
Global Analysis for Partitioning Non-Strict Programs

into Sequential Threads

Kenneth R. ‘Traub David E. Culler

Motorola Cambridge Research Centerl UC Berkeley Computer Science Division2

Klaus E, Schauser

UC Berkeley Computer Science Division2

1 Introduction

In this paper we present a new solution to the problem of
compiling an eager, non-strict language into multiple se-

quential threads. The solution is described using an in-
termediate program form developed for the programming

language Id [Nik90], a functional language extended with
I-structures [ANP86] and M-structures [BNA91]. A similar

intermediate form has also been suggested for imperative
languages [BP89], as a way of exposing parallelism in those

languages. With suitable restrictions, we believe our method
is also appropriate for lazy, purely functional languages such
as Haskell [HWe90].

Throughout this paper, a thread will mean a subset of

the instructions comprising a procedure body, such that:

1. A compile-time instruction ordering can be determined
for the thread which is valid for all contexts in which
the containing procedure can be invoked.

2. Once the first instruction in a thread is executed, it

is always possible to execute each of the remaining in-

structions, in the compile-time ordering, without pause,
interruption, or execution of instructions from other

threads. [Tra91b]

Threads of this form are required to implement a language
on parallel multithreaded hardware (e.g., Monsoon [PT91,

PC90] and *T [N PA92]), and they yield efficient implemen-
tations on conventional architectures when combined with a
suit able abstract machine such as TAM [CSS+ 91],

Our algorithms are greedy, and the following comments

from [SCVE91] apply:

Partitioning decisions imply trade-offs between

pa~allelism, synchronization cost, and sequential
efficiency. However, given the limits on thread
size imposed by the language model, the use of
split-phase accesses, and the control paradigm,

we simply attempt to make partitions as large as
possible . . .

] Motorola Cambridge Research Center; One Kendall Square, Bldg.

200, Cambridge MA 02139, kt@mcrc.mot, com

‘Computer Science Division–EECS; 571 Evans Hall; UC Berkeley;

Berkeley CA 947’20; cuIler@cs Berkeley. edu; schauser@cs.berkeley. edu

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA

9 1992 ACM O-89791 -483 -X1921000610324 . ..% I .50

Obtaining such threads is not trivial, because the order
of sub expression evaluation in non-strict programs is not

specified syntactically, as it is in imperative languages. To
determine an ordering, the compiler must respect all data
dependence. For example, a fetch from an element of a
non-strict array depends on the subexpreasions that yield
the array and offset (which are identifiable at compile time),

and on the subexpression computing the component (which,
in general, is not). Fundamentally, therefore, a compiler

must sort out certain dependence (z, e., known at compile
time), and potential dependence [Tra91a].

This paper extends or improves upon prior work [Tra91 a,
Ian90, SCvE91, HDGS91] in the following ways:

More abstract framework. The intermediate form used
here is an ordinary directed graph, where vertices are prim-

itive operations and edges indicate flow of operands (and
therefore certain dependence), with three additional annota-
tions: an inlet annotation on vertices that may be endpoints
for incoming potential dependence, an outiet annotation on

vertices that may be endpoints for outgoing potential depen-
dence, and squiggly edges to indicate certain, but indirect
dependence. All relevant information about how operators
behave and their inter-relationships are encoded into these

notations, as is information exchanged between graphs dur-
ing interprocedural analysis. This is in contrast to previous

approaches which require special and ad hoc treatment of
several kinds of nodes in the graph.

Congruence. While the concept of inlet and outlet is
found elsewhere ([Ian90], [SCVE91], and [HDGS91]), our an-
notations allow for the expression of congruence, where, for
example, two inlets depend on the same (but still unknown

at compile time) set of outlets, Even more complicated
patterne of overlap and partial overlap are also expressible.
Congruence is exploited extensively by our interprocedural

an alvsis.
I“nterprocedural analysis. If procedure f was previously

compiled, information gained during its compilation may be
used to form larger threads when compiling another proce-

dure g which calls f, compared to compiling g in isolation.
If g is known to be the only caller of f, then compilation
information from g can likewise improve the compilation
of f. This process may be iterated to arrive at mutually

improved versions of both f and g. None of these interpro-
cedural analyses have been considered in the prior work. It

is also interesting to note that our interprocedural analysis

is in some ways more powerful than conventional strictness
analysis [BHA85, Myc80]. For example, we can conclude
that the expressions computing the actual parameters to a

324

two-argument function may be placed in the same thread,
even though the function is not strict in either argument.

