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1 Overview

Garbage-collected systems allocate and reuse memory

cyclically; this imposes a cyclic pattern on memory

accesses that has its own distinctive locality charac-

teristics. The cyclic reuse of memory tends to defeat

caching strategies if the reuse cycle is too large to fit

in fast memory. Generational garbage collectors al-

low a smaller amount of memory to be reused more

often. This improves virtual memory performance, be-

cause the frequently-reused area stays in main memory.

The same principle can be applied at the level of high-

speed cache memories, if the cache is larger than the

youngest generation. Because of the repeated cycling

through a fixed amount of memory, however, genera-

tional garbage collection interacts with cache design in

unusual ways, and modestly set-associative caches can

significantly outperform direct-mapped caches.

While our measurements show do not show very high

miss rates for garbage collected systems, they indicate

that performance problems are likely in faster next-

generation systems, where second-level cache misses

may cost scores of cycles. Software techniques can im-

prove cache performance of garbage-collected systems,

by decreasing the cache “footprint” of the youngest gen-

eration; compiler techniques that reduce the amount of

heap allocation also improve locality. Still, garbage-

collected systems with a high rate of heap allocation

require somewhat more cache capacity and/or main

memory bandwidth than conventional systems.

2 Background: Copy collector

locality

Garbage-collected systems such as Smallt alk, Lisp, or

actor languages typically violate some of the basic
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locality assumptions of modern memory hierarchies,

leading to poor performance of normal caching strate-

gies. The main problem is cyclic reuse of memory at a

time scale too long to be captured by any caching pol-

icy. These systems therefore tend toward being band-

width-limited, i.e., dependent on the speed of transfers

between levels of the memory hierarchy.

2.1 Allocation is the problem, not gar-

bage collection per se

The problem of locality in garbage collected systems

does not depend primarily on the locality of the gar-

bage collection process itself. The problem stems from

allocation of large amounts of memory, which are only

reclaimed at a significantly later point. Consider the

fact that a fast Smalltalk or Lisp system on a high-

performance workstation will usually allocate an ap-

preciable fraction of a megabyte of heap data ev-

ery second. Thus any reasonably-sized main mem-

ory will quickly be filled with recently-allocated data

[Ung86, Sha88, Zor89].

Assuming a simple garbage collector, either of two

strategies can be applied when main memory fills up.

One is to garbage collect immediately, to avoid overrun-

ning the available memory and paging. This strategy

forces frequent garbage collections, increasing garbage

collection work significantly. It also limits the usable

memory to the size of main memory, so virtual mem-

ory is of little use.

The other strategy is to continue allocating through

virtual memory. This touches many pages in a short

time, as the program allocates many megabytes per

minute. Naturally, this cauaes considerable paging.

2.2 Avoiding unnecessary fetches

The fetching of disk pages is often avoidable if the vir-

tual memory policies can be controlled. There is no

need to actually fetch the pages being allocated, since

their contents will only be overwritten by the alloca-
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tion process itself. 1 But once real memory is full, each

page being allocated must displace an older page, which

usually must be written back to disk. (Since the rate

of heap allocation is so furious, most pages that are

evicted hold data that was allocated since the last gar-

bage collection. Because allocation involves writing to

those pages, they are generally dirty and must be writ-

ten back when evicted.) The disk bandwidth required

is approximately equal to the rate of data allocation. If

the virtual memory cannot be controlled to avoid use-

less fetches, and a simple virtual memory policy is used,

the required bandwidth is twice the allocation rate.

Eliminating useless fetches can dramatically reduce

the required disk bandwidth—but the write-backs alone

will still be a limiting factor on a high-performance

workstation [Ung84].

2.3 Viewing the allocator as a coroutine

with distinct locality characteristics

In attempting to understand the locality characteristics

of garbage collected heaps, it is helpful to view the allo-

cator as a distinct coroutine-like process with its own lo-

cality characteristics. The allocator uses some amount

of memory, typically allocating linearly through some

fairly large area. Then garbage collection occurs, and

the cycle repeats. The area being allocated and reused

may be viewed as a circular array that is repeatedly

cycled through. The locality characteristics of the al-

locator depend only on the rate of allocation i.e., how

fast it marches through the fixed area being cyclically

reused.

