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Abstract

We continue to investigate the di~ect-style transformation
by extending it to programs requiring call-with-current-

continuation (a.k.a. call/cc). The direct style (DS) and

the continuation-passing style (CPS) transformations form

a Galois connection. This pair of functions has a place in

the programmer’s toolbox — yet we are not aware of the

existence of any other DS transformer.

Starting from our DS transformer towards pure, call-by-

value functional ‘terms (Scheme), we extend it with a count-

ing analysis to detect non-canonical occurrences of a contin-

uation. The declaration of such a continuation is tramlated

into a call/cc and its application into the application of the

corresponding first-class continuation.

We also present staged versions of the DS and of the

CPS transformations, where administrative reductions are

separated from the actual translation, and where the actual

translations are carried out by local, structure-preserving

rewriting rules. These staged transformations are used to

prove the Galois connection.

Together, the CPS and the DS transformations enlarge

the class of programs that can be manipulated on a semantic

basis. We illustrate this point with partial evaluation, by

specializing a Scheme program with respect to a static part

of its input. The program uses coroutines. This illustration

achieves a first: a static coroutine is executed statically and

its computational content is inlined in the residual program.

1 Introduction

Functional programming folklore has it that control oPer-

ators such as call/cc are unnecessary because their effect

can be simulated by continuation-passing style ( CPS) [31].

On the other hand CPS forces one to write programs in an

extraordinarily contrived way. Fortunately, the CPS trans-

formation automatically maps programs (with or without

control operators) into purely functional programs.
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Our goal is to reverse this process, mapping CPS terms

back into direct style (D S). However not all CPS expressions

correspond to pure functional terms. Those that use the

continuation non-canonically require call/cc. Thus our goal

is to map arbitrary CPS programs into DS programs that

can use call/cc to account for first-class continuations.

Of course, \ve assume that the e~raluation of DS terms

follows the same strategy (e.g., left-to-right call-by-value)

as the one assumed by the CPS transformation. Similarly,

any CPS term should be compatible with this evaluation

strategy.

1.1 Example: a coroutine package in Scheme

Scheme offers first-class continuations via call/cc. Because

continuations arc reified as procedures, they are invoked by

procedure application. For clarity, however, in this paper we

will consistently use the explicit keyword throw to tag sLIch

invocations. 1

Let us consider a corontine package for Scheme pro-

grams. The follo~ving procedure swaps coroutines.

(define resume

(lambda (c)
(call/cc (lambda (k)

(c (lambda (r) (throw k r)))))))

Let us transform this procedure into CPS.

(define resume-c
(lambda (c k)

(c (lambda (r _) (k r))

(lambda (v) (k v)))))

Two things stand out about this CPS procedure.

● resume-c duplicates its continuation. That is, k occurs

twice in the body of resume-c.

o (lambda (r _) (k r) ) does not apply its continuation.

That is, - does not occur in the body of this A-

Abstraction.

These two noncanonical occurrences fundamentally re-

flect a control operation. Based OILthis observation, ~ve de-

scribe a count,mg analysis t,hat det,ect,s such occurrences m a,

CPS term. This information tells us where to insert call/cc

when a CPS term is transformed into DS.

1 Th]s syntact]c sugar can be obtained as a Scheme macro [2]

(define-syntax throw
(syntax-rules ()

[(throw k v) (k v)]))
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1.2 Applications

1.2.1 An Interpreter for Scheme 84 (revisited)

In the proceedings of LFP’84 [17, Fig. 1, p. 295], Haynes,

Friedman, and Wand present a CPS interpreter for Scheme

84. Our DS transformer maps this interpreter to the natu-

ral direct-style specification of Scheme. The result (omitted

here for lack of space) uses ..11/.. to implement call/cc.

Otherwise it looks like any other meta-circular Scheme in-

terpreter. Therefore, the only reason to write the oliginal

interpreter in CPS was to specify call/cc.

1.2.2 Mets*-continuation passing style

Iterating the CPS transformation over a CPS program yields

the “meta-continuation passing style” (MCPS) clescribed by

Danvy and Filinski in the proceedings of the LFP’90 [10].

Just as a CPS interpreter can be used to specify ..11/.., a

MCPS interpreter can be used to specify control operators

such as shift and reset while staying in the framework of

CPS. The DS transformation maps any pure hf”+l CPS into

MncPs.

1.2.3 Semantics-based program manipulation

Semantics-based program manipulation (e. g., compilation or

partial evaluation) performs better on CPS programs The

flow analysis of a CPS program by abstract interpretation

naturally yields more precise results (Meet Over all Paths

instead of a Least Fixed Point solution, even with a non-

distributive analysis) [24, 6]. Therefore it is beneficial to

first transform the source program into CPS. However, it

makes sense to transform the resulting program back to DS,

since the user might expect an answer in the form of the

original, as in the case of a source to source transformation.

Augmenting the DS transformation algorithm to ploduce

programs with call/cc widens the class of higher-order pro-

grams that can be manipulated on a semantic basis.

1.3 Overview

The rest of this paper is organized as follows. Section 2 re-

views our starting point: the DS transformation of restricted

CPS terms into pure call-by-value DS terms. After extend-

ing the syntax of CPS terms in Section 3, we describe a

counting analysis in Section 4.1. Section 4.3 presents a new

DS transformer of CPS terms into call-by-value DS terms.