Conditionals. The interprocedural analysis as outlined

above is extended to the case where a particular call in g is

known to call one of several procedures jl, j’2, ..,, dependin~
on context or input data. A special case of this paradigm is

a conditional expression, where jl, ~2, . . . are the arms of L

conditional and g is the enclosing procedure. 3 Again, it is
possible to improve both the caller g and the callees .fl, ~Z,

etc. Another generalization, though perhaps less useful in
practice, is the specialization of ~ when it is known that
its only callers are gl, g2, etc. Prior work has ad hoc treat-
ment of conditionals, in some cases violating the semantics
of the language (as in ~an90]), and in other cases inherently
limited in effectiveness (e.g., [SCVE91]).

Preservation oj control structure. The membership of
operators in different control regions is preserved; e.g., in-
structions belonging to the ‘{then)’ arm of a conditional are
kept separate from those in the “else” arm and from the con-

taining expression. This is very desirable for later phases of
compilation; e.g., register allocation. Previous techniques
lose this structure in the course of partitioning,

2 Dataflow Graphs

Programs to be pa~titioned are expressed in a structured

data~ow graph. A structured dataflow graph consists of a

collection of acyclic graphs describing basic blocks, and in-

terfaces which describe how the blocks relate to one another.
The term basic block is used here in the dataflow sense as

defined in [Tra86]; roughly, it corresponds to a group of op-
erators with the same control dependence [FOW87]. For
example, all operators comprising the ‘(then” arm of a con-
ditional, excluding those in nested conditionals, are a basic
block,

2.1 Basic Blocks

Basic blocks are represented as acyclic directed graphs, with
some additional annotations, The vertices are primitive op-
erators, and straight edges connecting them indicate the flow

of operands.4 Figure 1 shows the repertoire of operators
commonly used to compile Id [Tra86]. The send and receive
operators communicate values between basic blocks, corre-
sponding to procedure linkage and conditional expressions
in the source language. (A real compiler would likely employ
several varieties of send and receive to encode precise details
of linkage conventions, which we ignore in this paper.) Two
varieties of memory operators are shown. Ordinary fetch
and store perform no run-time synchronization––the basic
block representation is assumed to include enough edges to
insure deterministic sequencing of their side-effects [BP89].

I-fetch and I-store [ANP86] are examples of synchronizing
memory operations, where the response to an I-fetch is not
received until an I-store to the same location takes place.
In general, the compiler does not know which I-stores go

with which I-fetches. The opcode labels shown in Figure 1

3The ,dea of ~ conditional us a generalization of procedure call is

due to [AA89]. Treating conditionals in this way has the beneficial

effect of breaking all cycles in the dataflow graph for a legal program.

4There may be edges that carry no data but serve only to insure

correct sequencing of operators that cause side-effects. For partition-
ing purposes, these may be viewed as carrying dummy operands of

size zero; they need special treatment only during later phases of code

generation

* Ck+k3QI,L$!3”

Q(binary) Freceiv a

8

f etah

fetch
reepona &i-fete

i-f etch b
resipona

Fiizure 1: Dataflow GraDh Base Laruzuage

are extraneous as far as the partitioning algorithms are con-
cerned. On the other hand, they are needed by later phases

of compilation, and so it is convenient to carry them along
during partitioning.

