
Dynamic Program Parallelization

Abstract

Lorenz Huelsbergen and James R. Larus*

University of Wisconsin-Madisont

Static program analysis limits the performance im-

provements possible from compile-time parallelization.

Dynamic program parailelization shifts a portion of the

anal ysis from compile-time to run-time, thereby en-

abling optimizations whose static detection is overly

expensive or impossible. Lambda tagging and heap

resolution are two new techniques for finding loop

and non-loop parallelism in imperative, sequential lan-

guages with first-class procedures and destructive heap

operations (e. g., ML and Scheme).

Lambda tagging annotates procedures during com-

pilation with a tag that describes the side effects that

a procedure’s application may cause. During program

execution, the program refines and examines tags to

identify computations that may safely execute in par-

allel. Heap resolution uses reference counts to dynam-

ically detect potential heap aliases and to coordinate

parallel access to shared structures. An implemen-

tation of lambda tagging and heap resolution in an

optimizing ML compiler for a shared-memory parallel

computer demonstrates that the overhead incurred by

these run-time methods is easily offset by dynamically-

exposed parallelism and that non-trivial procedures

can be automatically parallelized with these tech-

niques.

‘This work was supported in part by the National Science

Foundation under grant CCR9101O35 and by the Wisconsin

Alumni Research Foundation.
t Authors) ad&.e~s: Department of Computer Sciences,

1210 West Dayton Street, Madison, Wisconsin 53706. Email:

{lorenz ,larus]@cs .wisc .edu

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice ia given

that copying ia by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
1992 ACM LISP & F. P.-6l92/CA

e 1992 ACM O-89791-483-X19210006/031 1...$1.50

1 Introduction

Implicit parallelization of programs written in sequen-

tial programming languages is attractive—it eases pro-

gramming, allows effective maintenance of large sys-

tems, and extends a program’s portability across par-

allel and sequential architectures. Existing techniques

for parallelizing imperative languages are primarily

static—in that the analysis, optimization, and paral-

lelization is performed at compile-time. Static tech-

niques for extracting parallelism from sequential pro-

grams are inadequate. Abstract interpretation [6],

data flow analysis [3, 8], and methods based on in-

ferencing [12] conservatively approximate a program’s

dynamic behavior and typically underutilize the pro-

gram’s potential parallelism in order to preserve its se-

quential semantics. In addition to being conservative,

static techniques are costly since they must be applied

interprocedurally on the entire text of a program.

This paper proposes dynamic parallelization of

“mostly functional” languages such as ML[14],

Scheme[17], and Lisp that allow side effects, in-

put/output, and higher-order procedures. 1 Dynamic

parallelization is a hybrid, composed of static and dy-

namic components. Fast static analysis provides par-

tial information during compilation. Other informa-

tion, which is difficult and inefficient to collect stat-

ically, is gathered at run-time when it is often read-

ily available. Dynamic program parallelization sup-

plements, not supplants, existing analyses by extend-

ing them to expressive language features, such as first-

class procedures and heap side effects, and by reduc-

ing their cost and simplifying their implementations by

only computing partial information at compile-time.

We have developed and tested two dynamic par-

allelization techniques. Lambda tagging (A-tagging)

1Procedures that invoke abnormal control flow (e. g., explicit

continuations) are currently not handled by these techniques—
this does not, however, preclude parallelization of other proce-

dures within the same program.

311

fun

fun map . [] = []
I

I mapf (a: :x) = (f a) :: (mapf x)

(a)

mapParallel -

mapParallel f

let val (y, z)

y::z

end

[1 = [1
(a: :x) =

= pcALL(f a,mapParallel f x) in

(b)

Figure 1: Sequential(a) and parallel(b) versions of map. Static analyses must select version(a) if f cannot be determined to be

side-effect free. The PCALL [5] construct forks its arguments as parallel threads and tuples their results when the threads join.

discovers parallel threads in the presence of higher-

order procedures. The second technique, heap reso-

lution, permits threads to concurrently modify non-

overlapping heap structures. Both techniques uncover

Ioopand non-loop parallelism. We have implemented

A-tagging and heap resolution in the Standard MLof

NewJersey(SML/NJ) optimizingcompiler [l]onaSe-

quent shared-memory parallel computer. Timings of

programs hand-annotated with A-tags and heap res-

olution information indicate that significant speedup

can be obtained with these dynamic techniques and

an efficient compiler.

The viability of dynamic parallelization hinges on ef-

ficient run-time components that introduce little over-

head into a program’s execution. Our efforts to-date

have been directed towards designing and implement-

ing efficient run-time components. The static aspects

of A-tagging and heap resolution (analysis and restruc-

turing) were performed manually. The experiments in

this paper clearly demonstrate the practicality of the

approach, and consequently, we are proceeding with

the compiler.

Following an overview of J-tagging and heap resolu-

tion, the paper describes the static and dynamic com-

ponents required for ~-tagging (Section 2) and heap

resolution (Section 3). Section 4 describes our imple-

mentation and presents empirical results of ~-tagging

and heap resolution. Related work is discussed in Sec-

tion 5.

1.1 Lambda Tagging Overview

Higher-order languages with first-class procedures pose

difficulties for static analyses since an individual proce-

dure call site can invoke many procedures and the task

of determining the set of procedures invoked from a call

site is difficult [16, 18]. Static parallelization systems,

therefore, do not precisely analyze programs involv-

ing first-class procedures [6, 10]. The ML procedure

map2 (Figure la) illustrates the problem and serves as

an example for dynamic parallelization with ~-tags.

2map is a canonical example of potential parallel evaluation
obscured by unknown side effects of higher-order procedure pa-
rameters. Other common examples are procedures traversing

A call to map may safely use a parallel version of map

(Figure lb) if application of the procedure parameter f

does not exhibit side effects. If the identity or behavior

of a procedure passed at a call site cannot be safely de-

duced, static methods must err conservatively and use

sequential code. Even when the procedures invoked

at a call site are known, compiler analyses statically

approximate multiple procedures reaching the site as

having the effect of the most destructive procedure,

although an actual call may invoke a side-effect-free

procedure.