The resulting program may use call/cc. In Section 5, we

investigate some properties of the DS and the CPS tl ansfor-

mations. Section 6 illustrates how our DS transformer can

play a r61e in semantics-based program manipulation. Af-

ter a comparison with related work in Section i’, Section 8

concludes. Finally, in Section 9 we plesent issues for future

work.

2 Pure Direct Style Transformation

This section reviews our starting point: the DS transforma-

tion of CPS terms into pure, call-by-value functional terms

[9]. Section 2.1 addresses CPS terms that yield pure func-

tional DS terms. Only the current continuation can be ap-

plied in such CPS terms. We capture this constraint as

an attribute in the BNF. Section 2.2 specifies the BNF of

DS terms. Section 2.3 presents the DS transformation as a

rewrite system.

2.1 BNF of pure CPS terms

We consider the ~-calculns applied to the usual first-order

constants (booleans, numbers, etc. ) and extended with colI-

ditional expressions, recursive definitions, and plimitive op-

erations. Primitive operators either map first-olcler argLl-

ments to first-older results or are data structure construc-

tors and destructors such as list operators (i. e., we do not
have continuation-passing primitive operatols [31]). Proce-

dures are n-ary. Continuation parameters occur last.

Let us give the BNF of the terms produced by the CPS

transformation of Scheme programs [1 I]. MUCII as Reynolds

[~9], we distinguish between “se~ious” and “trivial’> expres-

slons. A serious expression s h is evaluated in the scope of

a continuation N and a trivial expression th denotes a value

that is passed to a continuation ~. Pure CPS may be char-

acterized by the following second-class constm~nf:

Definition 1 (Second-class constraint)

1. Only the current continuation identifier con be appllwl

q The current contznuatzon identifier must occur an every-.
serious subexpression of each express lo72.

~~’e index each non- telminal with the current continuation

K as an inherited attribute to ensure that the second-class

constraint is satisfied

A CPS J-term in an empty context, e, is defined by the

following attribute gra12m2ar.

e c CExp — domain of CPS expressions

s C CSer — domain of serious expressions

tE CTriv — domain of trivial expressions

1 E CLam — domain of J-abstractions

op E Opr — domain of primitive operators

c e Cst — domain of first-order constant values

a,v, k E Ide — domain of identifiers

e ::=@ (Ak. s~)(Au. u)

SK ::= @kt” where li = ~

lQt; (t~, ,.,, t;, Au. sx)

where u # K and v occurs linearly in s

I letk = ~v. s~incond(t~l s;, s:)

where v # K

and u occurs lineally in S.L

and k = K V K @ FV(cond(t\, s!, s$))

\let (ii, . . . . ill)= (t~, . . . . t~jin SW
where K @ {ii, .,., i,, }

] letrec (21, . . . . in) = ({~, . . . . l~)msti

where K @ {21, . . . . in}

tfi :;= c

[i where i # K
\ lK

I Op(t;, . . . t;)

lK::= A(il, . . . . in, k). sk

whele K Q FV(J(iI, . . . . t,,, k). sk)

where for any A-term e, FV(e) denotes the set of variables

that are free in e.

Each nomterminal is indexed with an identifier K denot-

ing the current continuation. The second-class constraint is

embodied in the restriction on the production s% ::= @ k t~

that only the current continuation can be oppliecl.
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Vi-t @n+2(V + to, . . . . V + t,,, tJ#V A v k S)

v t- Qkt v h Qto(tl, . . ..fn. ,lU. s)

@OZ(o#v A ui-s4, vt- t]) v # FV(SZ) v @ FV(S3)

v t- let k = Av. sAincond(tl, SZ, s3)

%+1(V 1- t], . . . . ~ ~ ~n, U@ {ill . . ..irt} A v k S)

v t- let (ii, . . . . in) = (tl, . . . . tn) ius

v g {21, .,., ?n} V’j E {1, ,.., 7L}, v $zF’v(lj) VI--S

v E letrec(t~, . . . . in) = (11, . . . . l,, )ins

Ll=r,l c%(v + tl, . . . . v 1- t,n)

VEV v t- Op(tl, . . . . t??t)

Figure I: Linearity conditions ove~ continuations

[Q k t] = [t]

[QL3 (t,, . . . . tn, A“. s)] = @(A?J. [s]) (@[to] ([t,], . . . . [tn]))

[let k’= ~ v . s, in ccmd(tl, Sz, SS)] = Q (~ rJ [s1]) (cond([t~], [s2], [ss]))

[let (i~, .. . . !~) = (t~, . . . . tn)in s] = let (z,, . . . . in)= ([t,], . . . . [tn])in [s]

~letrec (2,, . . . . in) = (1,, . . . . /,,) in s] = letrec (2,, . . . . i,,) = ([/,], . . . . [/,,]) in [s]

[c] = c

[t] = t

[W (t,, , %)] = Op([tl], . . . [%])

[A(i,, . . . . in, k). s] = A(i,, . . . . in). [s]

Figure 2: pure dilect style transformation

The liuearitv condition is characterized bv the inference 1 G DLam — domain of J-abstractions

rules in Figure 1 (where “@n” stands for “n-ary exclusive

or” ). A continuation A w . s is linear in its parameter o when e::= t3e0 (e], . . . . en)

the”judgment
Vks

is satisfied. A let expression can be inserted at syntax-
analysis time to satisfy this linearity condition.