The locality characteristics of the program itself are

superimposed on this pattern, with some more “nor-

mal” characteristics, such as a high probability of re-

peated access to recently-allocated objects, and uneven

distribution of references to older objects.

A moderate amount of memory may capture this

normal component of the total system’s locality, which

results from the program’s explicit reference behavior.

But once this moderate locality is captured, the cyclic

reference pattern of the allocator becomes dominant.

Note that this pattern implies that the next location (or

page or block) to be allocated is the one that probably

hasn’t been used for the longest time. This has negative

implications for the performance of normal replacement

policies, such as LRU, which attempt to evict the least-

recently-used items, on the assumption that they are

least likely to be referenced again soon.

1This policy has been implemented on Lisp Machines such as
the Symbolics systems and TI Explorer.

2.4 Compaction: Too little, too late

It should be noted that this poor locality occurs even

with the use of a compacting garbage collector, such

as common copying collectors. Consider a semispace

collector, which divides the available heap space into

two equal-sized “semispaces,” only one of which is used

at a time. Half of memory is used up, then all of the

live objects are copied into a contiguous area of the

other semispace. Once all of the live objects have been

“moved” in this way, the evacuated semispace can be

regarded as empty and reclaimed in its entirety.

The garbage collector compacts objects at each

collection, and this does have a beneficial effect on

locality.z But between garbage collections, the alloca-

tor marches inexorably through the rest of that semis-

pace. At the next cycle, the process repeats in the

other semispace. Thus every location in the heap space

is touched at every second garbage collection, even if we

disregard everything but the allocator and the garbage

collector. Note that if an LRU policy is used, and if the

LRU replacement queue is even a tiny bit too short to

contain both semispaces, pages will usually have been

evicted before they are reused.

The problem is not really with the replacement pol-

icy; no policy will do really well under these condi-

tions. The problem is simply that too much memory

is touched too regularly. Normal-sized memories may

capture the normal components of program locality,

such as repeated accesses to recently allocated objects,

or repeated traversals of longer-lived data. But beyond

that size, the page faults caused by allocation dominate,

and they do not decrease until memory M large enough

to hold the entzre memory reuse cyc/e.3 (Using non-

LRU replacement could help somewhat, but then the

traffic would still be at least proportional to the differ-

ence between the heap size and the memory size.)

2A t Ieast if it’s done well. The partiadar traversal algorithm

used by the copying compaction process can have a large effect on

the locality within the resulting data organization at the gran-

ularity relevant to virtual memory paging. In particular, it is

important to avoid reaching objects first in the memory order-

ing imposed by large system hash tables; the resulting pseudo-

random ordering can have disastrous effects on page-scale locality.

Luckily, this is easily avoided [WLM91].

3This is not to say that increasing memory sizes (below the

size necessary to keep the youngest generation in memory) does

no good at all. While allocation in the youngest generation does

cause nearly continuous misses either way, larger caches reduce

the interference and competition between youngest generation

data and other data. When there is more cache space to be com-

peted for, the large fraction that ends up used by the youngest

generation has little effect on miss rates, but the remaining frac-

tion (used by older data) is beneficial in the usual way,
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2.5 Generational collectors

This disaster can be avoided by reusing a smaller area

more frequently; i.e., making the allocator’s cyclic reuse

pattern small enough to fit in main memory, with

enough space left over for anything else referenced on

the same time scale. Generational garbage collectors

[LH83] do this by dividing memory up into different

“generations” which contain objects of different ages

ranges. Areas containing younger objects are garbage-

collected (and reused) more often than those containing

older objects.

Rather than reusing a very large amount of memory

on a long time scale, they cyclically reuse a moder-

ate amount of memory—the youngest generation—on

a much shorter time scale. The youngest generation

is typically some appreciable fraction of a megabyte,

and by the time it has all been allocated, most of the

objects just allocated are already garbage. Reclaim-

ing the new objects’ space is thus quite efficient, since

only the live minority must be copied. This exploits

the empirically observed tendency of most objects to

die very young, while a minority of other objects lives

significantly longer.