A-tagging annotates procedures with a description

of their potential side-effects. A procedure’s A-tag is

assigned at compile-time when possible. Otherwise, a

~-tag is constructed at run-time when the procedure’s

closure is formed. A.tags are dynamically propagated

with procedures’ run-time representations (closures),

Statically-inserted checks examine A-tags at run-time

to determine when parallel evaluation is safe (preserves

the sequential semantics). A-tags allow dynamic detec-

tion of parallel computations involving dynamically-

created procedures, as well as procedures propagated

through data structures too complex for static analy-

sis.

A-tagging sidesteps the problem of not knowing a

procedure’s side effects at compile-time by examining

A-tags on higher-order procedures at run-time. Fig-

ure 2 is a restructured version of map containing both

sequential and parallel versions. On entry to map, the

effect of the higher-order parameter f (described by f‘s

A-tag) is used to select the parallel or sequential ver-

sion of map. Iterations of map may evaluate in parallel

if concurrent instantiations of f cannot interfere. The

call site from which the higher-order procedure origi-

nated is irrelevant. In addition, the cost of checking a

procedure’s tag is small and is only incurred once upon

entry to map.

recursive data structures and sorting algorithms parameterized

by a comparison predicate.

312

fun map - [] = []

Imapfl=

let fun mapSequential [1 = [1

I mapSequential (a: :x) =

(fa) :: (mapSequential x)

fun mapParallel [1 = [1

I mapParallel (a: :x) =

let Val (y,z) = PCALL(f a,mapparallel x)

in

y::z

end

in

(* select map basedon f’s ~-tag *)

if SAFE f then mapparallel 1

else mapSequential 1

end

Figure 2: Transformed version of map that dynamically se-

lects sequential orparallel evaluation depending on the effects

of the procedure bound to f. The primitive predicate SAFE ex-

amines a run-time Xtag from the procedure bound to f.

1.2 Heap Resolution Overview

Heap resolution dynamically detects and resolves po-

tential heap side-effect conflicts. At run-time, the ex-

act shape of dynamic data structures is known. Since

astructure’s topology isoften determined by program

input unavailable at compile-time, this problem is ide-

ally suited to solution by dynamic parallelization. Ex-

isting static analyses provide crude, yet expensive, ap-

proximationsto dynamic structures. These compile-

time parallelization techniques are often forced to as-

sume structure sharing due to imprecise alias informa-

tion [7, 6, 10]. Heap resolutions based on the obser-

vation that heap reference counts identify sharingin a

heap structure.

The destructive quicksort qs of Figure 3 serves as

the example for heap resolution. qs sorts the ele-

ments of list 1 according to a comparison predicate

crop. This version of quicksort partitions 1 in place.

Ifelements of ldonot share structure, the arguments

to (destructive) append are disjoint and may evaluate

concurrently. If elements of 1 share structure, parallel

evaluation of these arguments must dynamically coor-

dinateaccess to shared structure. It is difficult (orim-

possible) foracompiler orprogrammer to detect that

the arguments to append are disjoint.

Heap resolution is applicable to heap structures

with acyclic spines, e.g. anon-circular list of arbitrary

graphs. In the above example, a programmer has de-

clared the datatypes pair and rlist as acyclic. Note

that individual elements of the rlist being sorted may

contain cyclic structures.

The static component of heap resolution identifies

expressions that modify the heap, but may execute in

parallel when the side effects are to disjoint portions

of the heap. These expressions are statically sched-

uled for parallel evaluation, but are altered to dynam-

ically examine a heap node’s reference count before

accessing it. A linearization [20] of parallel threads

preserves the language’s sequential semantics by coor-

dinating accesses to, and modifications of, potentially

shared nodes. A thread consults this linearization to

determine whether it may access a heap node that is

potentially shared or whether it must suspend until

prior threads in the linearization complete.

In the example, (qs left crop) and (qs right crop)

are statically selected for parallel evaluation using heap

resolution. The declaration that a pair is acyclic im-

plies that the partitioned sublists, left and right,

can reach a common heap node h only if all paths

from left to h (and right to h) contain a node with

reference count greater than one. (qs right crop)

may evaluate in parallel with (qs left crop) provid-

ing that evaluation of (qs right crop) suspends upon

access to a heap node with reference count greater

than one. If elements of the list 1 being sorted are

not shared, the sort is completely parallel. Shared ele-

ments inhibit parallelism, but portions of the sort may

still execute concurrently.

2 Lambda Tagging

A-tagging statically annotates procedures at compile-

time with an approximation to their potential side ef-

fects. These ~-tags are used at run-time to build con-

sistent ~-tags for dynamically created procedures and

to make parallelization decisions.

2.1 Static A-tagging

The static component of J-tagging determines the side

effects potentially exhibited by a program’s proce-

dures. Procedures whose effects cannot be fully de-

termined at compile-time are statically restructured

to compute these tags dynamically. Statically, checks

are generated to select parallel or sequential evaluation

based on ~-tag information.

2.1.1 Describing Side Effects

Side-emects are described using FX-like e~ect descrip-

tions [12]. An ML expression may perform input or

output, read or write data structures in the heap, or

313

acyclic datatype ‘a rlist = rNil I rList of (>a * ‘a rlist ref)

acyclic dat at ype ‘a pair = Pair of (’a * ‘a)

fun qs rNil . = rNil

I qs (rList(a,xas ref x’)) cmp =

let fun split . rNil = Pair(rNil,rNil)

I split pivot 1 =

let fun split’ rNil less greater = Pair(less,greater)

I split’ (1 as rList(a,xas ref x’)) less greater =

if cmp pivot a then (x := less; split’ x’ 1 greater)

else (x := greater; split’ x’ less 1)

in

split’ 1 rNil rNil

end

val . = x := rNil

val Pair(left,right) = split a x’

in

append (qs left crop) (rList(a,ref (qs right crop)))

end

Figure 3: Destructive quicksort procedure. Heap resolution evaluates the arguments to (destructive) append in parallel. The

declaration acyclic on the mutable ~a rlist datatype in&cates that nopmtof thespine of the bstparticipates inacycle (elements of

the list may, however, contain cycles).

have no visible side effects. These primitive side ef-

fects are denoted i/o, read, and write.3 An expression

without side effects has effect pure. The effect of an

expression that performs multiple primitive operators

is a composite effect. A composite effect is an effect,

~ = c1 u C2, where c1 and C2 are effects. Effects induce

a finite lattice, with bottom element pure and top ele-

ment i/oUread Uwrite.

