
REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE

Amr Sabry Matthias Felleisen *

Department of Computer Science

Rice University

Houston, TX 77251-1892

Abstract

Plotkin’s A-value calculus is sound but incomplete for

reasoning about ~q-transformations on programs in

continuation-passing style (CPS). To find a complete

extension, we define a new, compactifying CPS trans-

formation and an “inverse” mapping, un-CPS, both of

which are interesting in their own right. Using the new

CPS transformation, we can determine the precise lan-

guage of CPS terms closed under /3rptransformations.

Using the ztn-CPS transformation, we can derive a set

of axioms such that every equation between source pro-

grams is provable if and only if ~q can prove the cor-

responding equation between CPS programs. The ex-

tended calculus is equivalent to an untyped variant of

Moggi’s computational A-calculus.

1 Compiling with CPS

Many modern compilers for higher-order functional lan-

guages [1, 13, 19, 20] utilize some variant of the Fischer-

Reynolds continuation-passing style (CPS) transforma-

tion [10, 18]. Once a program is in continuation-passing

style, these compilers usually perform code optimiza-

tion via local transformations. Typical examples of

such optimizations are loop unrolling, procedure inlin-

ing, and partial evaluation.

In the terminology of the A-calculus, optimizations

generally correspond to (sequences of) /3- and q-

reductions. Hence, a natural question to ask is whether

reductions on CPS programs correspond to known

transformations of source programs, If so, optimiza-
tion of CPS programs could be understood and re-

ported in terms of the original program as opposed to its

*Both authors were supported in part by NSF grant CGR 89-
17022.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requirea a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA
@ 1992 ACM O-8979 ~-483 .~/92/0006/02g8 . ..$J ,50

rather complicated CPS veraion. In particular, compil-

ers that do not use the CPS transformation, e.g., Chez

Scheme [12] or Zinc [15], could benefit by implementing

transformations of source programs that correspond to

t ransformat ions of CPS programs.

Technically speaking, we are addressing the following

question: which calculus can prove ill = N for by-value

expressions M and N, if cps(iM) = cps(N) is provable

in the (by-value or by-name) A-calculus? As Plotkin [17]

showed in 1974, the Au-calculus does not suffice. Thus

we refine this question as follows:

Is there a set of axioms, A, that extend the

call-by-value A-calculus such that:

Such a correspondence theorem would be similar to

the correspondence theorems for the J-calculus and

combinatory logic [2: ch 7], and the AV-calculus and

by-value combinatory logic [11]. In analogy to model

theory, we call the left-to-right direction soundness and

the right-to-left direction completeness since the CPS

transformation is often taken as the definition of a call-

by-value semantics.

To derive A, we proceed in three steps:

1

2.

3.

First, we develop a CPS transformation that pro-

duces a canonical form of CPS programs. The new

transformation also produces the smallest possible

output of all known CPS transformations, without

reducing any of the original (source) redexea.

Second, we develop an un-CPS transformation that
maps canonical CPS programs and their deriva-

tions back to the original language. Aa Danvy and

Lawall [3, 6] convincingly argue, this translation

from CPS to direct terms is useful in its own right.

Finally, by studying the connection between the

CPS and un-CPS transformations, we systemati-

cally derive A. The extended A-value calculus is

equivalent to an untyped variant of Moggi’s [16]

computational A-calculus.

288

The next section introduces the basic terminology and

notation of the ~-calculus and its semantics. The third

section is a short history of CPS transformations. In

Section 4, we formalize the problem and outline our

approach to the solution. Section 5 is about the CPS

language and its properties. It also contains the defini-

tion of our new CPS transformation. Section 6 presents

the “inverse” mapping and its exact relation to the CPS

transformation. Our main results, the extension of the

Au-calculus and its completeness, are the subject of Sec-

tion 7. Finally, Section 8 discusses the relevance of the

new calculus and future directions of research.

Due to space limitations, we only indicate the ideas

behind major proof steps. For details, we refer the

reader to our extended technical report (Rice TR 9.$

180),

2 A: Calculi & Semantics

The language of the pure lambda calculus, A [2], consists

of variables, Xabstractions, and applications. The set

of terms, M ~ is generated inductively over an infinite

set of variables, Vans:

M ::= VI (MM) (Terms)

v ::= z I (kr.M) (Values)

x= Vars

A term is either a value, V, or an application. Values

consist of variables, drawn from the set Vars, and A-

Abstractions.

We adopt Barendregt’s [2: ch 2, 3] notation and

terminology for this syntax. Thus, in the abstraction

(~x.M), the variable z is bound in M. Variables that

are not bound by a Labstraction are free; the set of

free variables in a term M is FV(M). We identify terms

modulo bound variables, and we assume that free and

bound variables do not interfere in definitions or theo-

rems. In short, we follow common practice and work

with the quotient of A under a-equivalence. We write

M z N for a-equivalent terms M and N.

The expression M[z := N] is the result of the capture-

free substitution of all free occurrences of x in M by N.

For example, (Az.8z)[z := (Ay.x)] = (~u.u(~y.x)). A

context, C, is a term with a “hole”, [], in the place of

one sub expression. The operation of filling the context

C’ with an expression Al yields the term C’[M], possibly

capturing some free variables of M in the process. Thus,

the result of filling (kc.z[]) with (Ay.z) is (Az.roy.Z)).

Calculi: A A.calculus is an equational theory over A

wit h a finite number of axiom schemas and inference

rules. The most familiar axiom schemas are the follow-

ing notions of reductions:

((k.M) N) + M[z := N] (P)

((k.M) V) - M[% := V] (P.)

