofs and reading earlier drafts

of this paper, and to Laurence Puel, who ver-

ified the proof of SN of the *E system. We

are grateful to Juan Vicente Echague, who read

in detail complete drafts of this paper providing

helpful insight into some application and formal

aspects of this work. We also thank Matthias

286

Felleisen for providing helpful comments during

the preparation of this work.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. Abadi, L. Cardelli, P.L. Curien, and J.J.

L&y. Explicit Substitution. In Proc. 17th

A Ch!l Symposium on Principles of Program-

ming Languages, pages 31–46, 1990.

M. Abadi, L. Cardelli, P.L. Curien, and J.J.

L&y. Explicit Substitutions. Technical Re-

port SRC 54, Digital Equipment Corpora-

tion, Palo Alto, California, 1990.

H. Barendregt. The Lambda Calculus, Its

Syntax and Semantics. North-Holland, Am-

sterdam, 1981.

A. Bove and L. Arbilla. A Confluent cal-

culus of macro expansion and evaluation.

Technical Report INCO-91-01, Instituto de

Computaci6n, Universidad de la Reptiblica,

Montevideo, Uruguay, 1991.

N. De Bruijn. Lambda–calculus Notation

with Nameless Dummies, a Tool for Auto-

matic Formula Manipulation. lndag. Mat.,

34:381-392, 1972.

W. Clinger and J. Rees. Macros That Work.

In Proc. 18th ACM Symposium on Princi-

ples of Programming Languages, pages 155-

162, Orlando, 1991.

K. Dybvig, D. Friedman, and C. Haynes.

Expansion–Passing Style: Beyond Conven-

tional Macros. In ACM Conference on Lisp

and Functional Programming, pages 143–

150, 1986.

M. Felleisen. On the expressive power of

programming languages. In Proc. 1990 Eu-

ropean Symposium on Programming. Neil

.Jones, Ed. Lecture Notes in Computer Sci-

ence, 132, pages 134–151, 1990.

T. Griffin. Notational definition – A formal

account. In Proc. Symp. Logic in Computer

Science, pages 372-383, 1988.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Griffin. Notational Definitions and Top-

Down Refinement for Interactive Proof De-

velopment Systems. PhD thesis, Cornell

University, August 1988.

T. Hardin and J.J. L&y. A Confluent Cal-

culus of Substitutions. In Japan Artificial

Intelligence and Computer Science Sympo-

sium, Izu, December 1989.

J. R. Hindley and J. P. Seldin. An Introduc-

tion to Combinators and Lambda Calculus.

London Mathematics Society, 1987.

G. Huet. Confluent Reductions: Ab-

stract Properties and Applications to Term

Rewriting Systems. CACM, 27(4):797-821,

October 1980.

G. Huet and D. C. Oppen. Equations and

Rewrite Rules: A Survey. In R. V. Book,

editor, Formal Language Theory: Perspec-

tives and Open Problems. Academic Press,

1980.

B. W. Kernigham and D. M. Ritchie. The

C Programming Language. Prentice–Hall,

New Jersey, 1978.

E. Kohlbecker, Syntactic EMensions in the

Programming Language Lisp. PhD thesis,

Indiana University, August 1986.

E. Kohlbecker, D .P, Friedman, M. Felleisen,

and B. Duba. Hygienic macro expansion.

In Proc. 1986 ACM Conference on Lisp

and Functional Programming, pages 151–

161, 1986.

E. Kohlbecker and M. Wand. Macro-by-

example: Deriving Syntactic Transforma-

tions from their Specifications. In Proc, Ilth

ACM Symposium on Principles of Program-

ming Languages, pages 77–85, 1987.

P. J. Landin. The next 700 programming

languages. CACM, 9(3):157-166, 1966,

J. Rees and W. Clinger (Eds.). The revised3

report on the algorithmic language Scheme.

In SIGPLAN Notices, volume 21 (12), pages

37-79, 1986.

287