An ML expression that modifies the contents of a

ref cell with the := operator produces a write in the

heap. This write potentially interferes with expres-

sions that read the heap (dereference pointers with !

or pattern match ref types) or may conflict with other

expressions that also write the heap. The ML print

operator produces an i/o effect. Expressions that do

not have conflicting effects are candidates for parallel

evaluation, whereas expressions with potentially con-

flicting effects must evaluate sequentially.

2.1.2 Static Computation of Effect Tags

Static effect tag assignment determines which proce-

dures of the program are purely functional (have no

side effects), potentially functional (the procedures de-

3The FX allot effect is not included here. It is assmned that

parallel threads allocate storage from dktinct sections of the

heap, Allocation, therefore, cannot cause confllct. FX effects

are also parameterized by a region describing where the effect

may occur. For our purposee, read and write effects can occur

anywhere in heap and a region descriptions unnecessary.

penal on the effect of higher-order procedures or ap-

ply procedures whose effect cannot be statically de-

termined), or destructive (modify extant structures in

the heap or perform 1/0). The effect ofa procedure

p consists of the maximum effect of expressions inp,

including procedures invoked by p. Effects of proce-

dures invoked by pare either determined statically or

computed dynamically.

The base efleci of a procedure p is the portion of

p’s effect that can be determined statically. Ifp’s en-

tire effect can be determined statically, p’s run-time

J-tag simply carries p’s base effect. The base effect is

computed in amannerto similarto the effect compu-

tationofFX [12]. FX conservatively approximates the

effect ofprocedures whose effect depends on statically-

unknown procedures. Our analysis instead identifies

procedures invoked by p whose effects are statically

unknown. Their effect is incorporated into procedure

p’s effect at run-time rather than approximated at

compile-time. Statically, p has an incomplete effect.

In other respects, our computation of p’s base effect

is identical to effect inferencing in FX, The effect of

procedure pis the least upper bound of the effects of

p’s constituent sub-expressions.

Procedure phas a parametric eflect ifp’s effect de-

pends on the effect of other procedures whose effects

are unknown at compile-time. A parametric effect may

represent the (yet unknown) effect of free procedures

in p or higher-order parameters to p. Parametric ef-

314

fects (if any) in conjunction with the base effect form

a procedure’s total effect. A procedure p that has a

parametric effect initially carries a A-tag denoting the

maximum effect (i/oUread Llwrite). This initial, conser-

vative effect tag is necessary since p may be used as

a higher-order procedure, in which case the origin of

p’s parametric effect component is yet unknown. A

parametric effect due to higher-order parameters to p

dynamically selects a specialized (e. g., parallel or se-

quential) version of p (~2.2). Procedure p is dynami-

cally re-tagged if components of p’s parametric effect

are due to free procedures in p ($2.3).

If procedure p invokes a procedure f that is free in

p and f’s effect is not statically available, p’s full effect

can be computed dynamically when a closure for p is

formed. At that point, a J-tag for p can be dynamically

computed from f’s effect (carried by f’s A-tag) and p’s

base effect.

Procedure p’s effect may also depend on the effect of

higher-order procedure parameters to p. In this case,

the effect of these parameters (as indicated by their A-

tags) can be dynamically examined when p is invoked

and an appropriate version of p executed (see Figure 2).

ML’s static type checker [14] provides information suf-

ficient to determine which formal parameters to a pro-

cedure p represent higher-order procedures possibly in-

voked by p. For example, the type signature for proce-

dure map, map: (~a -> ‘b) -> ‘a list -> ‘b list,

indicates that map’s first parameter is a higher-order

procedure.

Finally, it is possible that procedure p’s effect be-

comes apparent only during p’s execution. This occurs

when p acquires and applies an unknown procedure

during its execution. For example, p might retrieve

and apply an unknown procedure from a data struc-

ture. At compile-time, p is conservatively assigned a

A-tag with the maximum effect.

The procedure map (Figure 1) has a base effect of

pure since the list constructor :: haa effect pure. map

also has a parametric effect since the higher-order pa-

rameter to map has unknown effect. Therefore, the

A-tag assigned to map corresponds to the maximum

effect, for if map itself is passed as a higher-order pa-

rameter, its eventual parameters (and hence its effect)

are unknown.

The algorithm to compute a procedure p’s static ef-

fect first determines the types ofp and expressions in p.

This information identifies unknown procedures poten-

tially invoked by p. The effect of these unknown proce-

dures forms p’s parametric effect component (supplied

at run-time). The base effect of p is then computed

using the FX effect-inferencing algorithms [9, 12]. Ef-

fect information for p is used to assign p’s initial J-tag

(as previously described) and to restructure p ($2.2).

2.1.3 Time Complexity

Detection of higher-order parameters to a procedure

p and free procedures in p requires a type signature

for p and the types of the expressions in p. The ML

type checker [14, 13] provides this information. Effect

reconstruction for a language with ML-style polymor-

phism requires a polynomial-time algorithm [9]. We

believe that we can compute static effect tags in at

most polynomial time since our effect system does not

need to statically approximate the effect of unknown

procedures. The effect of an unknown procedure is

merely noted as being available at run-time.

Static effect determination is tractable, even for

large programs, since the static analysis is applied to

each procedure separately. The time complexity is a

function of the size of a procedure—it is not a function

of the size of the entire program.

2.2 Using Effect Information

A procedure’s static effect information, its base and

parametric effects, allows restructuring of the program

to dynamically examine effect A-tags. Two types of

restructuring are necessary: creation of A-tags for dy-

namic procedures and inspection of A-tags for paral-

lelization. If a procedure p has a parametric effect due

to free procedures in p, the code that forms the CIO-

sure for p is restructured to incorporate the effects of

p’s free procedures into p’s run-time A-tag. Dynamic

effect combination is described in Section 2.3.

Procedures with parametric effects due to higher-

order parameters present opportunities for paralleliza-

tion. A procedure p whose effect is dependent on a

higher-order parameter f can be compiled into multi-

ple versions, each optimized for a particular effect (or

set of effects) off (cf. Chambers & Ungar’s SELF com-

piler [2]). For all possible effects c, if expressions in p

may safely evaluate in parallel given that ~ has effect

e, a new version of p, pc is built. A check to select pc

when ~ has effect c is inserted into p. For example, the

following dynamic version of procedure map (Figure 1)

is created by propagating possible effects of f into map

(and merging identical versions):

fun map - [1 = [1

I map f (a: :x) =

if SAFE f then

let val (x, y) = PCALL(f a,map f x) in

X::Y
end

else (f a) :: (map f x)

When a pure (or read) effect is propagated into map as

f‘s effect, the parallel code in the consequent of the if

is generated. The original (sequential) code for map is

retained when f‘s effect contains a write or i/o. This

315

naive restructured version of map can be further opti-

mized to create the efficient dynamic map of Figure 2

by recognizing that f‘s effect is loop invariant.