The attribute ~ is used in this BNF to ensure that only
the current continuation is applied and to distinguish the

identifier representing the current continuation from other
identifiers. Once the source program has been properly
parsed, it is unnecessary to check this separation. There-

fore we omit the K attribute below.

2.2 BN F of pure DS terms

Our DS transformation maps CPS terms into pure DS terms,

as defined by the following BNF. A DS J.-term, e, is defined

by the following grammar.

e E DExp — domain of DS expressions

[ cond(el, CZ, e,)

[ let (2,, :.., tn) = (cl, . . . . en)ine

I letrec(tl, .... i,,) = (11,.... ln)ine
Ic

Ii

I ofl(el, . . . . e,n)

11

1 ::= J(iI, . . . . i,l). e

2.3 Pure DS transformation

As derived in “Back to Direct Style I“ [9], the term

@(~ k s) (~ v v) is rewritten as [s], where the rewrite func-

tion [ ] is defined inductively in Figure 2. [ ] translates

serious terms. [ ] translates trivial terms.

[]: CSer + I)ExP

[]: CT,iv -+ DExp
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The redexes introduced for applications and continuation

declarations are reduced at translation time. Given our hy-

pothesis that the DS terms will be evaluated using the strat-

egy assumed by the CPS transformation, this administrative

reduction is safe because of the linearity on continuation pa-

rameters [9].

3 Extending the language of CPS terms

The second-class constraint allows only the current contin-

uation identifier to be applied. In this section, we examine

the effect of relaxing this constraint.

3.1 First extension

Let us allow any Iexically visible continuation identifier to

be applied. Now, while some continuation icleutifier must

appear in every serious sub expression of each expression, it

need no longer be the current continuation identifier. The

resulting language is characterized by the following jirst-

cla.ss constraint.

Definition 2 (First-class constraint)

1. Any Iexically visible continuation identzjfer can be ap-

plied,

2. Some continuation identifier must occur in every ser~-

ous subexpression of each expression.

To allow any lexically visible continuation to be applied,
let us extend the BNF of Section 2.1 with a new production

SK ::= @kt where k # K

Occurrences of this production satisfy the first-class con-
straint, but not the second-class constraint. A continuation
identifier that is used somewhere according to this new pro-

duction denotes a jirst-class continuation. A continuation

identifier that is only used according to the original produc-

tion

SK ::== CDkt where k = K

denotes a second-class conttnuataon.

In the original BNF, the attribute ensures that the con-

tinuation identifier k in @ k t represents the current contin-

uation. We could generalize this attribute to account fol
. . . . . . .

all the continuation ldentdiers vlslble m the current scope,

Instead, let us keep the attribute K and introduce a new

attribute y denoting the set of Iexically visible continuation

identifiers other than the current one.
A CPS A-term, e, is then defined by the following BNF.

e ::= Q(Ak. s~’@) (Av. o)
~%7::= @~ p’ where -y’ = {K} U y and k c 7’

[ QQ’ (t:’, . . . . t:’, AW. SK’7)

where -y’ = {K} U -y

and v @ #

and v occurs linearly in s

[ let k = J v s~’v in cond(t~”, s~’~’, s~’v’ )

where ~’ = {K} Uy

and y“ = {k} u-y’
and v ~ y’

and u occurs linea~ly in Sd

let (~,, ... 1,,) = (t~”,,.,,t~,’’)in SK7’
whe~e N @{21, . . . . in}
and -/ = y\ {il, ..,, z~}

and y“ =,jK} U y

letrec (ii, . . . . ~n) = (l? , . . . . 1~”) in sfi””

where w @ {21, . . . . Zn}
and -y’ = y\ {il, . . . . Zn}

and y“ = {K} UT’

ty ::= c

p ::=’ ~(;l, ,,,, ~n, k) s~’~’

where -y’ =-f\ {II, . . . . 27,, k}

Definition 3 A continuation tdentijier k occurs in first-

class position w/Len it is used by c{n instonce of the production

SK ::= COkt where k # K.

Definition 4 A continuation tdentijier k occurs tn second-

class position when it IS used by an znstcznce of the production

SK ::= Qkt where k = K.

3.2 Second extension

We make another change to the syntax independently of

the new constraint. According to the extended BNF above,

new continuations can only be declared around conditional

expressions. Let us extend this further by allowing the dec-

laration of a continuation anywhere as a serious expl ession.

This is captured in the following BNF. For conciseness, we

only reproduce what is new. (The two new productions le-

place the production for conditional expressions. )

e ..—. . . . . .
sfi )7::= . . .

I let k = Jv.sj’? in s~’v’

Ivhere y’ = {K} U -f

and v @ -y’

and v OCCUIS linearly in S2

I cond(t~’, s~’~, s~’~)

Ivhere -f’ = {K} U y

I . . .

t? ::= . . .

U ,:= . . .

Like the attribute K of the original BNF, ~ is needed only

to specify the new BNF. Therefore, we generally omit both

~ and y in the lest of this paper.