Ax.Mx - M x @ IV’(M) (~)

Ax.vz + v z g W(v) (%)

The set of inference rules is identical for all A-calculi.

It extends the notions of reductions to an equivalence

relation compatible with syntactic contexts:

M - N + C’[M] = C[N] (Comp)

M=M (Ref)

M= L, L= N~M=N (Trans)

M= N~N=M (Sym)

The underlying set of axioms completely identifies a

theory. For example, ~ generates the theory A, ,BVgen-

erates the theory Av, and the union of@ and q generates

the theory A@q. In general, we write AA to refer to the

theory generated by a set of axioms A. When a theory

AA proves an equation M = N, we write AA 1- M = N.

If the proof does not involve the inference rule Sym, we

write AA k M - N.

A notion of reduction R is Church-Rosser (CR) if

AR 1- M = N implies that there exists a term L such

that both M and N reduce to L, i.e., AR F M _ L

and AR F N + L. A term M is in R-normal form if

there are no R-reductions starting with M.

Semantics: The semantics of the language A is a

functiol i Eual, from programs to answers. A program

is a te~m with no free variables and, in practical lan-

guages, an answer is a member of the syntactic cate-

gory of values. Typically, Eval is defined via an ab-

stract machine that manipulates abstract counterparts

to machine stacks, stores, registers, etc. Examples are

the SECD machine [14] and the CEK machine [7].

An equivalent method for specifying the semantics

is based on the Curry-Feys Standard Reduction theo-

rem [7, 17]. The Standard Reduction theorem defines a

partial function, -, from programs to programs that

corresponds to a single evaluation step of an abstract

machine for A.

A standard step (i) decomposes the program into a

context E and a leftmost-outermost redex R (not inside

an abstraction), and (ii) fills E with the contractum of

R. The special contexts, E, are evaluation contexts and

have the following definition for the call-by-value and

call-by-name variants of A, respectively [7]:

E. ::= [1 I ~.[(v [1)1 I ~v[([l M)]

E. ::= [1 I En[([l WI

Conceptually, the hole of an evaluation context, [],

points to the current instruction, which must be a /3. or

~ redex. The decomposition of M into E[(V N)] where

289

(V N) is a redex means that the current instruction is

(V N) and that the rest of the computation (the contin-

uation! [7]) is E. Since, a call-by-name language never

evaluates arguments, evaluation contexts do not include

contexts of the shape En [(V [])].

Given evaluation contexts, the definitions of the stan-

dard reduction functions for call-by-value and call-by-

name respectively are as follows:

Ew[((k.M) V)] t---+u Eu[M[r := V]]

En[((kz.M) N)] -n E.[M[z := N]]

A complete evaluation applies the single-step functions

repeatedly and either reaches an answer or diverges.

The notation +-+* denotes the reflexive, transitive clo-

sure of the function -. The semantics of A is defined

as follows:

Eva/u(M) = V iff M -~ V (call-by-value)

Eva/.(M) = V iff M +-i: V (call-by-name)

For the definition of the semantics, ~ and q. do not

play any role. Their relevance for calculi is clarified in

the next paragraph.

Note: The syntax of the call-by-value language A can

be redefined as follows:

A: Al ::= V I E[(V V)]

Values : V ::= z I (XZ.M)

EvCont : E ::= [1 I E[(v [1)1 I -E[([1 W]

We use both definitions of the syntax below.

Observational Equivalence: Not only do calculi de-

fine the semantics of A, but they are also useful for prov-

ing the correctness of some optimization. Abstractly,

an optimization of a program C[ill] is the replacement

of ill by a “more efficient” expression N such that a pro-

grammer cannot distinguish the observational behavior

of the programs C[A4] and C’[N]. The observational be-

havior of a program includes its termination behavior

and its value when it terminates; it does not include

execution speed. Formally, two expressions ikf and N

are observationally equivalent, ill SC N (for z = v or

z = n), if the following condition holds:

For all contexts C’ such that both C’[lvf] and

C[N] are programs, either both Evalfi (G[M])

and EvaiC (C[N]) are defined or both are un-

defined.

It is undecidable to determine whether two expres-

sions are observationally equivalent. However, AU and

A are two typical (weak) examples of theories that are

sound with respect to observational equivalence.

Theorem 2.1 (Plotkin) Let M, N G A.

1, If AVFM=N then MZv N.

2. If AkM=Nthen M%N.

The soundness of extensions of A and AV with ~ and

%, respective y, depends on the circumst antes. The

axiom qV is sound with respect to call-by-value observa-

tional equivalence for A. If we extend A with constants,

q. may be unsound. For an example, consider a dynam-

ically typed language with numerals and a predicate in-

teger?. The latter can distinguish 3 and Ax.3 x, yet, the

q. axiom identifies the two terms. In a typed setting,

q. is generally sound, independent of the parameter-

passing technique.

The axiom q, on the other hand, fails to be sound

with respect to call-by-name observational equivalence

even in a pure language. For example, if Q is a diverg-

ing term, then (k .fkz) reduces to Q but the two are

clearly observationally distinct terms. Indeed, q is only

sound in a typed language that does not permit the

observation of the termination behavior of higher-type

expressions.

3 The Origins and Practice of CPS

The idea of transforming programs to “continuation-

passing style” appeared in the mid-sixties. For a few

years, the transformation remained part of the folklore

of computer science until Fischer and Reynolds codified

it in 1972.