If the procedure p being restructured receives k

higher-order parameters, all possible effect combina-

tions for these parameters can be propagated into p

and p restructured accordingly. This is viable if k and

the effect lattice are small. Alternately, for large k or a

large effect lattice, a bottom-up approach can be used

that examines p’s sub-expressions and determines the

higher-order parameters of p for which a safety check

would lead to parallelization of these sub-expressions.

Appropriate versions of p and a corresponding check

are then generated.

2.3 Dynamic Computation of A-tags

At run-time, a procedure’s effect is propagated with

the procedure’s representation (closure) in the A-tag.

Furthermore, new)-tags are computed for dynamic

procedures whose effect was not available at compile-

time. When the closure for such a procedure p is dy-

namically created, its effect is computed from other

procedures’ A-tags and p’s current A-tag. Procedure

p is re-tagged with this updated effect. The static re-

structuring phase identifies these closures and notes

the procedures required to compute the new J-tag. As

an example, the inner anonymous procedure in the ML

procedure

fun compose f = (fn g => fn x => f (g x))

to compose two procedures is dynamically assigned a

A-tag consistent with the composition of the effects

of f and g (as indicated by their A-tags) when a clo-

sure for (fn x => f (g x)) is formed. This dynam-

ically created J-tag is examined at run-time in the

same manner as statically assigned tags. Statically,

(fn x => f (g x)) has a parametric effect because

of the unknown free procedures f and g. Due to this

parametric effect, the procedure (fn x => f (g X))

is (conceptually) compiled to:

SET (fn x => f (g x)) (COMSINE (GET f) (GET g))

The procedure GET retrieves a procedure’s ~-tag. SET

sets the A-tag of its first parameter (a closure) to the

value of its second parameter and returns the closure.

COMBINE computes the maximum effect (least upper

bound) of two A-tags. ~-tags are combined using the

effect lattice of Section 2.1.1. To combine effects effi-

ciently, a run-time effect representation that admits a

fast, least upper-bound operator is used.4

4 For our effect lattice, small bit vectors manipulated with
addition and bit-wise logical operations suffice.

3 Heap Resolution

Heap resolution, our second dynamic parallelization

technique, allows concurrent modification of heap

structures and is orthogonal to J-tagging. Heap resolu-

tion orders conflicting heap accesses while permitting

parallel threads to execute concurrently. In particu-

lar, heap resolution permits structure traversals that

modify non-overlapping sets of objects to proceed in

parallel. These traversals can be expressed as recur-

sive loops with side-effecting bodies or as non-ltnear

recursion [10] over arbitrary structures.

Parallel evaluation of expressions that destruc-

tively access shared data must prevent read/write and

write/write conflicts from altering the sequential se-

mantics of a program. Detecting and synchronizing

data races in dynamic shared data is difficult for com-

pilers and programmers since sharing appears (and dis-

appears) dynamically and is often dependent on pro-

gram input. However, at run-time, shared data can be

detected and access to it correctly coordinated. For

example, a compiler may deduce that a list 1 of heap

elements might contain the same element more than

once (thereby sharing it with itself) and force access

to 1 to be sequential. For a given execution of the pro-

gram, however, i’s elements may be disjoint so that

parallel access and modification of them is safe. Even

if some elements of 1 are identical (shared), others can

be processed in parallel if sharing is detected dynami-

cally.

To preserve the sequential semantics of a program,

control-independents expressions evaluating in paral-

lel must see changes to the program’s state in the or-

der produced by a sequential schedule of the expres-

sions. Let el and e2 be control-independent expres-

sions with a sequential schedule that evaluates el be-

fore ez. Semantics-preserving parallel evaluation of el

and e2 must allow el to modify all state visible by ea

before e2 accesses this state. Furthermore, e2 must not

modify state shared with el until el has ceased access-

ing it. Heap resolution prevents e2 from modifying or

accessing heap structures shared with el until el com-

pletes. If el and ez do not share data, both expressions

evaluate in parallel. Otherwise, evaluation of el and

ez is parallel until ez attempts to access potentially-

shared data, at which point evaluation of e2 suspends

until el completes.

Heap resolution requires information about which

heap structures are shared (accessible via multiple

5 Expressions el , . . . , en are control independent if the eval-
uation of e], en is constrained only by data dependence.
Examples of control-independent expressions include arguments
in a procedure application, bodies (and bindhgs) in 1et clauses,
and sequential statement lists.

316

llba

Figure 4: A sample heap. If no paths from a to b or from b

to a exist, a thread t ~ with access to a can detect an access to

heap nodes potentially shared with a parallel thread t2that has

access to b, by examining node reference counts. The reference

count greater than one on node c indicates potentially-shared

data (c and d).

paths in the heap) and could be concurrently refer-

enced by multiple threads. Reference counts provide

a cheap and effective approximation to this informa-

tion. The following definitions are useful for describ-

ing when reference counts can be used to detect shared

heap nodes. Let ‘?-l denote the heap and h and hl nodes

in %.

Definition 1 A node h G ‘H reaches node h’ E ‘H if a

path from h to h’ in ‘H exists. A node h reaches itself

if a non-zero length path from h to h exists.

Definition 2 A popular node h E ?-l is a node that is

directly referenced by two or more nodes in ‘?-f.

We can now state the property that forms the ba-

sis of heap resolution. Suppose heap node h does not

reach heap node h’ and h’ does not reach h. If h and

h’ both reach a common node n, then all paths from

h to n (and h’ to n) must contain a popular node. A

popular node is an indicator of sharing. Not all nodes

shared by h and h’ are popular, but these can only

be reached through a popular node. A heap node’s

dynamic reference count indicates its popularity.

The heap in Figure 4 provides an illustration. Nodes

a and b cannot reach one another. Nodes a and b,

however, reach common nodes (c, and node d reachable

from c). Parallel threads, one accessing a and the other

accessing b, dynamically detect the potential reference

to a shared heap node when a popular node (a node

wit h reference count greater than one) is encountered.