This requires moving the minority of older objects

out of the frequently-used area to avoid filling it up and

incurring repeated copying costs. After some number of

garbage collections, objects are moved to an older, less

frequently collected generation.4 This is what allows

the collector to reuse memory frequently and still avoid

repeated copying costs for longer-lived objects. The

youngest generation acts as a kind of buffer in which

most objects die without ever making it into the rest of

memory, filtering out the short-lived data.

Generational garbage collectors allow memory to be

reuse on a time scale relevant to virtual memory, but

they do little to affect cache performance. As caches

become larger, however, it is increasingly attractive to

apply the generational principle at that level—next-

generation workstations will have second-level caches

in the megabyte range,

3 Generational Collection and

Cache Performance

While previous studies have documented the virtual

memory-level benefits of generational collection, have

generally overlooked generational collection’s poten-

4 Actu~ly, some generational collectors, such as generational

mark-sweep collectors, may use more subtle techniques to dis-

criminate between objects of different generations [DWH+ 90].
But the result is the same—objects are dynamically sorted by
their observed age.

tially large impact on cache-level locality. Peng and

Sohi studied of caching for Lisp [P S89], and Koopman

and Lee[KLng] studied cache performance of combina-

tor graph reduction; both of these studies document

the high rate of misses due to heap allocation, but only

looked at simple collectors, with no possibility of keep-

ing the frequently-reused area in cache. (Peng and Sohi

do suggest a form of in-cache reference counting collec-

tion, but it apparently would require exotic hardware

for good performance.) Studies of caching in multipro-

cessors for Lisp have assumed unrealizable “best-case”

caching, where the cache was assumed to be arbitrar-

ily large (e. g., [Nut87, Ber88]), or similarly unimple-

mentable schemes that factor out the effect of allocating

large amounts of memory between reclamations.

Given our understanding of the memory reuse cycle

of a generational garbage collector, we believe it is at-

tractive to exploit the generational property by using a

cache large enough to hold the youngest generation.

Zorn’s studies of caching for a Common Lisp sys-

tem are closest in spirit to those presented here. His

initial results surprised us mightily, in that there was

not a large drop in the miss rates for the SPUR cache

at the cache size necessary to hold the youngest gen-

eration. Considering his results brought us to the con-

clusion that the lack of this striking drop was due to

the use of a direct-mapped cache, which does not use

LRU replacement. We decided to instrument our own

generationally-collected Lisp system and simulate both

direct-mapped and associative caches.

3.1 Allocation patterns

Given the basic generational scheme, there are many

variations in actual memory usage in the youngest gen-

eration. The generation may consist of a single space,

with everything in it copied out into the next generation

[MO084], or it may consist of a pair of semispaces, which

are used in an alternating fashion, allocating through

one and then copying the live data into the other. This

allows objects to be retained for a while in the youngest

generation (because there’s another space to copy them

to), which has advantages [Ung84, WM89] in ensuring

that objects survive at least a while before advance-

ment. Unfortunately, it also increases the amount of

memory touched per two collection cycles.

Ungar’s solution to this is to have a pair of semis-

paces and a separate dedicated creation space. The cre-

ation space is emptied and reused at every collection,

but the semispaces alternate roles as the place to copy

the evacuated live objects to,5 Since most objects die

5This is different from having multiple generations: all three

of these spaces are part of one generation, and are all G C ‘d at

the same time; generations are scavenged at different frequencies.
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young, only a fraction of the space in each semispaces

is actually touched, so the the overall memory usage is

lower. The creation space acts as a buffer, so that most

very short-lived objects can have their space reused im-

mediately, an only. a minority ever takes up space in

either semispace. The effective size of the semispaces,

combined, is actually small, so main memory usage is

less than that of a simple pair without a creation space.

We believe this principle can work at the level of

cache memory as well, and can make copy collectors’

cache-level locality comparable to that of a mark-sweep

collector, such as Zorn’s [Zor90]. (Zorn showed his

hybrid scheme to have better locality under some cir-

cumstances than a copy collector with a simple pair of

semispaces.)