Fischer [10] studied two implementation strategies

for A: a heap-based retention strategy, in which all vari-

able bindings are retained until no longer needed, and

a stack-based deletion strategy, in which variable bind-

ings are destroyed when control leaves the procedure (or

block) in which they were created. He concluded that

no real power is lost in restricting oneself to a

deletion strategy implementation, for any pro-

gram can be translated into an equivalent one

which will work correctly under such an imple-

mentation [10: 104].

The translation is the following CPS transformation.

Definition 3.1. (Fischer C’PS) Let k, m, n c Vars

be variables that do not occur in the argument to 7.

F:A + A

F[v] = Ak.k W[v]
F[MN] = Ak.Y_[M] (Arn.F[N] An.(rn k) n)

q%] = z

W[k.fvf] = M.kr.F[M] k

Reynolds [18] investigated definitional interpreters for

higher-order languages. Among his goals was the de-

sire to liberate the definition of a language from the

parameter-passing technique of the defining language.

He developed a constructive (but informal) method to

290

transform an interpreter such that it becomes indifferent

to whether the underlying parameter passing technique

is call-by-value or call-by-name. His transformation

is essentially the same transformation as Fischer’s ~.

Plotkin [17] later proved Reynolds’ ideas correct.

Theorem 3.2 (Plotkin [17]) Let M ~ A.

Simulation: IUIEva/W(I@] = llvaln(~[l’bl] (~z.z))

Indifference:

llvuln(~[ill] (Xr.z)) = Evalu (F[M] (kr.z))

The Simulation theorem shows that the evaluation of

the CPS program produces correct outputs. The Indif-

ference theorem establishes that this evaluation yields

the same result under call-by-value and call-by-name.

The main disadvantage of the Fischer CPS transfor-

mation is the excessive number of redexes it introduces

in the output. For example,

F[((AZ.%) (y y))] =

Ak.((Ak.k Ak.Az.((Ak.kx) k))

(Arn.((Ak.((Ak.ky) Arn.Ak.ky An.(rn k) n))

(An.(rn k) n)))).

Although the original term contains one A-abstraction

and no ~V-redexes, its CPS counterpart contains a large

number of both. Plotkin [17] referred to the new redexes

as administrative redexes because an evaluator must al-

ways reduce them before re-est ablishing /3v-redexes that

were present in the source term.

From both a theoretical and a practical perspective,

the presence of the administrative redexes is undesir-

able. On the theoretical side, they complicate reasoning

about CPS programs. For example, Plotkin [17] finds

it necessary to define an improved CPS transformation

exclusively for the proof of Theorem 3.2 above. On the

practical side, code generation phases in compilers fa-

vor smaller, i.e., more manageable, programs. Hence,

“practical” CPS transformations [1, 5, 13, 19, 20] use

special algorithms to minimize the size of their outputs.

In essence, all practical CPS transformations are

conceptually equivalent to the following two-pass CPS

transformation: 1

●

●

First, “mark” the new ~-abstractions in the out-

put of the Fischer CPS to identify administrative

redexes, and then

reduce all administrative redexes.

Source redexes should remain intact because unre-

stricted reductions could cause non-termination. The

remainder of this section codifies these ideas in a simple
manner.

Formally, the first pass of the two-pass CPS is the

following modified Fischer CPS transformation.

1See also Danvy and Filinski’s development of these ideas [5].

Definition 3.3. (Modijied Fischer CPS) Let k, m, n G

Vars be as in Definition 3.1.

An

X[V] = ~k.k V[V]

7[MN] = ~k.~[M] (~m.X[N] %.(rn k) n)

W[x] = %

V[ku.M] = ~k.kr.X[M] k

overline decorates A-abstractions that were not

present in the original term. An administrative reduc-

tion is simply one that involves decorated abstractions:

((XX.M) iv) - M[x := iv] (F)

(1%.MZ) - M z @ IT’’(M) (m

The complete definition of the two-pass CPS trans-

formation, fi2~, is parametrized over a continuation k.

Definition 3.4. (Two-Pass CPS) _F2k[M] = P iff

A~~ t- (Y[M] k) = P where P is in ,@normal form.

The following proposition establishes that F2k is well-

defined.

Proposition 3.5 Y2~ is a total function.

Proof. By Lemma 3.7, ‘~-normal forms are unique.

Therefore, the relation 32~ is a function. Moreover, by

Lemma 3.6, all reductions paths starting at X[iVf] for

h’ c A terminate. Hence, 32~ is a total function. D

Lemma 3.6 Let M 6 A. If A–fi 1- F[A4] = A/. -

Ml - M2 then:

1. for all M~, the bound variable of a ~-abstraction

occurs exactly once in the body,

2. for all i >0, Mi+l has one less ~-abstraction than

Mi, and

3. for some finite n, M. is in ~?j-normal form.

Proof Sketch. The first claim is initially true by con-

struction, and is preserved by ~?’j-reductions. It implies

that reductions cannot eliminate or duplicate subterms.

Therefore, the second claim holds. The last claim fol-

lows by induction on the number of ~-abstractions in

T[M]. B

It remains to establish that if .F[M] reduces to two

normal forms P and Q, then P and Q are identical.