A straight edge in the graph shows the flow of an operand,
but more importantly, it indicates certain dependence. A

certain dependence is an ordering constraint due to data

dependence that exists for every invocation of the block, re-

gardless of context. A squiggly edge is used to indicate an
indirect certain dependence; that is, a certain dependence

which is completed through one or more vertices in a dif-
ferent basic block. Indirect certain dependence commonly

arise in two situations. First, there is an indirect certain
dependence between a vertex that issues a split-phase trans-
action [AN87] and the vertex that receives the response (the
dependence is completed through an implicit vertex that

services the request). The fetch and I-fetch operators in
Figure 1 are examples of split-phase transactions. Second,
global analysis can discover indirect certain dependence be-

t ween pairs of send and receive vertices that interface to
other basic blocks, Vertices separated by an indirect de-

pendence can never be placed in the same thread, owing to
part 2 of the definition of a thread.

Also noted in the graph are potential dependence: or-
dering constraints due to data dependence that may differ

depending on the context in which a procedure is invoked,
or which are otherwise unknown at compile time. Rather

than introducing edges into the graph, all vertices that may
be endpoints of potential dependence are annotated with
inlet and outlet annotations (the circles in Figure 1). For
a given context in which the procedure is invoked, there
will be dependence paths from some of the outlets to some
of the inlets; these dependence must be detected through

synchronization counters, presence bits, or other means, and
will constrain the order of evaluation. Note that potential

dependence are assumed to be arbitrary paths, possibly

completed through nodes outside the basic block. For this

reason, an inlet annotation on an I-fetch, for example, may

depend on the outlet on a send as well as on the outlet on

an I-store.
Inlet and outlet annotations are sets of names; if a vertex

has an empty inlet (outlet) annotation, it is never an end-
point for incoming (outgoing) potential dependence. Often,

325

non-empty inlet and outlet sets are unique singletons, mean-
ing that any inlet may depend on any outlet. Two vertices
may be given the same set of inlet names, indicating congru-

ence: if two vertices have the same set of inlet names, that
means they both depend on the same set of outlets, ever.
though that set is not known at compile time. Overlapping

name sets imply partial congruence, For example, if three
vertices have inlet annotations {a, b}, {b, c}, and {a, b, c],
respectively, then any vertex w which depends on the first
two ve~tices depends on the same set of outlets as does the
third vertex (assuming that v depends on no other vertices,

nor has its own inlet annotation).
Apart from congruence, the compiler has no further in-

formation about which inlets might depend on which outlets,
except that potential dependence is ruled out when contra-
dicted by certain dependence, This, then, is the key to suc-

cessful partitioning: the more the compiler knows about cer-
tain clependence, the larger the threads it can form. This is

why indirect certain dependence (squiggly edges) are useful.
Though they force the separation of vertices into separate

threads, they help to rule out other, potential, dependence.

The goal of global finalysis is to transfer as much congruence

and indirect certain dependence information between basic
blocks as possible.

2,2 Interfaces

Interfaces describe how basic blocks interact with each other,
and are used in global analysis to propagate information be-
tween blocks. Global analysis alternates between partition-
ing basic blocks in isolation and propagating information

across interfaces. Each interface establishes a correspon-
dence between call ~ites in one or more basic blocks and the

def sites of one or more basic blocks.

A basic block is essentially an n-argument, m-result pro-

cedure. The arguments are received via n receive nodes,
and the results are returned via m send nodes. Collectively,

these receives and sends comprise an n-argument, m-result
def site.

Conversely, one basic block calls another through an n-
argurnent, m-result call site, consisting of n send nodes and
m receive nodes. W bile every basic block has exactly one def
site, it may have any number of call sites (including zero).

The simplest interface relates a single call site to a single
def site, resulting from a procedure call to a known proce-

dure. The basic block containing the call site is the caller,

and the basic block containing the def site is the ccdlee. Dur-
ing the propagation phase of global analysis, information
gained from partitioning the callee is used to change the an-
notations on the send and receive nodes in the caller’s call
site. These changes include better inlet and outlet annota-
tions to indicate a greater degree of congruence, as well as
squiggly arcs from sends to receives to reflect certain depen.

dence paths in the callee. These can lead to larger threads
in the caller during the next round of basic block partition-
ing (and in no case will result in smaller threads). Likewise,
information gained from partitioning the caller is used to
change annotations in the callee’s def site. The compiler is,

of course, free to propagate information in only one direction
across an interface, or not at all, For example, information

would uot be propagated from caller j to callee g if it was

not desirable to produce a version of g specialized to work
properly only when called from f.