4 Direct style transformation

We now extend tl~e pure DS transfol mation to tile terms

generated by the extended BNF. We want to define the netv

transformation as a conservative extension. Accorcliugly, ~ve

must determine ho~v the source program varies from the olig-

inal BNF. In this section we first present a counting anal~-

sis to determine whether a continuation identifier occurs m

first-class position. We then define the BNF of extended DS

terms, and finally we use the counting analysis to extend

the DS transformation.
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K @ FV(t) K c FV(t) Kt_t:q

KH:L ~t-t:T K1-@kt:q

K#k AKc FIV(sI) K1-sz:qz K=k VK@FV(Sl) K1-s2:q2

~Eletk= Av. .s2ins1:T tct-let k=~v. szinsl:qz

KHo:qo .. . K~tm:qm K~3:qn+l Kt-tl:ql KI-sz:qz K1-s3:q3

KE @to (t], . . . . tn, Av. s) : u::; qj K 1- Cond(tl, S2, S3) : U;=l qj

K G {ii, . . . . in} Kkt]:gl . . . Kt-tn:qn x g {ii, . . . . in} K1-tl:ql ,.. Icl-tn: q,, Kt-s:qo

K + let (ZI, .... in) = (t],....tn)ins : u~=l q, K E let (21, . . . . in) = (tl, . . . . fn) in s : Ufl=o q,

K E {ii, . . . . in} K @ {ii, . . . . in} K1-ll:ql . K1-ln:qn K1-s:qo

K 1- letrec (ii, .... in) = (11, .... tn)in s : 1 N & letrec (ii, . . . . in) = (11, . . . . lm) ins : lJ~=o qj

Figure 3: Counting analysis

4.1 Tracking continuations The full counting analysis is displayed in Figure 3. The

4.1.1 A domain for counting

We must determine the class of each continuation identifier.

Let us define a two point domain

({ L, T}, C)

where 1 r T. We associate T to continuation identifiers

that occur in first-class position, and 1 to the othe~s, i.e.,

to the identifiers that always occur in second-class position

or do not occur at all.

Our counting analysis checks for first-class occurrences.

If a continuation identifier k occurs free in the scope of an-

other continuation identifier k’, k must occur in first-class

position. We want its count then to be T. Otherwise, if all

occurrences of k are in second-class positions, then its count

should be J-.

Let us also observe that the only trivial term that has

a serious term as a subexpression is a A-expression. But J-

expressions declare new continuation identifiers, Therefore

if a continuation identifier occurs free in a trivial term, it

denotes a first-class continuation.

Based on these observations we define the analysis as fol-

lows. Expressions have two kinds of sub expressions, those

that declare a new continuation identifier and those that do

not. If the continuation identifier occurs free in a subexpres-
sion that declares a new continuation identifier, the count
is T. Otherwise the count is the least upper bound of the
counts for the other subexpressions.

Because the count for a subexpression declaring a new
continuation identifier is determined j nst by a free-variable

test, the algorithm does not explicitly consider the case
where x is not the current continuation identifier. Thns,
in particular, the counting analysis of @ k t assumes that
either k = ~ and this expression is an occurrence in second-
class position, or that k # K and this exp~ession is not an

occurrence of K.

continuation identifier K has count q in a serious expression

s whenever ti ~ s : q, aud a count q in a trivial expression t

whenever K E t:q.

4.1.2 Assessment

lVe now have a counting analysis that determines whether a

continuation parameter satisfies the second-class constraint,,

or whether it only satisfies the first-class constraint. In our

previous work on the DS transformation [9], we fundamen-

tally assumed that all continuation identifiers satisfied the

second-class constraint.

Proposition 1 Let k be a continuation iclentif7er ill u p71re

CPS term as defined by the BNF of Section 2.1. Then

{

kl-s~:.l

kFtk:l

❑

4.2 BN F of extended DS terms

Our DS transformation maps CPS terms into pure DS terms,

as defined by the following BNF. A DS Au-term, e“, is de-

fined by the following attribute grammar.

Ic
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{
[Q k t] ,, = yo,v~~tl

ifk=fi

other wise

[@to (t,, . . . . t,,, Av. s)]tt = C3(AV. [S]K) (cl[t,] ([t,], .... [h]))

[cond(tl, s2, SS)] ~ = COnd([tl], [s,] ~, [s3] h)

[letk=~u.szinsl]~ =
{

~(~u.[sz]~) (call/cc (lk. [sl]k)) ifk k s, : T

Q (A v . [s,] K) ([s1] k) otherwise

[let (21, . . . . in) = (tl,....tn)ins]~ = let(il, . . . . in) = ([tl], . . . . [t~])in [SIN

~etrec (,1, . . . . in) = (11, . . . . lm)in s]ri = letrec (i,, . . . . in) = ([11], . . . . [lm])in [S]K

[c] = c
. .
[2J = 2

[Op (t,,....tin)] = Op([tl], . . . . [k])

[A(i,, .,., in, k), s] =
{

~ (ii, . . . . in) ,call/cc (Ak. [s]k) ifk Fs:T

A(zl, . . . . in) . [S]k othenvise

Figure 4: New direct style transformation

Ii where t @ -f call/cc binds an identifier to a representation of the current

I op(e~, . . . . e:) continuation. Therefore we translate the declaration of a

I i~ first-class continuation identifier into the declal ation of a

p::= ~(~,, ,, ~n)e7’ ~*ere # =7\{~1) ,,, in} reified continuation with call/cc, based on the results of the

counting analysis ( cj. Figure 3) that guarantee us that this

The attribute ~ denotes the set of identifiers declared continuation identifier occurs in first-class position.

with call/cc that are lexically visible. Such identifiers can The full translation is dis~laved in FiR;lre 4. The term

only occur when they are syntactically sugaled with throw.