Lemma 3.7 Let P and Q be in @j-normal form. If
~~~ 1- 7[M] — P and Apij- + Y[M] — Q, then

P~Q.

Proof. The proof is a consequence of the Church- Rosser

theorem for /3q [2]. R

291



The output of 72~ is extremely compact. For exam-

ple, applying ~2~ to (((~z. ~y.z) a) b) yields the term:

M’ ~ ((kc. ((~y.kz) b)) a)

For the same example, both Steele’s Rabbit transfor-

mation [20] and the Danvy/Filinski transformation [5]

yield the term:2

N ~ ((~k~z.(k~ ~k~y.kz%)) (~rn.rnkb) a).

In the term N, every procedure accepts its continuation

at the same time it accepts its argument. Therefore, the

management of all continuations in the term N must

occur at run-time. Specifically, the evaluation of ill

requires two ~-reductions:

Al + (( Ay, ka) b) ----+ ka,

while the evaluation of N requires three (n-ary) /r-

eductions:

N + (( Jrn.rnkh) (Akzy.kza))

- (( Mc,y.k2a) k b)

- ka.

Since the extra (administrative) reduction in the eval-
uation of N is completely predictable from the source

term, the function ~2k optimizes it away.

4 Transforming CPS programs

With the elimination of all administrative redexes, we

can turn our attention to “interesting” 8V transforma-

tions on CPS programs.

Plotkin [17] was the first to offer some insights about

the relation between reductions on source terms and

CPS terms. In a comparative study of equational the-

ories for call-by-value languages and call-by-name lan-

guages, he proved the following theorem.

Theorem 4.1 (Plotkin [17]) Let M, N ● A.

1. A. 1- A4 = N implies A. 1- $[M] = %[N];

‘This is slightly inaccurate. In both Steele’s Rabbit and the
Danvy/Filinski CPS transformations, the continuation is the sec-
ond parameter to a procedure. Thus, their output is actually:

(( Ack,.(k, Ayk,.k,z)) a (Am.rnbk)).

Even though this term only contains source redexes, we could still
optimize it by equational reasoning as the following derivation
shows:

(( Az/c, .(k, A@2.k,a)) a (Am.mbk))
+ ((kn.mbk) (Ayk, .k2a))
+ (( AIJC2.k2a) b k)
+ ,ka

+--- (( Ay.ka) b)

+ (( Az.((Ag.k*) b)) a).

Indeed, the “net” effect of such transformations is that of per-
forming administrative reductions only!

2. Au E $[M] = F[N] does not imply xv t- M = N;

.9. & 1- fi[ill] = $[N] ifl A F F[M] = 7[N].

In short, /3-reductions prove more equations on CPS

terms than ,8. -reductions prove on source terms. The

effect of q-reductions on CPS terms is unknown. Our

goal is to remedy this situation by deriving a set of

reductions A such that:

AUA ~ M = N iff ~@q ~ ~2k[M] = $2k[N]

We illustrate some of the complications that this

problem poses with a specific reduction on CPS terms:

((kz.((x k) z)) (Ak.Ay.ky)) ----+ ((( Ak.Ay.ky) k) Z).

By inspection, the left-hand side is:

72k[((kr.xz) (Ay.y))].

A quick glance at the right hand side reveals that it

contains an administrative redex and hence cannot be

~2k [M] for any Al E A. The right hand side is, how-

ever, provably equal to a number of CPS terms;

Apq t ~2k[((k.((~X.Za) (~y.y))) Z)]

= ~2k[((~y.y) %)]

= (((~k.~y.ky) k) z).

Assuming we choose ((~y.y) Z) as the official “inverse”

of the right hand side, then the CPS reduction corre-

sponds to the following /3V-reduction:

(( AZ.ZZ) (Ay.y)) + (( Ay.y) z)

on source terms. The other choice corresponds to a PO-

expansion which is clearly undesirable.

Inspired by the above example, we proceed as follows:

1.

2.

3.

5

We explicitly define the set of CPS terms. The def-

inition relies a one-pass CPS transformation equiv-

alent to ~2k (SeCtiOn .5).

We define an ‘(inverse” CPS transformation and

formalize its precise relationship to the CPS trans-

formation (Section 6).

We derive the set A. For each notion of reduction

P — Q on CPS terms, we apply the inverse trans-

formation to P and Q and get the source terms M

and N. If Au F M = N, then we are done. Oth-

erwise, we add appropriate reductions to A (Sec-

tion 7).

A compactifyhg CPS transformation

and the CPS language

The one-pass CPS transformation should combine the

modified Fischer transformation with the application of

292



~- and ~-reductions. An informal description of what

these reductions accomplish will clarify the nature of

such a function.

The most informative kind of administrative redexes

appears in the translation of ((kE. iVl) V) in an arbitrary

continuation K:

((m.((xk.k (Tk.k.r[M] k))
(X7L((m.k V[v]) (Xn.(rnk)n)))))

K).

The expression reduces to:

(((~k.Az.7iIM] k) K) qv]).

At this point, the following ~-reduction takes place:

(((Xk.Xz.7[M] k) K) If[v]) + (( AX.7[M] K) !qv])

i.e., the image of the abstraction absorbs the continua-

tion of the application. For the source terms, this means

that the body of an abstraction in application position

absorbs the syntactic representation of the continuation,

which is the evaluation context [7]. Thus, a program of

the shape E[((XE.J14) V)] where E represents K, must

be translated as if it had been written as (( Ax. E[M]) V).

Put differently, our CPS transformation “symboli-

cally” evaluates redexes by lifting them to the root of