A more complex variety of interface relates a single call
site to multiple def sites. This case commonly arises from

conditionals, where the multiple callees are the arms of the
conditional and the caller is the enclosing expression. Here,
information from the caller results in new inlet/outlet/squig-
gly annotations to be attached to each def site in the same
way. In the other direction, the information from the callees
are combined conservatively to yield a single set of new in-

let/outlet/squiggly annotations for the caller. The combi-
nation, described in Sections 5 and 6, is done such that the
caller will work properly regardless of which callee is selected
at run time.

A dual variety of interface with multiple call sites and a
single def site is also possible, with transposed propagation
rules. This case would arise if all the call,ers of a single proce-
dure are known statically, and it is desirable to specialize the
callee for these callers (and vice versa). In theory one could
have an interface with multiple call sites and multiple def
sites, but the need never arises in practice, and in any event
it can be expressed as the composition of a multiple-call-

single-def interface with a single-call-multiple-clef interface.

3 Basic Block Partitioning

This section gives the algorithm for partitioning a basic
block in isolation. This is essentirdly a subroutine of the
full global partitioning algorithm described in later sections.

The goal of basic block partitioning is to group the vertices of
a basic block into disjoint subsets that are trivially mapped
into threads which meet the two requirements laid out in
Section 1. A compile-time ordering of the operations can
be obtained by any topological sort according to the cer-

tain dependence edges (i. e., straight edges) wholly within
the thread. The ordering chosen for one thread of a basic
block does not affect or constrain the orderings that may be
chosen for other threads. We will generally refer to such a

subset of vertices simply as a thread.

A basic block algorithm similar to that presented here
is independently developed by Hoch et al. [HDGS91], and
our algorithm is also equivalent in power to the algorithm
of Schauser et rd. [SCVE91], A significant difference is that

prior algorithms had ad hoc treatment of split-phase trans-
actions, while for us this falls out of the general method
for handling indirect certain dependence (squiggly edges).
Our algorithm consists of dependence set partitioning and

demand set partitioning, each of which is combined with a
subpartitioning algorithm to insure that all squiggly edges

are inter-thread. These are then composed via an iterative
procedure to obtain the final algorithm.

3.1 Dependence Set and Demand Set Partitioning

Dependence Set and Demand Set Partitioning seek to group
together nodes of the basic block which may be executed as

a single thread, regardless of what potential dependence

may occur at run time. No distinction is made between
straight edges and squiggly edges in the graph, and so these
algorithms are combined with Subpartitioning which splits
partitions that enclose squiggly edges.

Dependence Set partitioning forms partitions by group-

ing together all nodes that depend on the same set of inlets,
and was originally discovered by Iannucci [Ian90].

Definition 1 The dependence set of a node is the set of

326

inlets on which it depends:

Dep(v) = u Inlet(u)

uEPred*(v)

where Inlet(u) is the set of inlet names that annotate node u,
and Pred* (v) is the set of nodes from which there z’sa path oj
length zero or more to v (through either straight or squiggly
edges).

Algorithm 1 (Dependence Set Partitioning) Given a
datafiow graph:

1. Compute Dep (v) for all nodes v, Because the graph
is acyclic, this is easily done by a single traversal in
topological order.

‘2. Partition the graph into maximal sets of nodes with
identical dependence sets.

The second algorithm is the dual of dependence set par-
titioning: it groups together all nodes which are demanded
by the same set of outlets. That is, if an outlet depends
on one node in a group, it depends on all the other nodes
in the group as well. This algorithm is called Demand Set

partitioning, and was first reported in [SCVE91].5

Definition 2 The demand set of a node is the set of outlets

which depend on it:

Dem(v) = u outlet(u)
UESUCC*(V)

whcve Outlet(u) is the set of outlet names that annotate
node u, and SUCC*(v) a’s the set of nodes to which there is a
path of length zero or more from v (through either straight

or squiggly edges).

The Demand Set Partitioning algorithm is analogous to
Algorithm 1.