(NB: throw can be inserted at synt’ax-analysis time)

4.3 The DS transformation

Let us now extend the original DS transformation to handle

the new productions of the relaxed language. The transla-

tions of the terms

letk=~v. szinsl

and

cond(tl, SZ, S3 )

can easily be derived from the translation of the pure CPS

term

letk = Jv. sAincond(tl, S2, S3)

Thus in this section we concentrate on the production

s ::= Clkt

The r.mre DS transformation of @ k tmakes k disal>~ear.

If we tr;nslate all continuation applications this ~v~~, the

value of the continuation argument will always be leturned

to the current continuation and never to any first-class con-

tinuation. Thus identifiers denoting first-class continuations

must be retained in the translation. If the continuation that

is sent a value is not the current continuation, we trans-

late this continuation application with thlo!v. The counting

analysis guarantees us that this continuation identifier has

a count T.

If a continuation identifier appears in the translated

term, it must be declared somewhere. In the CPS program,

the value of a continuation identifier represents the continu-

ation current at the point it is declared. In the DS language,

@(A k s) (Au . u) is rewritten-as-us] L. -

[]: CSer –– Ide = DExp

[]: CTriv - DExp

The redexes introduced for applications and continuation

declarations are reduced at translation time. These adminis-

trative reductions are safe because of the linearity of contin-

uation parameters, under the hypothesis that the DS terms

will be evaluated using the strategy assumed by the (2PS

transformation.

5 Connecting the DS and the CPS transformations (out-

line)

In this section we outline the proof that the DS transforma-

tion and the CPS transformation form a C;a.lois connection,

The complete proof is in tl~e full paper,

5.1 Staging-.

Ideally, one would symbolically compose the DS and the

CPS transformations and simplify them indncti~,ely term-

wise to obtain e.g., the identity transformation, Unfortu-

nately, as they a~e stated, the two transformations do not

allow such a simple proof because the administrative redexes

are reduced at translation time. Terms that should be sinl-

plified to obtain the identity transformation disappear due

to the administrative reductions.

In an earlier ~vork [8], Danvy circumvented this plob-

lem by staging the CPS transformation into three steps. In

the following, ~ve gene~alize the method and stage the l)S

and the CPS transformations to factor the administrative



reductions out of both transformations. We thus define two

intermediate languages: the language of staged DS terms
and the language of staged CPS terms.

The language of staged DS terms differs from the lan-
guage of DS terms only in that all zntermedicite values are

named tn the staged language. This naming is done by ~-

abstraction. A DS term is staged by introducing a @-redex

for each intermediate value. A staged DS term is unsta.ged

by reducing just these ,B-redexes.

The language of staged CPS terms differs from the lan-

guage of CPS terms only in that all inter-mediate continua-

tions are named in the staged language. This naming is done

by J-abstraction. A CPS term is staged by introducing a

,&redex for each intermediate continuation. A staged CPS

term is unstaged by reducing just these $-redexes.

By construction, staging and unstaging are inl,erse trans-

formations up to renaming.
We then define the DS and CPS transformations on these

staged terms. In contrast with the two other steps and

with the usual CPS transformation, these transformations

are carried out by local, structure-preserving rewriting rules.

The administrative reductions of our DS transformation or

of the usual CPS transformation coincide with unstaging.

Correspondingly, staging coincide with the administrative

expansions.

By construction, staging a DS term, mapping this staged

DS term into a staged CPS term, and unstaging this staged

CPS term into a CPS term amounts to tl ansforming the DS

term into CPS. Conversely, staging a CPS term, mapping

this staged CPS term into a staged DS term, and unstaging

this staged DS term into a DS term amounts to transforming

the CPS term into DS.

DS * staged DS H staged CPS — CPS

Let us illustrate the new CPS and DS transformations
with an example.

5.2 An example

Figure 5 displays the usual CPS procedure product ma,p-

ping a list of numbers into the product of these numbers.

This procedure uses continuations in an interesting way. If

the absorbent element zero occurs in the list, the continu-

ation of the call to product is sent zero “in advance”, i.e.,

without multiplying the remaining numbers by zero.

Let us map product back to direct style. The transforma-

tion, as given in Figure 4, is somewhat unintuitive because

of its administrative simplifications that perform non-local

transformations. Instead, let us stage this tra,nsfolmation

and express product first in staged CPS, then in staged DS,

and then in DS.

Staging a CPS program amounts to naming non-trivial

intermediate continuations. We name them with let expres-

sions. Product contains only one non-trivial intermediate

continuation:

(lambda (v) (kl (* (car 1) v)))

This intermediate continuation gets named and the rest of

the program remains unchanged ( cf. Figure 6).