the program. For applications of values to values in-

side of A-abstractions, this means of course that it takes

the evaluation contexts with respect to the closest A,

which will become the root of the program once the re-

dex is discharged. The resulting transformation, C~, is

parametrized over a variable k that represents the con-

tinuation of the entire program.

Definition 5.1. (C~, Q, ~k ) The CPS transformation

uses three mutually recursive functions: ck to transform

terms, @ to transform values, and ~k to transform eval-

uation contexts. Let k, u G Vars be variables that do

occur in the argument to ck.

Ck:A+A

Ck[v] =

Ck [E[(z V)]] =

ck [E[((Az.M) V)]] =

@[x]

@[Az.M]

K,[[ ]]

~k[E[(z? [ ])]]

K~[E[((Ax.M) [ ])]]

&[E[([ ] M)]]

(k @[V])

((z &[E]) @[V])

((k. Ck[E[M]]) @[V])

=x

= ~k.Ar.Ck[M]

= k

= (x &[E])

= (kc. Ck[E[M]])

= @@[E[(~ M)]])

An informal examination of the definition of ck re-

veals that the translation of every expression refers to

an expression of smaller “size”.

Definition 5.2. (Size) The size of a term M, Ilf[, is

the number of variables in M (including binding occur-

rences). The size of a context E, IEI, is the number of

variables in E (including binding occurrences) plus 2.

(Because the empty context replaces a redex which has

at least size 2, the size of the empty context is 2.)

Hence, the function ck is well-defined.

Proposition 5.3 The function ck is total.

Proof Sketch. The proof is by induction on the size

of the argument to ck or ~k and proceeds by cases on

possible inputs to the two functions. m

As expected the output of ck does not contain any

administrative redexes.

Lemma 5.4 If M E A, Ck[M] is in ~fl-normal form.

Proof Sketch. By induction on the size of the argument

tockor~k.~

Most importantly, the output of the new CPS trans-

formation is equivalent to the output of ~2k.

Proposition 5.5 Let M G A. Then,

~j%j ~ (%[M] k)+ ck [M].

Proof Sketch. The essential steps in the proof are:

1. Define a natural extension of the modified Fis-

cher transformation that acts on contexts such that

F[[ ]] = ~k.k.

2. By a simple induction on the structure of E, prove:

A~ 1- (r[E[M]] k)= (F[M] (y[E] k)).

3. By induction on the size of M, prove that:

A~~ t- (F[M] k) = ck [M].

4. The result follows from the last claim because

ck [M] is in ~~-normal form (Lemma 5.4) and ~7#i-

normal forms are unique (Lemma 3.7). m

With the completion of the analysis of ck, the dec-

orating overlines become irrelevant. Therefore, in the

remainder of the paper, we ignore the distinction be-

tween A and ~.

Next, we turn to the definition of our universe of dis-

course, the set of CPS terms. It must include all terms

that contribute to the proofs of equations of the form:

~~q b C~ [M] = ck [~].

Since @q is CR [2], it is sufficient to consider equations

of the form:

A@~ 1- C~ [M]+ P.

293



Hence, the interesting set of CPS terms is:

S~ {P I 3iM EA. A@ql-C~[Lf]-++P}.

The definition of the transformation C~ provides some

insight about an inductive characterization of the set

of CPS terms. According to the right hand sides of

the equations in Definition 5.1 all terms in the CPS

language are an application of a continuation to a value.

Values are either variables or abstractions (continuation

transformers). Continuations are either variables, or the

result of the application of a value to a continuation, or

a regular lambda abstraction. Therefore, we claim that

S is generated by the following grammar.

Definition 5.6. ( CPS grammar) Let x ~ Vam\{k}:

cps(A) : P ::= (II W)

cps( Values) : w’ ::= z I (Ak.K)

C~S(hcO?d) : I{ ::= k I (~ K) I (~z.p)

Note: The special status reserved for the variable k

ensures that the continuation parameter occurs exactly

once in each abstraction Ak .1<. When working with

the quotient of the language under a-equivalence, the

special status of k disappears.

The following theorem justifies the above claim by

establishing the equivalence of the two definitions of the

set of CPS terms.

Theorem 5.7 S = cps(A).

Proof. It is easy to prove that for ill 6 A, C~ [M] E

cps (A). The rest follows from Lemmas 5.8 and 5.9. E

Since @q-reductions preserve the syntactic categories

in the CPS language, the set S is a subset of cps(A).

Lemma 5.8 Let PI G cps(A), W’l E cps( Values), and

K1 c cps(EvCont). Then,

● if A~~ 1- PI + P2 then P2 E cps(A);

● if A@q F WI + W2 then W2 G cps( Values);

● if A@q k 1<1 d 1(2 then 1<2 E cps(Ev G’ont).

For the opposite implication, i.e., that cps (A) is

subset of S, it is sufficient that every P E CPS(A)

reachable from A via C~ and ,Bq.

Lemma 5.9 For all P G CPS(A), there exists an ~ C

such A/3q F Ck[M] + P.

a

is

A

6 An Inverse CPS Transformation

Based on the inductive definition of the CPS language,

the specification of an “inverse” to the CPS transfor-

mation is almost straightforward: the source term cor-

responding to the application of a continuation K to a

value W is simply E[V] where E is the evaluation con-

text that syntactically represents the continuation K

and V is the value that corresponds to W. The defi-