Heap resolution relies on static analysis to select

expressions for parallel evaluation and to determine

static relations among variables pointing into the heap.

This static analysis, in conjunction with programmer

declaration of structures known to be acyclic, provides

information about the relationship of some heap nodes

at compile-time. We now describe the run-time sup-

port required for heap resolution (\3. 1) and the pro-

grammer datatype declaration (\3.2). Section 3.3 de-

scribes a simple static analysis that is sufficiently pow-

erful to automatically parallelize a large class of expres-

sions. Markers, introduced in Section 3.4, augment ref-

erence counts in a case where the simpler mechanism

does not suffice.

3.1 Operation of Heap Resolution

At run-time, heap resolution coordinates access to

potentially-shared heap nodes. The compiler produces

two versions of all procedures that can be invoked by

expressions evaluated with heap resolution ($3 .3). Let

p be such a procedure. In addition to the original ver-

sion of p, the second version, ~, detects and arbitrates

access to potentially-shared heap nodes. The origi-

nal version of p executes during sequential execution

of the program. ~ is called in lieu of p when paral-

lel threads with potential side effects are scheduled. ~

examines reference counts to detect popular nodes on

heap accesses. As noted above, popular nodes delimit

potentially-shared structure, which must be accessed

sequentially to preserve the intended semantics.

3.1.1 Reference Counts

Heap resolution uses reference counts to detect dy-

namic sharing of heap nodes. Reference counts are

maintained only for pointers from heap nodes to other

heap nodes. References from variables pointing at heap

nodes are not counted since they do not expose infor-

mation about the heap’s topology. Reference counts

must be maintained during the entire execution of a

program, but are examined only when expressions eval-

uate in parallel using heap resolution.

Reference counts are incremented when new struc-

ture is built or when existing pointers in the heap are

reassigned. A heap node’s reference count is decre-

mented when a heap pointer to it is removed. While

parallel threads are evaluating with heap resolution,

a popular node may not be made unpopular, i.e., a

node’s reference count may not be lowered from two

to one. This restriction is necessary since a thread

may maintain local pointers in variables which do not

affect reference counts. If a thread t has such a local

pointer to a popular node h and tmakes h unpopular,

t may inadvertently grant a concurrent thread access

to h (which is now accessible by t through a pointer

variable and by some other heap node). Decrement-

ing the reference count of h must be delayed until all

parallel threads complete. This can be implemented

317

by maintaining a list of nodes to be decremented and

decrementing the reference counts of these nodes when

sequential evaluation resumes. We expect this situa-

tion to occur infrequently.

Reference counts provide a conservative estimate

of sharing and can therefore indicate false sharing

(e.g., sharing due to structure not accessed by parallel

threads, or to discarded structure not yet removed by

the garbage collector). The safe approximation they

provide is, however, less conservative than static tech-

niques that approximate all heap aliases at compile-

time. This is because any static indication that sharing

may occur bet ween expressions, requires the conserva-

tive assumption that sharing always occurs between

the expressions, whether or not it actually occurs at

run-time.

3.1.2 Linearization of Threads

Heap resolution detects access to shared structure

when a thread t running a parallel version F of a proce-

dure p accesses a popular node (a node with reference

count greater than one). To decide whether the thread

t may perform the shared heap access or must suspend

until other threads complete, j5 consults a linearization

of all active parallel threads [20]. A linearization is a

total ordering of all active parallel threads that is a se-

quential schedule of the expressions under evaluation

by these threads. If t is at the head of this lineariza-

tion, the access takes place and evaluation resumes.

If t is not the first thread in the linearization, t sus-

pends until all threads ahead oft complete. Upon its

completion, thread t removes itself from the lineariza-

tion, thereby enabling later threads to access shared

structure,

3.2 Programmer Declaration: Acyclic

In a language that allows side effects to the heap, a

program can build cyclic structure. Cyclic structures
. . .

make pmallelm.atlon difficult since a thread with access

to a node in a cyclic structure may “loop back” onto

itself. Consider the two-element list 1= [a, b] where a

and b represent arbitrary heap structure. With cycles,

it is possible that a reaches 1 (e. g., a = 1). A destruc-

tive procedure cannot be safely mapped over I in par-

allel since a reaches b through 1. Furthermore, sharing

between a and b cannot be detected dynamically us-

ing reference counts since the standard representation

of the list 1= [a, b],

.“’---*,“
i ,
‘.. ,’

-.” t
a b

contains no popular nodes indicating sharing. If, how-

ever, the spine of 1 is known to be acyclic (neither 1

nor 1’ lie on a cycle in the heap) at compile-time, sim-

ple static analysis (S3 .3) shows that a and b can reach

shared structure only through a popular node, which

can be detected at run-time. Note that declaring 1 as

acyclic does not require a and b to be acyclic.

A programmer typically is aware of cyclic structure

since precautions must be taken when iterating over

it. Lists, tuples, trees and dags can easily be identified

as acyclic by the programmer. To enable heap resolu-

tion, we introduce the acyclic datatype qualifier. An

acyclic datatype is an ML datatype whose spine, Z.e.,

the heap nodes created by tuple and record construc-

tors in the datatype, is guaranteed by the programmer

to not lie on a cycle in the heap. This declaration im-

plies that a spine element of an acyclic datatype does

not reach itself. For example, the datatype

acyclic dat at ype ‘a pair = Pair of (’a * ‘a)

disallows a pair from reaching itself. Two pair ele-

ments can reach shared structure only if all paths from

a paired element to the shared structure contain a pop-

ular node.

3.3 Analysis for Heap Resolution

The static analysis required for heap resolution consists

of two parts: detection of candidate expressions for

parallel evaluation and subsequent analysis of these ex-

pressions to determine static relationships among heap

variables they use.

3.3.1 Expression Selection

Heap resolution selects a set of control-independent ex-

pressions, {el, en }, whose parallel evaluation po-

tentially conflicts due to heap writes (read and write

effects). The compiler must know the set of variables

through which an ei accesses the heap. Therefore, pro-

cedurm invoked by et may not have access to the heap

through global heap variables or heap values in their

closures (curried parameters). The following definition

characterizes the procedures an ei may invoke:

Definition 3 Procedure p is a true function if p does

not reference free variables and p does not invoke pro-

cedures that reference free variables not bound in p.