Next we transform product into staged DS, naming all in-

termediate values with let expressions, The transform~tion

is comparable to the DS transformation of Figure -!, but

the rewrite rules causing administrative /3-redexes in the re-

sult now procluce let expressions. Let expressions naming

continuations are transformed as follows:

k’1-sl+. rl kl-s, +’rr

As can be noticed, kO is used in the scope of another

continuation, kl. Therefore,

kOK(letrec . ..). T

Thus kO needs to be declared at the top of the program with

call/cc. Figure 7 displays the resulting staged DS program.

Our final step is to uustage the staged DS version of

product. Unstaging is simply achieved by unfolding all the

linear let expressions. These are precisely the administrative

~-reductions perfo,med in the full DS transformation (cf.

Section 4.3). Figure 8 displays the resulting DS program.

tVe can reverse each step of the transformation. Staging

a DS program amounts to naming the results of all nom

trivial sub-expressions. In Figure 8, product contains only

one non-trivial expression:

(traverse (cdr 1))

We name intermediate values using let. The rest of the pro-

gram remains unchanged (cf. Figure 7). Then we transfolm

product into staged CPS, naming all intermediate continu-

ations using let ( cf. Figule 6). Essentially, the t ransfornla-

tion is comparable to the CPS transformation [1 1], but the

rewrite rules causing administrative /3-redexes in the result

now procluce let expressions. As a final step, we unstage

the stagecl CPS version of product (cf. Figure 5). Unstagiug

is simply achieved by reducing all the linear let expressions

that, do not declare first-class continuations (as determined

by our counting analysis). These are precisely the a,dn~inis-

trative ~-rednctiom performed in the full CPS transfolnla-

tion.

As should be noticed, the step from staged DS to staged

CPS is at the heart of the CPS transformation, and symmet-

rically, the step from staged CPS to staged DS is at the healt

of the DS transformation. The two other steps (staging ancl

unstaging) only carry out administrative /3-expansions and

/3-reductions. This red tape is confusing because it changes

the term globally, In contrast, transforming a stagecl CPS

term into a staged DS term is carried out by local, structure-

preserving rewriting rules.

5.3 A Galois connection

At this point we would like to state that the DS transforma-

tion and the CPS transformation are inverses, but it is not

as simple as that. Instead, we can only state the following

weaker property.

Let ‘D denote the DS transformation and C denote the

CPS transformation. In the lest of this section, d denotes a

DS Av-term and c denotes a CPS J-term.

Proposition 2 Vd, C(D(C.(d))) = C(d)

Vcj D(C(D(C))) = D(c)
❑

Why? Think of a DS term that captures the curlent con-

tinuation but does not use it on a first-class basis. Mapping

such a term into CPS and then back to DS yields a term

without call/cc. Conversely, think of a CPS term explicitly
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(define product ; ; ; List (Num) * [Num -> Ans] -> Ans

(lambda (1 kO)

(letrec ( [traverse ; ; ; List(Num) * [Num -> Ans] -> Ans

(lambda (1 kl)

(cond [(null? 1) (kl 1)1

[(zero? (car l)) (ko 0)1
[else (traverse (cdr 1) (lambda (v)

(kl (* (car 1) v))))]))])

(traverse 1 (lambda (v)
(kO V))))))

Figure 5: CPS program

(define product ; ; ; List (Rum) $ [Num -> Ans] -> Ans

(lambda (1 kO)

(letrec ( [traverse ; ; ; List(Mum) * [Num -> Ans] -> Ans

(lambda (1 kl)

(cond [(null? 1) (kl 1)1

[(zerO? (car l)) (ko o)]
[else (let ([k2 (lambda (v)

(kl (* (car 1) v)))])

(traverse (cdr 1) (lambda (v)
(k2 v))))]))])

(traverse 1 (lambda (v)

(kO V))))))

Figure 6: Staged CPS program (all intermediate continuations are named)

(define product ; ; ; List(Num) -> Num

(lambda (1)

(call/cc

(lambda (kO)

(letrec ( [traverse ; ; ; List(!Jum) -> Num

(lambda (1)

(cond [(null? 1) 11
[[zero? (car l)) (throw ko 0)1
[else (let ([v (traverse (cdr 1))1)

(* (car 1) v))]))])

(traverse l))))))

Figure 7: Staged DS program (all intermediate values are uamed)

(define product

(lambda (1) ; ; ; List(Num) -> Num

(call/cc
(lambda (kO)

(letrec ( [traverse ; ; ; List(Num) -> Num

(lambda (1)

(cond [(null? 1) II
[(zero? (car l)) (throw Iro 0)1
[else (* (car 1) (traverse (cdr 1)))1 ))])

(traverse l))))))

Figure 8: DS program
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naming a continuation whose count is not T. Mapping such

a term into DS and then back to CPS yields a term where

the continuation is not explicitly named with a let.

In the full version of this paper, we introduce a notion of

normalization. Normalizing a DS term (resp. a CPS term)

roughly amounts to simplifying it in a meaning-preserving

way, such that a DS (resp. CPS) term and its normalized

form get transformed into the same CPS (resp. DS) tezm

(modulo a-conversion).

We define a normalization function Af

Af : DEXP ~ DEXP

as a rewrite system over DS terms. The rewrite system is

strongly normalizing and confluent.