nition of the function C– 1 (un-CPS) uses two auxiliary

functions to translate continuations to evaluation con-

texts and values in the CPS language to values in the

source language. Both definitions are straightforward.

Definition 6.1. (C-l, Q-l, K-l)

C-l : cps(A) + A

C-l[(K w)] = K-l[I<][@-l[w]]

K-l[k] = []

K-l[(z K)] = K-l[K][(Z [ 1)1

K-l[((M,KI) K2)] = K-l[Kl[k := 1<2]]

K-l[(AZ.P)] = (( Az.c-llpq) [1)

Intuitively, C– 1 is the ‘(inverse” of C, 0-l is the “in-

verse” of Q, and K– 1 is the “inverse” of K. Moreover,

C-1, ~– 1, and K-l apply to the syntactic categories

cps(A), cps( Vaiztes), and cps(EvCont) respectively and

yield terms in the appropriate syntactic categories in

the source language.

Lemma 6.2 C-l[P] c A, @-l[W] E Values, and

K-l[K] E EvCont.

Proof Sketch. The proof is based on the same idea as

the proof of Lemma 5.9. E

For two distinct reasons, C– 1 cannot be a complete

inverse of C~. First, some CPS terms are the image of

more than one source term. Second, some CPS terms

are not the image of any source term. The first fact is a

property of the function C~ that reduces administrative

redexes on the fly. The second one is due to the closure

of the set of CPS terms under ~~-reductions. We discuss

each point in detail below.3

Proof. The proof is by lexicographic induction on

(~, IGl) where G is an element P of cps(A) or an el-

ement K of cps(Ev Cent ), ~ is the number of abstrac-

tions of the form Ak. K in G, and IG I is the number of

variables (including binding occurrences) in G. ~

3Danvy and Lawall [3, 6] define a direct style transformation

that maps CPS terms into source terms. To get an inverse of

the Danvy/Filinski CPS [5], they have to restrict the domain of

their direct style transformation to images of A terms. Hence, the

Danvy-Lawall inverse is not applicable in situations that involve

f?q-transformations of CPS programs.

294



The effect of administrative reductions: The

function C~ incorporates the reduction of all adminis-

trative redexes from the output of the Fischer CPS.

Hence, if 7[i14] and %[iV] reduce to a common term

by administrative reductions only, ck [M] is identica/ to

ck [N]. The definition of the function ck shows that,

in two cases, different inputs are indeed mapped to the

same output.

● The first equivalence is:

Ck[E[((Az.M) N)]]= Ck[((k.lqiw]) N)].

The equation illustrates how the CPS transforma-

tion uses its knowledge about the continuation of

an application. As indicated in Section 4, it “lifts”

the application to top level and merges the contin-

uation with the body of the application.

● The second equivalence is:

ck[~[((~ N) L)]]= Ck[((kr.E[(z L)]) (M N))]

This equation captures another essential element

of CPS transformations. According to folklore in

the functional compiler-building community [4], the

first aspect of a CPS transformation is to give the

value of every application a name. In the above

equation, the argument to C~ in the right hand

side is a “flattened” version of the left hand side

in which the nested application (&f IV) is factored

out and given a name.

In summary, we define two reductions on A that cap-

ture the effect of the administrative reductions per-

formed by ck:

E[((AZ.M) N)] - ((kr.E[M]) N) O%ft)

E[((A4 N) L)] + (( AZ.E[(Z L)]) (Pj%t)
(M N))

By the variable conventions, z @ FV(E, L) in the above

reductions.

The reductions ,f?l,ft and @flat define equivalence

classes of source terms that map to the same CPS term.

The function C-l maps this CPS term to a particular

representative of the equivalence class: the element in

@/,f~@jmt-normal form.

Lemma 6.3 Let P c cps(A). Then, C-l [P] is in

Pkft%t-normal form.

Proof Sketch, The proof is by induction on the same

lexicographic measure as the proof of Lemma 5.9. I

It follows that C-1 is an inverse of ck on the subset

of source terms in @/zft@fiat-normal form.

Theorem 6.4 Let A/f E A, P c cps(A).

1. A/?[%jJ3flat 1- M — (c-’ Oc,)[fvf].

2. (C-l OCk)[M] E M for M = C-l[P].

The closure of the set of CP S terms under ~q-
reductions: Because of arbitrary @q-reductions, the

set of CPS terms includes terms that are not the im-

age of any source term. For example, the following q-

reduction generates such a term:

The function C- I (conceptually) coerces ~k .k first to

Ak.kc.kz, i.e., C-l[M.k] = C-l[Ak.kc.k2] = Ax.%.

Thus, P is generally not identical to (Ck o C- l)[P].

However, ck is the inverse of C-l on the subset of CPS

terms that are images of source terms.

Theorem 6.5 Let P G cps(A), M E A.

1. Apq t- (Ck OC-l)[P] = P.

Proof Sketch. The proof is by induction on the same

lexicographic measure as the proof of Lemma 5.9. n

7 Completeness and Soundness

Using the partial inverse of the CPS transformation,

we can systematically derive a set of additional axioms

A for A. such that Au A is complete for @q reasoning

about CPS programs. Once we have the new axiom

set, we prove its soundness in the second subsection. In

the last subsection, we briefly discuss the connection to

Moggi’s computational A-calculus.