3.2 Cache memory and associativity

So far, we have been assuming LRU replacement poli-

cies, or some reasonable approximation of them. But

modern high-speed cache memories often use replace-

ment policies that differ from LRU in important ways.

In a $ully associative (pure LRU) cache, any block of

main memory can be cached in any block of the cache.

Searching the cache for a block requires many tag (block

identifier) comparisons to find the right block. This is

expensive because parallel hardware must check many

tags at once, or it will be quite slow. Fully associ-

ative caches are therefore not used for normal high-

speed cache memories, which typically have hundreds

or thousands of blocks. (They are often used for trans-

lation lookaside buffers, write buffers, etc., which are

generally much smaller.)

A set associative cache is a compromise. The cache

is composed of many short queues, typically 2 or 4 el-

ements each, rather than a single monolithic queue.

Each queue serves as a cache for a subset of the whole

memory—each block of memory is statically mapped

(hashed) to a unique queue using a trivial address hash-

ing function. Searching for a block only requires looking

in one short queue and comparing a very few tags.

A set-associative cache is thus structured as a hash

table, with recency information for the blocks within in

each queue-structured bucket.

The hash function is typically simple bit selection.

The low-order bits, which specify the word or byte

within the block are ignored, leaving only the block

number part of the address. The high-order bits are

also ignored, because they ‘re not very random—for ex-

ample, all of the blocks of the stack (or a generation of

a a generational gc) may have the same high-order bit

pattern. This just leaves the middle bits of the address,

which are directly used to hash into the cache. That is,

the hash function is simply the remainder of the block

number divided by the number of sets (LRU queues) in

the cache.

(For example, consider a 16 KB, 2-way set-

associative cache with 16-byte blocks. It will have 512

LRU queues with 2 16-byte cache blocks each. Every

512th block will map to the same LRU queue, so blocks

spaced every 512 blocks apart compete with the others

in that set, and not with the blocks in between. )

Set-associative caches work surprisingly well, be-

cause bit selection is usually a fairly good randomizing

function. Any approximate recency information (i.e.,

within a short queue) therefore gives most of the ben-

efit of very precise recency information (i. e., a single

monolithic recency queue); the recently-accessed data

are seldom evicted. Still, set-associative caches are sub-

ject to conflict misses; too many frequently-accessed

blocks may map to the same queue and cause each

other to be evicted, even when there is idle space in

other queues of the cache. This is usually not too much

of a problem, however.

Direct-mapped caches take this principle to the limit,

Each block of memory maps to a unique block of

cache—the LRU queue is a single block. Each block

of cache holds the single most recently accessed block

of the subset of memory that maps to it. This kind

of cache is often the fastest and/or cheapest, because

any block of memory can only be in one place in the

cache—checking for its presence is simple and fast. All

that is required is a single comparison with a single tag,

because only one block is cached for each hash bucket.

Note that when two active blocks of memory map to

the same block of a direct-mapped cache, the resulting

miss rate is proportional to the lesser of the frequencies

of access of the two blocks. For example, if one block is

touched every millisecond, and maps to the same block

of cache as a block that is touched every microsecond,

the resulting misses will occur every millisecond—the

often-touched block will be displaced, then touched and

brought back in. In between, the often-accessed block

will be touched almost a thousand times without caus-

ing a miss,

The miss rate function of low-associativity and

direct-mapped caches is therefore roughly a minimiza-

tion function. It depends on the frequency of reference

to elements that aren’t in the queue they map to; refer-

ences to the most recently-accessed n blocks per queue

(where n is the associativity) don’t cause misses. In

a direct-mapped cache, n is 1, and for pairwise con-

flicts, the miss rate is proportional to the lesser of the

frequencies of reference to those blocks.c

GFairwise confhcts do tend to be the most important, as is

evident from studies comparing direct-mapped and associative

caches; the present paper shows that this is even true of garbage-

collected systems, though to a lesser degree than other systems.
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This minimizing effect works to good advantage

when reference frequencies are highly skewed, as is usu-

ally true in most conventional (non-garbage-collected)

systems, In most systems, only a very few blocks are

referenced very frequently, a relatively few blocks are

referenced moderately frequently, and many blocks are

referenced infrequently. A frequently referenced block

is most likely to compete with less-frequently accessed

blocks for space in the cache, and not cause many mis-

ses. The more highly skewed the reference frequency

distribution, the more effective the cache will be.