Symmetrically, we define a normalization function M

M : CEXP -+ CEXP

as a rewrite system over CPS terms. The rewzite system is

strongly normalizing and confluent.

M and N satisfy the following prope~ties.

Property 1 The CPS and the DS trcinsformations produce

normalized terms:

Vcl, C(d) = M(C(d))

Vc, D(c) = JV(D(C))

Property 2 The CPS (resp. DS) transformation of a term

yields the same result as the transformation of the corre-

sponding normalized term:

Vd, c(d) = c(N(d))

Vc, P(c) = D(M(c))

Property 3 The CPS and the DS trunsformattons are zn-

verses of each other over normalized terms:

Vd, D(C(.&f(d))) = JU(d)

Vc, C(D(M(C))) = M(c)

Let us consider the partial order naturally induced by

M and H:

{

b’c, M(c) ~ C
Vd, ~(d) z d

Notice that by Proposition 2,

{

c L c’ + c(c) = C(c’)

d ~ d’ + D(d) = D(d’)

Then we can define classes of DS and of CPS terms. The

characteristic element of a class is the normalized term. It is

the smallest of its class. By construction, any element of the

DS class (resp. of the CPS class) is mapped to a CPS term

(resp. to a DS term) that is mapped back to the character-

istic element of the class. This property is characteristic of

Galois connections [21].

Proposition 3 C and D form a Galots connection.

Proofi Based on the three properties abo~,e, the eqni~,alence

C(d) ~ C-# d ~ ~(c)

is simple to prove, for any c and d. ❑

Of course, the Galois connection suggests to define the
normalization functions in term of the CPS and of the DS

transformations:

{

M = Do~
N = COD

5.4 Issues

We believe that a Galois connection offers a nice basis to rea-

son about other kinds of simplifications in the DS world, seen

from the CPS world, and in the CPS world, seen from the

DS WOLIC1. Examples include, e.9., compile-time optiluiza-
tions. Experience sholvs, though, that one should then be

careful that continuations remain linear in the sense of Fig,-

ure 1. Otherwise, to preserve the validity of administrative

reductions, let expressions should be inserted to maintain

linearity (our implementation inserts such let expressions

automatically) and thus the evaluation order.

The problem is mole general, however: our DS trans-

former maps a CPS term (in which the evaluation orcler

is ezplicitely specified) into the corresponding DS term in

which the very same evaluation order is implicitly speci-

fied. Which changes in the implicit evaluation order or in

the explicit evaluation order are possible without getting a

semantic mismatch? Our Galois connection could offer a

model for characterizing safe changes.

6 An Experiment with Partial Evaluation

6.1 Nature of the experiment

This section describes the automatic specialize tion of the

classical samefringe program for binary trees with respect to

one binary tree. We express this program using caII. /cc but

without side-effects, based on the detach model of coroutines

[7, 17]. The program is first transformed into CPS; it is then

specialized. The result is then transformed back into DS.

6.2 Partial evaluation

Partial evaluation is a semantics-based program transfomla-

tion technique aimed at specializing a “source” program p,,.

with respect to a “static’> part s of its input clata. Partial

evaluation ploduces a “lesidual” program pre~. The pro-

grams ps,= and P,.. a~e lelated as follows. Running p,., on

the “dynamic” part c1 of the input data produces the same

result r as running p.~c on both s and d (but usually running

p~e, is faster). This is captured in the following equations

that paraphrase I{leene)s S~-theorem.

{

run y (p,rc, (s, .-)) = lb..

run p..,(d) = run p,,. (s, d)

In the first equation, pe denotes a partial evaluator. Of

course, these actuations only holcl for terminating programs

p,,. and p,e,, and if partial evaluation terminates.

We do not know of any partial evaluator today that can

handle control operators directly. Therefore, if we want to

specialize a program involving call/cc, it is natul al to trans-

form it first into CPS, then to specialize it using a highcl -

order partial evaluator, and to finally transform the residual

program into DS. This is captured in the following expres-

sion:

‘D(rnn pe (C(p,rc), (s, -)))

where C denotes the CPS transformation and ‘D denotes our

DS transformation.

We ale using Cousel’s self-applicable partial evaluator

Schism [3, 4, 5]. ThrouGh all our experimentfii Schism has

let residual continuations lemain last in every algument list.
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(defineType 2Tree (defineType Data

(Pair left right) (Next leaf continuation)

(Leaf 1)) (Over) )

Figure 9: Data structures for tl~e Samefringe program

(define (main bti bt2) ; ; ; 2Tree * 2Tree -> Bool

(skim (initialize btl) (initialize bt2)))

(define (skim dl d2) ; ; ; Data * Data -> Bool

(caseType dl

[(Mext 11 kl) (caseType d2

[(Next 12 k2) (and (equal? 11 12)

(skim (resume ki) (resume k2)) )1

[(Over) #f] )1
[(Over) (caseType d2

[(Next 12 k2) #f]
[(over) #tl)l))

(define (initialize bt) ; ; ; 2Tree -> Data

(call/cc (lambda (k)

((defoliate bt (lambda (v) (thro= k v))) (Over)))))

(define (resume c) ; ; ; Cent -> Ans

(call/cc (lambda (k)

(c (lambda (v) (throw k v))))))