7.1 Completeness

By inspection of the inductive definition of the CPS lan-

guage, the possible @ and q-reductions on CPS terms

are as follows:

((Xr.P) w) + P[z := w] (AU )

(( M.K,) K,) - K,[k := K,] (~k)
(M.lvk) + w (mu)
(XE.KX) - K % @W(K) (~k)

Put differently, for cps(A), ~ = ,& U ~k and q = qW U ?)k,

We outline the derivation of reductions corresponding to

qk. Let (~z.~<z) + K where z @ FV(K). Applying

K-1 to both sides of the reduction, we get:

(( AZ.C-’[KZ]) [ ]) - K-’[K].

To understand how the left hand side could reduce to

the right hand side, we proceed by case analysis on K:

e K ~ k: The reduction becomes:

((k.z) []) - [].

Since the empty context generally stands for an ar-

bitrary expression, A should therefore contain the

reduction:

295



((kz.kf) v) - A’f[z := v] (B”)

(kr,vx) + v .T@w(v) (%)

E[((k.lt’f) N)] + ((h.lqfvq) w x @FV(E) (Pit.ft)

E[((fl!f iv) L)] + (( AZ.E[(Z L)]) (M N)) x @ IV(E, L) (Dflat)

((h.z) M) - M (hd)
((k.lq(y z)]) M) + -E[(?/ M)] z @ Fv(lqy]) (h)

Figure 1: Source Reductions: A ~ {q., ,6wt, ~fiat, ~,d, ~n}

K s (y K1 ): The reduction becomes:

(( Az.K-’[K,][(y z)]) [ ]) + K’[KI][(V [ ])].

By a similar argument as above, we must add the

following reduction to A:

((Az.E[(y z)]) M) + E[(y M)]

K ~ (( Ak.K1) K2): The reduction becomes:

((A$.c-’[K,[k := K,] x]) [])+

K-l[Kl[k := K2]].

Since the term (KI [k := Kzl z) has one less

(hi)

Ak.K

abstraction than K, the inductive hypothesis pro-

vides an appropriate equivalence.

K = Ay.P: By an @u-reduction, the left

hand side (( Az.((Ay.C-l [P]) z)) [ ]) reduces to

((kE.C-l [P][y := z]) [ ]), which is identical to the

right hand side.

The cases for the other reductions on CPS terms are

similar but with more complicated proofs. The resulting

set of source reductions, A, includes all the previously

derived reductions and ~v: see Figure 1.

Figure 2 summarizes the source reductions corre-

sponding to each CPS reduction. A ~W -reduction corre-

sponds essentially to a /?u-reduction on source terms.

Similarly, an q~-reduction corresponds to q.. HOW-

ever, the reduction of a /3W redex might create some

administrative redexes for the management of continu-

ations. The reductions of these redexes correspond to

fiz,@~.d&reductions on source terms.

By pasting together the proofs of the lemmas corre-

sponding to each reduction, we get the following com-

pleteness theorem.

Theorem 7.1 (Completeness) If A/3q 1- P — Q

then AUA 1- C-l[P] ——+ C-l [Q]

7.2 Soundness

The set of source reductions in Figure 1 is sound with

respect to the equational theory over CPS terms. In

other words, for a source reduction ill + N, we have

A@~ F ck [M] = C~ [N]. In fact, we can prove the

stronger results of Figure 3. The Soundness theorem
is a direct consequence of these results.

Theorem 7.2 (Soundness) If AVA 1- M -++ N then

Apq 1- Ck [M] + C~ [N] .

7.3 Correspondence

Unfortunately, if C~ [~] reduces to ck [N], it is not nec-

essarily the case that M reduces to N. A proof that

C~ ~11] reduces to C~ [N] in the CPS calculus translates

to a proof that C-1 [Ck [Ill]] reduces to C-1 [C~ [N]] in

the source calculus. Unless N is in /3/,ft~flat-normal

form, the latter proof does not imply that Al ---+ N.

Still, Ll is always provably equal to N.

Theorem 7.3 (Correspondence) The calcuii ~~q

and &A are equivalent an the following sense:

1. AuAt- M= (C-l ock)[~].

2. Apql- P= (ckoc-l)[P]

3. AuAl- M= N zflA/3~FC~[M]=C~[N].

4, A~qt- P= Q Z~AuAt- C-l[P]=C-l[Q].

Not e: Other CP S transformations. The correspon-

dence theorem does not depend on any specific aspects

of C~ or 7. Rather the result is valid for any CPS trans-

formation cps that satisfies the following condition for

MEA:

A~q h Y~M] = cf)s(M).

7.4 The computational A-calculus

The calculus Au A is equivalent to an untyped variant

of Moggi’s computational A-calculus Ac [16]. Specif-

ically, we ignore the types of expressions, eliminate

product and computational expressions, re-interpret

Moggi’s let-expression as the usual abbreviation for a

X-application, and apply his let-axioms to the expanded

expressions. The basic reductions of our variant of &

are P., ~~, ~,d PIUS the additional reductions of Figure 4.

296



(( XcZ.M) ((kI.Mz) M,)) - (( XzI.((km.M) Mz)) MI) (Comp)

((M N) L) - ((Jz.z L) (M N)) (Ml)

(V (M N)) - ((Az.V z) (M N)) (kt.2)

Figure 4: Additional Reductions for the Computational J-calculus

We prove the equivalence of our calculus and & by

showing how each calculus proves the reductions of the

other. First, there is a set of common rules: fl~, qv, and

Did. Moreover, Comp is an instance of ~,ift and let.1 an

instance of @fiat. Finally, let.2 is simply an rlw expansion.

This establishes one direction of the equivalence. For

the reverse direction, it is sufficient to show that AC

proves ~l,ft, ~flat, and ~n for the cases when E is empty,

E~(V[]), and E~([]lf).

Based on the above argument, the correspondence of

the calculi yields the following reformulation of the Cor-

respondence theorem.

Theorem 7.3’ (Correspondence (Reformulation))