3.2 Subpartitioning

After partitioning with either of the previous section’s algo-
rithms, there may be two nodes in the same subset which
are connected by a squiggly edge, violating Part 2 of the
thread definition of Section 1. Subpartitioning is applied to

divide subsets in which this occnrs into smaller threads.
Threads may not be split into subpartitions arbitrarily,

as doing so may introduce a cycle between threads (Fig-
ure 2). Such a cycle would also violate the second part of

the thread definition. The following algorithm correctly sub-
partitions a thread, assigning a subpartition number to each

node within a thread such that all nodes with the same num-
ber are part of the same subpartition. The number is simply
the maximum distance in squiggly arcs from the roots of the
thread.

Algorithm 2 (Subpartitioning (forward))
Given a thread:

51n [S CVE91], the algorithm was called “dominance set

partitiotling.”

Figure 2: Incorrect Subpartitioning

1 Visit each node v of the thread, in topological order
according to intra-thread straight and squiggly edges,
and compute

Subpart(v) + max(O,

m ax Subpart(u),
uel%-eds(v)

1+ max Subpart(u))
u EPredq(v)

where Pred8 (v) and Predq (v) are the immediate pre-
decessors of v via straight edges and sqniggly edges,

respectively.

2, Form smaller threads by grouping together nodes with
identicaf Subparto.

Clearly, this algorithm cannot introduce a cycle between
sub partitions, as subpartition numbers are monotonically

increasing along any path.
Forward subpartitioning can easily be accomplished dur-

ing the same topological-order pass made by the dependence

set partitioning algorithm. For each node v, Subpart(v) is
computed just after computing Dep(v) according to the for-
mula in Step la, above, except that PredS (v) and Predq (v)

are taken to refer only to predecessors of v which have the
same dependence set. Threads are then formed by find-

ing maximal subsets of vertices with both the same Dep(v)

and the same Subpart(v). Similarly, backward sub partition-

ing can be accomplished during demand set partitioning
through a similar modification. Backward snbpartitioning

is the dual of Algorithm 2, where the traversal is in reverse
topological order, and where Succ, and Succq replace PredS

and Predq, respectively.
To show these algorithms are correct, we must show that

the threads they discover satisfy both parts of the thread

definition, Informally, one can argue correctness by show-
ing that no static or dynamic dependence path between two
nodes in a partition can be completed through a node out-

side the partition. No static path can exist, becanse nodes
along such a path must have monotonically increasing de-
pendence sets (or monotonically decreasing demand sets).
No dynamic path can exist, because such a path would have

to be completed through one of the inlets (outlets) in the
thread’s dependence (demand) set, implying a cycle. Fi-
nally, subpartitioning insnres that the second part of the
definition of a thread is satisfied.

327

@ Demand set partitioning of original graph b) Dependence set partitioning c) Demand set partitioning d) Final reduced graph
of reduced graph of reduced graph

Figure 3: Example of Iterated Partitioning

3.3 Iterated Partitioning

A better partitioning algorithm can be obtained by the it-
erated application of dependence set and demand set parti-
tioning. This is done by considering each thread computed

by one algorithm as a node of a reduced graph, and applying

the other algorithm to the reduced graph.
Given a basic block and a partitioning (a collection of

disjoint subsets of vertices), the reduced graph is a basic
block with: a vertex for every thread in the partitioning,
an edge for every pair of threads with an inter-thread edge
(squiggly edges taking priority), an inlet annotation on each

vertex which is the union of inlet annotations on the original
vertices comprising the thread, and likewise for the outlet
annotations.

The iterated partitioning algorithm is a cycle of Depen-
dence Set partitioning (with subpartitioning), form the re-
duced graph, Demand Set partitioning (with subpartition-

ing), form the reduced graph. This is repeated until the
number of threads does not change.