Conversely, if many blocks are referenced on an inter-

mediate time scale, this minimization function may not

work nearly as well. Very frequently-accessed blocks

are much more likely to be paired with intermediate-

frequency blocks, causing more misses. Intermediate-

frequency blocks are even more likely to be paired with

each other, causing still more misses,

This discussion is slightly oversimplified, in that

blocks don’t have single reference “frequencies ,“ and

there may be important variations over time in a given

block’s behavior as well as in aggregate locality charac-

teristics.

To give a more specific example, consider a program

that sequentially marches through memory, touching,

say, a half a megabyte of memory. Suppose also that

other things are going on—that is, this sequential ac-

cess is interleaved with other activities that have more

normal locality characteristics,

With a 16 KB two-way set-associative cache, every

time it marches through half a cache worth of memory

(8 KB, or 512 blocks), it will touch one block that maps

to each LRU queue. Note that if the locality compo-

nents of the other behaviors are good, then no recently-

referenced blocks will need ever be evicted. Each time

a block is touched, it is mapped to a set and evicts one

of two blocks—the less-recently accessed one.

On the other hand, consider a direct-mapped cache

of the same size. This 16 KB cache will be composed

of 1024 sets, with ,one 16-byte block per set. Marching

through memory will map blocks to the same sets at 16

KB intervals, rather than 8 KB, so each queue will be

adjusted half as often. But each time this happens, a

block is evicted irrespective of how frequently tt has been

referenced, In effect, the cache is flushed incrementally

every time 16 KB of memory is marched through.

The stride (spacing of mutually interfering blocks)

of a direct-mapped cache is longer, but the interference

between them is much more severe. Direct-mapped

caches are particularly sensitive to programs that, roam

through relatively large areas of memory while doing

something else as well.

4 Our Experiments

We instrumented the Scheme-48 system, a bytecoded

implementation of Scheme incorporating the Rees-

Rozas-Kelsey software stack cache and our own gen-

erational garbage collector [WM89]. While this system

is several times slower than a fast compiled Scheme

such as T or Gambit, or commercial Common Lisps, its

memory-referencing behavior is realistic. (For example,

its stack cache eliminates the heap allocation of all but a

small percentage of closures and activation records; we

implemented some compiler optimizations to enhance

its effectiveness for this study. ) Our instrumentation in-

cluded reference-capturing code in memory-referencing

bytecodes. We incorporated Mark Hill’s Tycho cache

simulator into our virtual machine to process references

on the fly, to avoid the need to actually store long ref-

erence traces.

We ran four test programs, including our compiler

(written mostly by Jonathan Rees and Richard Kelsey),

the Zebu parser generator (a yacc-like program writ-

ten by Sandy Wells, with changes by Joachim Laubsch

and Paul Wilson), a type lattice conformance tester

used for programming language research (due to An-

drew Black), and the Boyer theorem proving bench-

mark from the Gabriel suite. All of these programs ex-

cept Boyer are real programs used for real work, each

consisting of thousands of lines of code. Boyer was in-

cluded partly for reference purposes, because it is a

commonly-available benchmark.

Each test program runs for tens of millions of virtual

machine instructions and allocates several megabytes of

heap data. The Tycho simulator computes miss ratios

on the fly for a variety of sizes and associativities.

Given this setup, we ran the four test programs with

several different garbage collector configurations, and

for each we simulated a variety of cache sizes and asso-

ciativities,

5 Results

Due to space limitations, we will not present all of our

data and analyses here; we will describe a few of our

more basic results. (More details will be available in a

technical report. ) All of the results presented are for

data caches only, because instruction caches tend to be

separate and have very different locality characteristics,

The cache block size is 16 bytes (four 32-bit words).