The calculi A/3q and AC are equivalent in the sense of

Theorem 7.3.

8 Conclusion and Future Research

The interest in calculi is motivated by their sound-

ness with respect to observational equivalence (see Sec-

tion 2). Therefore, the natural question is whether our

extension is sound with respect to the call-by-value ob-

servational equivalence relation. Moggi [16] proves the

result in a typed setting, It follows that our extension

is sound for reasoning about typed CPS programs, for

example in a language like (full) ML.

For dynamically typed languages like Lisp or Scheme,

the A.-calculus is unsound since it includes the axiom

qa (See Section 2). As all other axioms are sound with

respect to call-by-value observational equivalence, the

relevant reductions for untyped languages are:

By the Completeness and Soundness lemmas (Figures 2

and 3 respectively) the corresponding CPS calculus is

Apq~ .

Theorem 7.3” (Correspondence (Untyped))

The calculi ~~~k and AVA– are equivalent in the sense

of Theorem 7.3.

In summary, our extensions of the A.-calculus result

in an equational theory over A that is sound with respect

to the call-by-value observational equivalence, and cor-

responds to A@q (or A~q~) over CPS terms. Moreover,

the result extends to languages with ground constants

and primitive functions and languages with imperative

assignment procedures for data structures.

For languages with Scheme-like control operators,

our extension of Au-calculus is still sound with respect

to observational equivalence. However, the correspon-

dence theorem fails since operators like caZJ/cc ma-

nipulate their continuation in non-standard ways. To

re-establish the correspondence theorem for such lan-

guages, we need to find an extension for the A-control

calculus [8, 9] that corresponds to A~~ on CPS terms.

297



References

1.

2.

3

4.

5.

6.

7

8

9

10

11

12

13.

APPEL, A. AND T. JIM. Continuation-passing,

closure-passing style. In Proc. 16th ACM Sym-

poszum on Principles of Programming Languages,

1982, 293-302.

BARENDRE~T, H,P. The Lambda Calculus: Its

Syntax and Semantics. Revised Edition. Studies

in Logic and the Foundations of Mathematics 103.

North-Holland, Amsterdam, 1984.

DANVY, O. Back to direct style. In ith Proc. Euro-

pean Symposium on Programming. Springer Lecture

Notes in Computer Science, 582. Springer Verlag,

Berlin, 1992, 130-150.

DANVY, O. Three steps for the CPS transforma-

tion. Tech. Rep. CIS-92-2. Kansas State Univer-

sity, 1992.

DANVY, O. AND A. FILINSKI. Representing con-

trol: A study of the CPS transformation. Tech.

Rpt. CIS-91-2. Kansas State University, 1991.

DANVY, O. AND J. LAWALL. Back to direct style

II: First-class continuations, In Proc. 1992 ACM

Conference on Lisp and Functional Programming,

1992, this volume.

FELLEISEN, M. AND D.P. FRIEDMAN. Control op-

erators, the SECD-machine, and the J-calculus. In

Formal Description of Programming Concepts III,

edited by M. Wirsing. Elsevier Science Publishers

B.V. (North-Holland), Amsterdam, 1986, 193-217.

FELLEISEN, M. AND R. HIEB. The revised report

on the syntactic theories of sequential control and

state. Technical Report 100, Rice University, June

1989. Theor. Comput. Sci., 1991, to appear.

FELLEISEN, M., D. FRIEDMAN, E. KOHLBECKER,

AND B. DUBA. A syntactic theory of sequential

control. Theor. Comput. SCZ. 52(3), 1987, 205–

237. Preliminary version in: Proc. Symposium on

Logic in Computer Science, 1986, 131–141.

FISCHER, M.J. Lambda calculus schemata. In

Proc. ACM Conference on Proving Assertions

About Programs, SIGPLAN Notices 7(l), 1972,

104-109.

GATELEY) J. AND B.F. DUBA. Call-by-value com-

binatory logic and the lambda-value calculus. In

Proc. 1991 Workshop on Mathematical Foundations

of Programming Semantics. Lecture Notes in Com-

puter Science 517, to appear.

HIEB R., R. K. DYBVIG, AND C. BRUGGEMAN.

Representing control in the presence of first-class

continuations. In Proceedings of the SIGPLA N ’90

Conference on Programming Language Design and

Implementation, June 1990, 66-77.

KRANZ, D., et al. ORBIT: An optimizing com-

piler for Scheme. In Proc. SIGPLAN 1986 Sympo-

14.

15.

16.

17.

18.

19.

20.

sium on Compiler Construction, SIGPLAN Notices

21(7), 1986, 219-233.

LAND IN, P .J. The mechanical evaluation of expres-

sions. Comput. J. 6(4), 1964, 308–320.

LEROY, X. The Zinc experiment. Technical Re-

port 117. INRIA, 1990.

MOGGI, E. Computational lambda-calculus and

monads. h Proc. Symposium on Logic zn Com-

puter Science, 1989, 14-23. Also appeared as: LFCS

Report ECS-LFCS-88-66, University of Edinburgh,

1988.

PLOTKIN, G.D. Call-by-name, call-by-value, and

the A-calculus. Theor. Comput. SCZ. 1, 1975, 125-

159.

REYNOLDS, J .(2. Definitional interpreters for

higher-order programming languages. In Proc.

ACM Annual Conference, 1972, 717-740.

SHIVERS, O. Control-flow Analysis of Higher-Order

Languages or Taming Lambda. Ph.D. dissertation,

Carnegie-Mellon University, 1991.

STEELE, G. L., JR. RABBIT: A compiler for

SCHEME. Memo 474, MIT AI Lab, 1978.

298