Figure 3 shows the stages of applying the iterated parti-
tioning algorithm to a small example. The example consists
of five nodes, three receives and two sends annotated with
the inlet and outlet names shown in part (a) of the figure,
Starting with demand set partitioning, three threads, as in-
dicated by the shaded area, are identified (the three demand
sets are {u}, {v}, and {u, v}), The reduced graph, shown
in part (b), has a node for every thread and inlet/outlet
annotations which are the union of the annotations of the
original nodes comprising the threads in part (a). Two de-

pendence sets {h} and {g, h} determine the new partitioning

of the reduced graph. Forming the reduced graph again and

applying demand set partitioning results then in a single
thread, as shown in part (c) of the figure. Thus, the iter-
ated partitioning algorithm was able to group all five nodes
of the original graph into a single thread.

4 Global Analysis

The effectiveness of the partitioning algorithm presented
above is limited by the inability to propagate dependence
and demand information across control boundaries and pro-
cedure calls. Without global analysis, each send in a call site

or def site is annotated with a unique outlet name and each
receive is annotated with a unique inlet name. Our global
analysis attempts to eliminate unnecessary outlets and in-
lets in a call site in favor of squiggly arcs, where certain,

indirect dependence completed through the callee can be
discovered. In other cases, it will give the same inlet (out.

let) name to multiple receiues (sends). This occurs where it
is discovered that the corresponding sends (receives) in the

callee have the same dependence set (or demand set). More
generally, nodes may be given overlapping annotations de-

scribing the sharing between their dependence or demand

sets. Eliminating or refining annotations in this way allows
the repeated application of the partitioning procedure to

produce larger threads.

The analysis works in the opposite direction as well; that
is, it can use information obtained from a call site in a caller
to eliminate or refine annotations in the corresponding def
site in the callee. In this direction, squiggly arcs result when

the caller feeds a result returned by the callee back into an
argument of the callee, The possibility of such feedback is
the chief reason why non-strict languages are more expres-
sive than their strict counterparts. [Tra91a]

In this section, all interfaces are assumed to be single-
tail-single-def, i.e., they relate a single call site to a single
def site. Extensions for single-call-multiple-clef and multiple-

call-single-def interfaces will b e presented in the subsequent
section.

4.1 Global Partitioning

The global partitioning algorithm starts off by initializing
all sites with the most general annotation. Then, iteratively

one of two rules is applied: either a site annotation is refined
by propagating information across an interface, or a basic

block is partitioned. The algorithm terminates when neither
additional propagation nor partitioning results in a change.

After a block is partitioned, the sites on the other sides of
interfaces to that block may require updated annotations to

reflect the block’s new structure. To keep track of this, the
algorithm associates with every call and def site a boolean,

Valid(s), indicating whether the annotations at that site
are an accurate summary of the block on the other side of

the interface. A propagation step makes the reannotated
site valid, while a partitioning step invalidates all the sites
to which information about the block had previously been

propagated, A set of blocks, Uses(s), is also associated with
every site. If Valid(s) is true, then Uses(s) is the set of
blocks whose structure was directly or indirectly propagated
into s. Uses helps determine which sites to invalidate after
a partitioning step.

Algorithm 3 (Global Partitioning)
Given a structured dataflow graph ~:

1.

2.

Initially, annotate every receive with a unique single-
ton inlet and every send with a unique singleton outlet.
Set Valid(s) +- true and Uses(s) + @for all sites s.

Select a basic block B such that Valid(s) is true for all
sites s in B, and apply either Step 3 or Step 4.

328

3. (Propagate information across an interface)
Choose a site s in B, Let s’ denote the corresponding

site on the other side of the interface, and let B’ be
the basic block containing s’. Perform the following

three steps:

(a)

(b)

(c)

Reannotate the sends and receives of site s’ as a
function of the site s, according to Algorithm 4,
below.

Set Valid(s’) +-- true.

Set Uses(l) t {B} U U$,eSf~~,$,~$ uses(~i),

where S(B) denotes the &_t ~f ~i~es that B con-
tains. (This rule says that what site s’ uses is the
block containing s, plus any blocks which influ-

enced the annotations at sites in B other than s
itself. Annotations which may be present at s it-
self do not contribute to what is propagated to s’,

according to Algorithm 4.)

4. (Partition the basic block)

(a) Partition B using any legal partitioning algorithm.