5.1 Queue distance hits

Figure 1 shows the LRU queue distance distributions

for our test programs. That is, the curves reflect the
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probabilities of blocks being touched at different points

in an LRU queue. (The figures are for a highly set-

associative cache, which is a good approximation of

a fully associative one.) Intuitively, the distributions

show the probabilities that a block will be the next

block touched, given how long it’s been since it was

last touched. More precisely, they show its probabil-

ity of being touched given how many other blocks have

been touched more recently. The fourth queue position

corresponds to 128 KB of memory, and the eighth one

corresponds to 256 KB.

The height of the curve at any point is the marginal

increase in hits due to increasing the size of the cache

at that point. For a given queue position (and corre-

sponding cache size), the area under the curve to the

left represents cache hits, and the area under the curve

to the right represents misses. (Misses are simply hits

at queue positions that are past what can be held in a

particular size cache.)

Each of the four programs was run with three differ-

ent garbage collector configurations. For all collectors

and all programs, the first few queue positions absorb

most of the memory references, and their hit counts are

off the scale. That corresponds to the normal notion of

locality—recently-touched objects are likely to still be

active, and to be touched again in the near future.

The lower curve in each of the pictures (with trian-

gular tick marks) is for a system with a simple gener-

ational collector using a pair of 2 MB spaces per gen-

eration. This effectively turns it into a simple non-

generational semispace collector, because nothing is

ever advanced out of the first generation. For each

test program, this curve drops dramatically and nearly

monotonically. By the time a block gets to the tenth

queue position in its set—which means the program

has touched roughly 320 KB worth of other block-—-its

chances of being touched again are near zero. This re-

flects the fact that most data are short-lived; the blocks

holding garbage will never be touched again until the

memory is garbage-collected and reused.

The other two curves in each picture are for gener-

ational collectors with 141 KB spaces in the youngest

generation. Each curve has a hump reflecting the reuse

of memory blocks after a certain interval. (When the

spaces are made larger, the humps move to the right. If

a program does nothing but allocate, the memory refer-

ence pattern is very regular, resulting in sharp spike at

the corresponding queue distance. Real programs do

varying amounts of other things between collections,

blurring the spikes into humps.)

The rightmost hump (in the curve with x-shaped

ticks) represents a simple semispace configuration. The

allocator alternates between semispaces at each cycle,

so blocks are only reallocated at every second cycle—

after roughly 280 KB of allocation. Most of this hump

can be captured by a cache of roughly 300 or 400 KB,

meaning that allocations won’t tend to systematically

cause cache misses. The corresponding hump for the

simple collector would be off the chart and require a

four megabyte cache.

The left hump in each picture represents a collector

with a dedicated allocation space (as well as a pair of

semispaces) in the youngest generation. This space is

emptied and reused at every cycle, so the hump is fur-

ther to the left. Except in the case of Boyer, a cache

of roughly 200 to 280 KB could contain this hump and

eliminate most misses due to allocation. (Boyer is un-

usual in that a fairly large percentage of objects sur-

vives multiple garbage collections. It therefore uses a

larger percentage of the space in each semispace, negat-

ing much of the advantage of the separate creation

space.)

This shows that with a generational garbage collec-

tor, almost all capacity misses—due to the cache simply

being too small—will go away when the cache is made

a little larger than the memory reuse cycle, and not

before. For most programs (with a relatively small per-

centage of objects surviving a scavenge), the separate

creation space reduces cache requirements by roughly

thirty percent.

5.2 Miss rates and associativity

The above argument applies only to capacity misses.

Real caches also suffer from conflict misses due to lim-

ited associativity. To account for this, detailed simula-

tions of caches are necessary. Figure 2 shows the miss

rates for the test programs. Miss rates are plotted as a

function of cache size, for three associativities: 4-way,

2-way, and direct-mapped (l-way). In all cases, a three-

space configuration is used in the youngest generation,

with 141 KB per space.

A 4-way set associative cache closely approximates

a fully-associative cache, and the corresponding curves

(with triangular tick marks) confirm our expectations.

Between 16 and 64 KB, each curve is concave upward:

increases in cache size are beneficial, but to a decreas-

ing degree. Then the curve decreases more steeply

at around 128 KB, and (except in the case of Boyer)

reaches almost its minimum by 256 KB.