(define (defoliate bt k) ; ; ; 2Tree * Cent -> Ans

(caseType bt

[(Pair left right) (defoliate right (defoliate left k))]

[(Leaf 1) (call/cc (lambda (kp)

(k (Next 1 (lambda (v) (throw kp v))))))]))

Figure 10: Control structures for tl~e Samef~inge program

; ; ; for all bt2, (mainO bt2) == (main (Pair (Pair (Leaf 0) (Leaf 1)) (Pair (Leaf 2) (Leaf 3))) bt2)

(define (mainO bt2) ; ; ; 2Tree -> Bool

(caseType (initialize bt2)

[(~ext 11 ki) (and (equal? ‘O 11)

(caseType (resume kl)

[(Next 12 k2) (and (equal? ‘1 12)

(caseType (resume k2)

[(Next 13 k3) (and (equal? ‘2 13)

(caseType (resume k3)

[(Next 14 k4) (and (equal? ‘3 14)

(caseType (resume k4)
[(Next 15 k5) #f]

[(Over) ttl))l
[(over) tfll)l

[(over) #fI))

Figure 11: Specialized version of the Samefringe pxogram

[(over) $lfl))l
[(over) xfl))l
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6.3 The experiment

Figures 9 and 10 display the source program and its data

structures.2 We automatically transform this program into

CPS. Schism automatically specializes it. We automatically

transform the result into DS. Figure 11 displays a slightly

pretty-printed version of the result (local variables have been

renamed).

6.4 Assessment

As a whole, the static coroutine has been executecl stati-
cally. Its computational content has been entirely inlined
in the main procedure, yielding an iterative-looking resid-
uaf program — though in fact, the dynamic binary tree is

stilf traversed recursively. The resulting program uses one

separate coroutine to traverse the dynamic binary tree.

One could argue that the resulting program should not

use any coroutine at all, but this would require a more rad-

ical program manipulation than partial evaluation. such

a transformation would involve a global Eureka step, as in

Burstall & Darlington’s framework [I]. This step goes be-

yond mere program specialization. Besides, if we want to

specialize an n-ary samefringe program with respect to part

of its input, the residual program would naturally be ex-

pressed in coroutine style.

In any case, this experiment illustrates a first: the suc-

cessful specialization of programs involving operations over

cent rol.

7 Related Work

Naturally, this paper relies on Fischer’s and Plotkin’s fun-

damental work on CPS [15, 25]. The CPS transformation
described by Danvy and Filinski [1 I] is the point of reference
for Section 5. In an earlier work [g], Danvy developed the
CPS-to-DS transformation described in Section 2. ILTe know

of no other work addressing the problem of converting CPS
into DS, and none that handles CPS programs whose DS

counterpart requires call/cc. Sabry and Felleisen’s eclua-

tionaf reasoning about CPS programs [30] might be related,

but we have not yet had the opportunity to read their paper

(published in this volume).

The detection of first-class continuations in Section 4.1 is

purely syntactic and thus contrasts with Jouvelot and Gif-

ford’s or with Deutsch’s more ambitious semantic analyses

of programs with control effects [12, 19].

Finally, the symmetry between values and continuations

encountered in Section 5 is reminiscent of Filinski’s dualities

[14].

8 Conclusions

We have presented a conservative extension of our DS trans-

former to handle caI1/cc. This conservative extension relies

on a counting analysis that detects non-canonical occur-

rences of continuations in a CPS term. The DS and the

CPS transformations form a Galois connection. Together

they widen the class of programs that can be manipulated

on a semantic basis. We illustrate this widening with a first:

Zwe “se schi~~ syntactic facilities for declaumg and using data

types .(~~re precisely constructor names and their aritie~),Th.ae
facdltles are not standard in Scheme, but they can be easily defined
as macros [2].

the successful self-applicable partial evaluation of a Scheme

program containing first-class continuations.

We have also presented staged versions of both the CPS

and the DS transformations. In contrast to the usual pre-

sentation of the CPS transformation, the staged transfor-

mations distinguish between administrative reductions and

actual translations. In addition, the actual translations

are carried out by local, structure-preserving rewriting rules

that make it considerably easier to understand what is ple-

cisely going on in the plocess of shifting betweeu DS and

CPS terms.

9 Issues

We are now extending tbe DS transformation to cope with

sequencing and side-effects in Scheme (on bindings with

set !, on data structures with set-car! et al., and on the

outside world with print et cd.).

We are also exploring tbe connection of the DS transfor-

mation with computational monads, following Y~Tadler’s in-

sight that CPS and monads offer the same expressive power

for structuring functional programs [10, 22, 33].

Based on the Curry-Howard isornorphism, the CPS

transformation has been related to transformations on rep-

resentations of proofs [16, 23]. By the same token, the DS

transformation of CPS terms into DS terms with call/cc

should have an interpretation in proof theory. we leave this

aspect for a future work.

We are also investigating the DS transformation towards

call-by-name functional terms.

Many new control operators are emerging today [10, 13,

18, 28, 32]. If CPS is to be used as a unifying framewolk to

specify and lelate them, it must be possible to shift back and

forth between proglams using these operators and purely

functional programs. Therefore it is important to establish

a sound understanding of the DS transform tion and its

relation to the CPS transformation.
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