A true function is a procedure that operates on state

transmitted entirely through its parameters. For ex-

318

ample, the procedure:

fun f (a, b) =

let fun g x = (x)a) in

gb

end

is a true function whereas procedure g is not since g

uses the free variable b. The procedure qs (Figure 3) is

a true function if its parameter cmp is a true function.6

Anei C{el, ..., en} may only invoke true functions.

If ei only invokes true functions, any state accessed

and modified by ei is completely described by ei’s free

variables. Let FV(e) denote the set of free variables in

an expression e. The free variables FV(ei) denote the

“inputs” to expression ei. Subsequent analysis (\3.3.2)

examines e;’s set of free heap variables,

11~ = {hi I hi G FV(ei) and hi is a heap variable}

and determines the structural relationship among the

Hi sets.

In the destructive quicksort of Figure 3, the expres-

sions el=(qs left crop) and ez=(qs right crop) are

control-independent. FV(el) = {qs, lef t, crop} and

FV(e2) = {qs, right, crop}. The procedure qs is a

true function if cmp is a true function. If cmp is a true

function, then HI = {left} and H2 = {right} repre-

sent the heap variables available to el and e2 respec-

tively. The analysis of the following section deduces

relationships between heap nodes dynamically bound

to the heap variables in HI and H2 and schedules el

and e2 in parallel using heap resolution.

3.3.2 Local Structure Analysis

Heap resolution requires static detection of heap vari-

ables that reach shared structure only via paths cer-

tain to contain popular nodes. The analysis in this

section statically verifies that the free heap variables

Hi of expression ei can access structure accessible to

ej (through its free heap variables Hj) only if they

first encounter a popular node, for all i and j (i # j).

If this property cannot be verified, the expressions

{el, en} are rejected as candidates for heap res-

olution and must evaluate sequentially.

ML decomposes dynamic data by matching it

against patterns. A data pattern recursively consists

of variables, constants, constructors and patterns [15].

When a pattern matches a piece of dynamic data, vari-

ables in the pattern are bound to the piece of the data

they represent. If the pattern contains acyclic datatype

constructors, the dynamic relationship of heap vari-

ables within the pattern can often be deduced stat-

ically. The relationship of variables within patterns

and relations among multiple patterns is captured in a

6A =Un.time ~-tag ($2) that identifies higher-order Parame-

ters as true functions can be used to determine this property.

structure graph. A structure graph for an expression e

is a directed graph G = (V, E) that describes the struc-

ture of patterns lexically visible to an expression e. G’s

vertices V consist of variables and patterns visible to

e. Heap resolution requires free heap variables of e to

correspond to variables in G. Edges E in G are of two

types: pointer edges and path edges. A pointer edge

represents a statically known pointer between a pair of

vertices. Path edges represent possible (but statically

unknown) paths between a pair of vertices.

In the procedure qs (Figure 3), for example, the

structure graph

“Z-.SYC1’C
left ‘

b. .;
right

..*-

corresponds to the pattern Pair(lef t ,right) in the

expression: val Pair (left ,right) = split a x’.

The graph reveals that any heap node bound to the

variable left (right) can reach the heap node bound

to right (left) only if the node bound to right

(left) has a reference count greater than one (~

is a pointer edge and ---- e a path edge). All paths

from left (right) to right (left) must contain a

popular node. Furthermore, if left and right reach

shared structure, a path to this structure must contain

a popular node. Therefore, shared structure accessible

by left and right can be detected dynamically using

reference counts and the expressions (qs left cmp)

and (qs right crop) are compiled to evaluate in par-

allel using heap resolution.7 Note that if the pair

datatype were not acyclic, the structure graph would

contain path edges from left to the pattern and from

right to the pattern. These additional edges would

allow left (right) to reach right (left) without ac-

cessing a popular node (through the vertex represent-

ing the pattern) and dynamic detection of sharing with

reference counts would not work.

This static analysis first annotates expressions in a

procedure p with the structure graph that lexically

reaches them. The expressions el, en must be an-

notated with the same structure graph G for parallel

evaluation with heap resolution. For each pair of free-

heap-variable sets, lli and Hj (i # j), the analysis

examines G to verify that for all hi E Hi and hj E Hj,

7A --time ~PtimizatiOn to reduce false sharing is applicable

here. If left (or right) has a reference count equal to one, this

count can be lowered to zero before evaluation of (qs 1 ef t cmp)
(or (qs right crop)) and incremented to restore the true count

after evaluation of the expression completes. This is valid since a

single pointer to left or right must be from Pair (lef t , right).

The destructive quicksort of Figure 3 requires this optimization

to remove false sharing created by the return value of split.

319

hi canreachhj (andhj canreach hi)onlyvia a path

that contains a popular node in G. If a path from hi to

hj (or from hj to hi) in G does not contain a popular

vertex, heap resolution cannot be used since potential

sharing cannot be dynamically detected using reference

counts.

This analysis is simple, yet able to schedule par-

allel evaluation of a large class of expressions. It is

particularly well suited for parallel structure traver-

sals. It is, however, unable to detect relationships be-

tween unrelated patterns such aa those representing

multiple parameters to a procedure. It is also unclear

how effective this analysis is when applied to many

control-independent expressions involving many free

heap variables. We are developing a more sophisticated

static/dynamic analysis that addresses these issues.

3.4 Markers

The following is a case where heap resolution is not

applicable: statically, it may be known that heap node

h cannot reach heap node h’, but that h’ can reach

h. Reference counts do not work in this situation since

there is no guarantee of a popular node on a path from

h’ to h. A marker can be placed on h to indicate

that h (and nodes accessible from h) are in use by a

thread. A heap node’s marker is dynamically examined

with its reference count, as explained above. A marker

identifies the thread t that placed it, thereby granting

t access to the node. Markers allow the expression

let val p as Pair(a, -) = x in

fa; gp

end

to evaluate (f a) and (g p) in parallel. After a is

marked, (g p) may evaluate. If g does not access a, or

f removes or relocates a’s marker, parallelism ensues.