A direct-mapped cache behaves quite differently,

however. It has a higher miss rate for cache sizes that

are small relative to the unit of memory reuse; but from

there the miss rate drops more steadily, because of de-

creasing conflict misses as the cache is incrementally

flushed less often. At 128 I{ B—approaching the in-

terval of reuse—the direct-mapped cache actually has

fewer misses than the associative cache.
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Presumably, the direct-mapped cache keeps most of

the creation space in cache, and suffers interference for

the rest. The associative cache’s LRU policy, on the

other hand, tends to evict most things before they are

used.

Beyond the size of the memory reuse pattern, how-

ever, the direct-mapped cache again shows distinctly in-

ferior performance. Even after the capacity misses dis-

appear entirely, the conflict misses are slow to abate. In

contrast, the associative caches’ miss rates quickly ap-

proach the compulsory misses required to fill the cache,

except in the case of Boyer. These capacity misses are

overrepresented in our figures, due to the fact that our

programs do not run for very long periods of time. They

would be less important in an actual system, so the ad-

vantage of associativity is greater than is obvious from

the figure.

These results indicate that direct-mapped caches

outperform set-associative ones over a narrow range of

sizes centered around the unit of memory reuse. For

smaller sizes, their miss rates are worse by roughly 10

to 100 percent—though the latter number is less rep-

resentative, and the variance is quite high for such a

small sample. For caches larger than the unit of mem-

ory reuse, the direct-mapped caches’ miss rates appear

to be hundreds of percent higher, after accounting for

the initial compulsory misses.

6 Performance Implications

The preceding sections bear out our model of the lo-

cality in qualitative terms, for our small system, but to

draw strong quantitative conclusions, other data are re-

quired. We will use data gathered from Common Lisp

systems, and hardware parameters from the architec-

ture literature.

For corroboration and calibration, we have taken

data from large Common Lisp systems studied by Shaw

and Zorn. One initiaI point of corroboration was to

check our most basic assumption—that total misses are

strongly dependent on total heap allocation. For Zorn’s

test programs and direct-mapped caches, the correl~

tion is .79, which we believe supports our thesis.’

Shaw and Zorn’s measurements indicate that large

Common Lisp programs (compiled to native code) al-

locate approximately one word of storage per 200 in-

structions executed (based on Shaw’s four programs

7We computed the average in the simplest way—we averaged
the miss rates for all cache sizes and G C allocation thresholds

reported by Zorn. The cache sizes ranged from 64 KB to 2 MB,

and the thresholds ranged from 125 KB to 2000KB. (This simple

average is somewhat biased toward the smaller caches and larger

thresholds due to their h:gher miss rates. )

and Zorn’s eight).8 For a cache block size of 16 bytes,

that is a block of allocation per 800 instructions.

If the cache is too small to hold the youngest gen-

eration, then allocation of a block of data will gener-

ally cause a cache capacity miss. So we can expect a

miss every 800 instructions. For the platform we use, a

DECStation 5000/200, servicing a cache miss costs 13

instruction cycles, giving a capacity miss cost of 1.6?10.

The actual cost would naturally be higher due to inter-

ference misses, especially if the cache is direct-mapped.

Another hidden cost is in dirty block wra’tebacks.

When the cache is smaller than the youngest genera-

tion, most of the blocks that get evicted are dirty. That

is because the evicted blocks are usually blocks that

have been allocated within the last garbage collection

cycle, and thus dirtied when their initial contents were

written. Writeback costs are hard to quantify without

detailed timing simulations, due to the effects of write

buffering. It appears, however, that the evictions due

to allocation are frequent enough that buffers often fill,

requiring that a block be written before the faulted-on

block can be read. This has been observed in simula-

tions of a non-generationally garbage collected system

at DEC SRC (Joel Bartlett, personal communication

199 1); we believe the same phenomenon is inevitable in

a generational system unless the memory reuse cycle is

cached.

Writebacks will thus raise the average time to ser-

vice a capacity miss; adding in the cost of interference

misses, the performance impact is likely to be a few per-

cent. (We are hesitant to quantify this more precisely

on the basis of our current data, but we believe it offers

a useful guidepost.) Naturally, it may be significantly

more if the cache is small, and some of the interfer-

ence misses will go away with a very large cache—more

rapidly for an associative cache than a direct-mapped

one.