4 Implementation and Results

We added A-tagging and heap resolution prototypes

to the SML/NJ compiler [1]. We also built a parallel

ML system from SML/NJ, sm12c, and SML Threads.

sm12c [19] is a code generator for SML/NJ that pro-

duces C code. SML Threads [4] provides thread cre-

ation and synchronization primitives. sm12c combined

with SML Threads allowed us to execute ML pro-

grams on a 386-based 20-processor Sequent Symme-

try shared-memory multiprocessor (for which SML/NJ

does not directly generate native code). In order to

retain portability across architectures supported by

SML/NJ, the only modification made to the srn12c

code generator is support for reference counts.

The parallel threads allocate storage from distinct

sections of the heap. A single processor performs stop-

180

160

140

120

:
g

100
u

:

80

60

40

, , , I I ,

LambdahJS +
Explicit Parallel +-

Sequential +.

Q

----. ._. _.._ —.
70 I ,

1 2 3 4 5 6 1 8
Processor,

Figure 5: Timings of symbolic matrix multiply of two

100x1OO integer matrices using ~-tags versus explicit forkljoin

parallelism. The multiply is parameterized by higher-order pro-

cedures that provide the addition and multiplication operations

on matrix elements.

and-copy garbage collection after suspending all other

active processors. All reported times include the time

required for garbage collection.

4.1 A-tagging Results

To implement ~-tags, a single integer tag was added

to the run-time procedure closures generated by

SML/NJ. SML routines are used to inspect and mod-

ify a procedure’s A-tag. These routines correspond di-

rectly to the SAFE predicate and the tag-manipulation

primitives SET, GET, and COMBINE (~1 and ~2). Re-

trieving a pointer to a tag requires 39 .7psec. Checking

if a procedure’s tag indicates no side effects requires

56.5 psec, and modifying the tag requires 47.9 psec.

These times represent hundreds of machine instruc-

tions, whereas a direct implementation of these oper-

ations would require very few instructions and would

further reduce the already small run-time overhead in-

curred by J-tagging.

Figure 5 gives times for symbolically multiplying two

list-based 100x1OO integer matrices using A-tags. Two

higher-order procedures to the matrix multiply routine

supply the operators for adding and multiplying ma-

trix elements. If these operators are side-effect free,

inner loops of the routine can evaluate in parallel (map

is invoked repeatedly). In the test, neither higher-order

operator had side effects. The program was manually

320

restructured to check A-tags and re-assign A-tags upon

closure formation using the tag-manipulation primi-

tives.

Figure 5 also compares our implicit parallel version

of matrix multiply (through J-tags) against an explic-

itly parallel version of the same routine. A-tag times

approach those of the explicitly parallel version. In

this program, A-tag overhead relative to the explicit

parallel version ranged from 2% (one processor) to 9~o

(4 processors). This overhead is easily offset by the im-

plicit parallelism obtained by our dynamic technique.

4.2 Heap Resolution Results

An implementation of heap resolution requires refer-

ence counting of pointers within the heap, a lineariza-

tion of active parallel threads, and a primitive to in-

spect a heap node’s reference count and suspend eval-

uation if necessary. A reference-count field was added

to every dynamic SML/NJ record. The sml.2c C back-

end was modified to increment count fields upon record

construction and to decrement fields when pointers are

re-assigned. Markers ($3.4) can be implemented simi-

larly. The linearization of threads required to maintain

the sequential semantics was implemented in ML as a

doubly-linked list of thread descriptors. A primitive

(written in C) was added to SML/NJ to create a new

descriptor at a given location in the linearization. This

operation is time critical since it occurs every time a

thread is created. Insertion into the linearization may

occur in parallel. Inlined SML procedures are used

to inspect reference counts. If a thread t must sus-

pend, t’s continuation (available through SML/NJ’s

non-standard callcc) is stored with t’s descriptor in

the linearization. The continuation is invoked when t

moves to the head of the linearization (after all prior

threads have completed).

The destructive quicksort given in Figure 3 was re-

structured by hand to perform the recursive calls in

parallel and to check reference counts. Figure 6a gives

timings for sorting a list of 10000 random integers.

The sequential version performed no reference count-

ing. The overhead due to heap resolution in this pro-

gram is 1270 of the explicitly parallel time for 6 proces-

sors, but heap resolution provides better performance

than sequential evaluation with only two processors.

The timings of a program to topologically sort a for-

est of trees are given in Figure 6b. The program sorted

25 balanced trees of depth 13. The trees did not share

structure. Programmer or compiler parallelization of

this program is difficult since sharing among the trees

is unknown. The graph therefore lacks a curve with

explicit parallel times. As reflected by the graph, this

program is very pointer intensive, and heap resolution

incurs significant overhead. Even so, heap resolution

improves on the sequential performance when more

than 4 processors are used. This program was also

restructured manually.

To measure the effect of sharing, the topological sort

was applied to a forest of trees where each tree shared

a leaf node common to all trees. Heap resolution re-

quired 37.2 seconds to perform the sort with 8 proces-

sors. This is still an improvement over the sequential

sort (40.5 seconds). With sharing in the middle of the

tree, the time required for the parallel sort increased

to 65.0 seconds since most of the computation was

performed sequentially with reference counts checked.

This indicates that heap resolution in the presence of

sharing is viable only if run-time overheads can be fur-

ther reduced.

The overhead of heap resolution can be substantially

reduced by allowing the lead thread in the lineariza-

tion to read/write the heap with the conventional se-

quential code. Only threads not at the head of the

linearization must respect reference counts. This al-

lows heap resolution to operate one thread at original

speed and only slows the progress of additional par-

allel threads that check reference counts. To do this

effectively, an implementation must be able to switch

between the conventional version of a procedure and

the version that checks reference counts. This opti-

mization has not yet been incorporated into our im-

plementation. Additionally, examination of reference

counts must be moved to the backend of the compiler,

instead of being performed by a procedure call.

It is interesting to note that overhead due to main-

taining A-tags, a thread linearization, reference counts,

and markers is “parallel” and the detrimental impact

of this overhead diminishes as the number of processors

increases. Even so, we expect the run-time overhead of

A-tagging and heap resolution to decrease as we refine

the implementation.

5 Related Work

Para Tran [20] dynamically parallelizes Scheme by

modeling heap accesses as database transactions and

is most similar to our work. Evaluation in Paratran

proceeds optimistically. Upon detection of a conflict,

the computation must be rolled back to a point where

the linear access order is intact. Reversing large com-

putations is expensive. By contrast, our heap resolu-

tion technique suspends a conflicting expression and

immediately begins evaluation of another pending ex-

pression in parallel. Heap resolution always makes for-

ward progress. The amount of dynamic information

required by heap resolution is small (reference counts)

‘2’)1

10 , , r

Eeap Resolution +

65 Explicit Parallel +- .
Sequential %-

60. ;

!
55 -;

50 -
\,

45 - \
‘,,
‘)

40 - ‘,,

35 -

30 -
\

25 -

20 -

15 L , , I , , I

1 2 3 4 5 6 7 8
Processors

(a)

Eeap Resolution +_
Sequential +-

120

100 -

80 -

60 -

do. .-.+..-—-. +—-—-—+-----—-—-—-----+--—-—-—.----—-.

20 -

n , , ,

2 4 6 8 10 12 14 16
Processors

(b)

Figure 6: Timingso fheapresolutiona ppliedto destructive quicksort (a) andtopological tree sort (b). In both programs, heap

resolution provides speedup over the sequential versions as the number of processors increases. No dynamic structures are shared.

Explicit parallel thningsfor the topological sort are not given since this program is difficult to explicitly parallelize due to unknown

sharing.

in comparison to the complex time-stamps Paratran

retains for heap objects.

The Parcel [6] and CURARE [10] systems restructure

Scheme after performing expensive data-flow analysis

for detecting heap aliases. Complex heap dependence

often force these static techniques to make safe, se-

quential assumptions. Higher-order functions are not

rigorously traced by these techniques. However, static

analysis of side effects in higher-order languages is ad-

dressed by Neirynck [16]. This conservative analysis

is unable to effectively trace higher-order procedures

propagated through data structures. The analysis re-

quired for A-tagging is less expensive and potentially

detects more safe higher-order applications at run-time

than these techniques statically uncover. Recent work

[3, 7, 8] addresses static analysis of heap structures,

pointers, and recursive data structures. Work by Lu

and Chen [11] uses a static analysis in conjunction with

dynamic information to detect loop dependence be-

tween array references at run-time.

6 Conclusion

These techniques reveal and exploit implicit parallel

computations that are statically undetectable. Dy-

namic parallelization supports interactive development

environments and separate compilation since static

analysis is performed at the procedure, not program,

level.

An implementation of A-tagging and heap resolution

in the SML/NJ optimizing compiler indicates that the

costs inherent in run-time techniques—dynamic main-

tenance, propagation, and utilization of information—

are more than offset by the dynamic discovery of par-

allel t breads.

Acknowledgements

Thanks to Phil Pfeiffer and Todd Proebsting for in-

sightful critiques of this work; to Andrew Appel,

David Tarditi, and Greg Morrisett for assistance with

SML/NJ, smll?c, and SML Threads respectively.

A-tagging and heap resolution permit dynamic paral-

lelization of expressive languages that admit higher-

order procedures and allow side effects to the heap.

322

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. W. Appel and D. B. MacQueen. A Standard

ML compiler. Functional Programming Languages

and Computer Architecture, 274:301–324, 1987.

C. Chambers and D. Ungar. Customization:

Optimizing compiler technology for SELF, a

dynamically-typed object-oriented programming

language. In ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation,

pages 146-160, June 1989.

D. R. Chase, M. Wegman, and F. K. Zadeck.

Analysis of pointers and structures. In A CM SIG-

PLAN Conference on Programming Language De-

sign and Implementation, pages 296–310, June

1990.

E. C. Cooper and J. G. Morrisett. Adding threads

to Standard ML. Technical Report CMU-CS-90-

186, School of Computer Science, Carnegie Mellon

University, December 1990.

R. H. Halstead, Jr. Multilisp: A

concurrent symbolic computation.

actions on Programming Languages

7(4):501-538, 1985.

language for

ACM Trans-

and Systems,

W. L. Harrison. The interprocedural analysis and

automatic parallelization of Scheme programs.

Lisp and Symbolic Computation, 2(3/4):179-396,

October 1989.

L. J. Hendren and A. Nicolau. Parallelizing

programs with recursive data structures. IEEE

Transactions on Parallel and Distributed Systems,

1(1):35-47, January 1990.

S. Horwitz, P. Pfeiffer, and T. Reps. Depen-

dence analysis for pointer variables. In ACM SIG-

PLAN Conference on Programming Language De-

sign and Implementation, June 1989.

P. Jouvelot and D. K, Gifford. Algebraic re-

construction of types and effects. In Conference

Record of the Eighteenth Annual ACM Symposium

on Principles of Programming Languages, pages

303-310, January 1991.

J. R. Larus. Compiling Lisp programs for parallel

execution. Lisp and Symbolic Computation, 4:29–

99, 1991.

L. Lu and M. C. Chen. Parallelizing loops with

indirect array references or pointers. In Prelimz-

nary Proc. of the Jth Workshop on Languages and

Compilers for Parallel Computing, August 1991.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

J. M. Lucassen and D. K. Gifford. Polymorphic

effect systems. In Conference Record of the Fif-

teenth Annual ACM Symposium on Principles of

Programming Languages, pages 47-57, January

1988.

H. G. Mairson. Deciding ML typability is com-

plete for deterministic exponential time. In Con-

ference Record of the Seventeenth Annual ACM

Symposium on Principles of Programming Lan-

guages, pages 382-401, January 1990.

R. Milner. A theory of type polymorphism in pro-

gramming. Journal of Computer and System Sci-

ences, 17:348–375, 1978.

R. Milner, M. Tofte, and R. Harper. The Defini-

tion of Standard ML. MIT Press, 1990.

A. Neirynck. Static Ana!ysis and Side Effects

in Higher-Order Languages. PhD thesis, Cornell

University, February 1988.

J. Rees and W. Clinger (eds.). Revised3 report

on the algorithmic language Scheme. SIGPLA N

Notices, 21(12):37-79, December 1986.

0. Shivers. ControLFlow Analysis of Higher-

Order Languages. PhD thesis, CMU, May 1991.

D. Tarditi, A. Acharya, and P. Lee. No assembly

required: Compiling Standard ML to C. Technical

Report CMU-CS-90- 187, School of Computer Sci-

ence, Carnegie Mellon University, November 1990.

P. Tinker and M. Katz. Parallel execution of se-

quential Scheme with Paratran. In Proceedings

of the 1988 ACM Conference on LISP and Func-

tional Programming, pages 28-39, July 1988.

323