We also think it is important to view this in the

context of projected future machines. New machines

are being introduced with performance in the 100 MIPS

range, and 1000 MIPS machines are likely within the

next few years. These machines 1000 MIPS machines

are expected to have two-level caches, with second-level

cache miss penalties on the order of 100 cycles [KL9 1],

or even 200 [MB9 1]. This would increase a locality cost

by roughly an order of magnitude, making the expected

performance impact tens of percent. The second-level

caches in such machines will be more than a megabyte,

however, capable of holding a reasonable-sized youngest

generation and eliminating its capacity misses.

8The mean is slightly higher than this, the median slight 1y

lower.
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7 Conclusions and Future Work

We conclude from our experiments that generational

garbage collectors typically have poor locality of refer-

ence at some time scale, but that careful attention to

memory hierarchy issues can significantly decrease the

performance impact. On the other hand, these costs

are likely to be much higher in systems with very high

rates of heap allocation, such as those that allocate ac-

tivation records on the heap, and many graph rewriting

systems. Conversely, they will be reduced by any com-

piler techniques that reduce heap allocation through

lifetime analysis, etc.

While garbage collection can be more efficient than

stack allocation under certain circumstances [App87],

locality effects often dominate [Lar77]. It is unlikely to

be cheaper on modern computers, where cache nlem-

ory performance is key. (Our stack cache reduced our

system’s heap allocation by more than an order of mag-

nitude, which decreased caches misses tremendously. )

Efficient garbage collection costs space, due to the

deferring of storage reclamation to avoid continual over-

head. This space cost occurs at the level of cache mem-

ories in a generational collector in much the same way

it occurs at the virtual memory level in a simple collec-

tor. For Lisp the cost is relatively small in most current

systems—at most a few percent—but the cache miss

service times can be a considerable fraction of the to-

tal cost of garbage collection on new processors, and

promises to get worse on future, faster processors.

In a cache smaller than the youngest generation,

the cost of allocation includes evicting something from

the cache to make room for the space being allocated.

Architecturally, the cost of bringing in the faulted-on

block could be eliminated by cache optimizations that

allow the creation of blocks in-cache, like virtual mem-

ory optimizations on Lisp machines, Short of this,

prefetching is likely to help if sufficient nlemory-to-

cache bandwidth is available. (Some of this benefit may

be gotten simply by using larger block sizes, but miss

service times go up as miss rates go down. ) The costs of

writes could be reduced to some degree by deeper write

buffers. The bandwidth requirements for the write-

backs are inevitable, however. (We believe these func-

tions may be subsumed by more general hardware that

will also be useful for other functions, such as multipro-

cessor cache coherency.)

If a large enough cache is available, software tech-

niques can decrease cache miss rates appreciably by

keeping the Youngest generation in cache, and reduc-

ing its footprint by reusing a creation region at ev-

ery cycle, rather than simply alternating between two

semispaces. Copying techniques appear comparable to

mark-sweep techniques in this regard, because the fun-

damental problem is due primarily to deferred storage

reclamation in the smallest unit of memory reuse—the

youngest generation of a generational collector.

Beyond evictions and writebacks, conflict misses

also result from rapid allocation, especially in direct-

mapped caches. For a cache larger than the youngest

generation, this accounts for the majority of misses, and

set-associative caches have much lower miss rates.

In short, careful design and configuration of a gar-

bage collector can avoid a several-percent performance

hit on next-generation workstations; the potential ben-

efit is likely to be greater for systems whose processors

are faster relative to memory speeds, or systems whose

performance is highly sensitive to cache misses, such as

bus-based multiprocessors.

Before making more detailed conclusions and rec-

ommendations, more studies should be performed to

quantify the effects we have pointed out. Future stud-

ies should examine larger and longer-running programs

and simulate memory hierarchies in more detail. We

also think that the principles illustrated here may have

wider applicability, and should be generalized to give a

deeper understanding of program behavior.
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