(b) Set Valid(s) +-- false for all sites sin the program
such that B c Uses(s),

5. Repeat from Step 2 until there is no change.

In some sense, Algorithm 3 is an algorithm schema: to

obtain a complete algorithm, it must be combined with a
strategy for making the choice in Step 2. The blocks and

interfaces form a call graph, through which the algorithm
must navigate. If the call graph is a tree, one strategy is to

take sweeps from the leaves to the root, partitioning blocks
and propagating to their parents, alternating with sweeps

from the root to the leaves. If there are cycles in the call
graph, the algorithm cannot propagate information around
a complete cycle—if it does, partitioning any block in that
cycle will permanently invalidate all site annotations on the
cycle$ preventing further progress. This is a fundamental
limitation in our global analysis’s ability to deal with recur-
sion. A realistic strategy must content itself with choosing
some spanning tree (or spanning DAG) of a cyclic call graph

and limit propagation to those interfaces.

4.2 Propagation

The procedure for reannotating the site s’ based on the cor-
responding site s is described now in detail. The interface
relates nodes RCrJl, ., ., Rcvi,... , Rcvn in site s to nodes
Sencl{, , . . . Send;, ., ., Send\ in site s’. If s is a def site

and s’ a call site, these nodes are communicating n argu-
ments; if s is a call site and s’ a def site, these nodes are
communicating n results. The interface also relates nodes
Sendl, Sendl, Sendm in site s to nodes Rcv~,

Rev; ,.. ., Rcv~ in site s’. Ifs is a def site and s’ a call site,

these nodes are communicating m results; if s is a call site

and s’ a clef site, these nodes are communicating m argu-
ments. The notation .9(Rcvi) refers to the thread containing

Rcv~ in the reduced graph.

Algorithm 4 (Propagation)

1!

2.

3.

4.

5!

4.3

Let R~ = Dern (O(Rcv;)), where this demand set is
computed in the reduced graph of the basic block B,

but where the send outlets of site s are given new
unique names, 0z4tlet(Sendj) = {U3 }, 1 < .i < m, for

the purpose of computing these demand sets.

Let sj = De~(@(Sendj)), where this dependence set
is computed in the reduced graph of the basic block
B, but where the receive inlets of site s are given new

unique names, Irdet(Rcv~) = {pi}, 1 < i < n, for the
purpose of computing these dependence sets.

For each i, j such that Uj c Ri (which is equivalent to

Pi E Sj; both are true if and only if there is a path
from O(Rcv~) to O(Sendj)),

(a) Add a squiggly arc (Serad~, Rev\) in site s’.

(b) Set Ri +- Ri - {~j}.

(C) Set sj + sj - {Pi}.

Set Outlet(Send~) + R.j in the site s’ for all 1< i < n

(alpha-renamed if necessary to avoid congruence fith
other sites in B’).

Set In2et(Rcv\) + Sj in the site s’ for all 1< j < m

(alpha-renamed if necessary to avoid congruence with
other sites in B’).

Example

The behavior of this global partitioning algorithm is illus-

trated in Figure 4. The top of the figure shows a caller with a
2-argument, 3-result call site (left) and corresponding callee,
which contains two internal inlets due to I-fetch operations.
After Step 1 of Algorithm 3, all site annotations are valid,

and their Uses sets are empty. Therefore it is possible to
partition each basic block in isolation before any inter-block
propagation (top row of fignre).

Now, consider clef-to-call propagation. The callee’s argu-

ment receive inlets are temporarily renamed PI and PZ and
the result send outlets renamed al, a2, and U3, respectively.
This gives R1 = {al, C72}, R2 = {cr2, a3}, S1 = {pi, g},
S2 = {pi, p2, g,h}, and S3 = {pz, h}. The second row of

the figure shows the resulting new annotations in the caller.
Next, the caller is partitioned. First, dependence set

partitioning results in three partitions. Forming the reduced
graph and then applying demand set partitioning gives one
thread, which subpartitioning then splits in two, as shown
in the third row of the figure. Note that the bottom part of
the caller has exactly the structure of Figure 3a, and so the
intermediate steps in iterated partitioning of the caller are
similar to what is illustrated in Figure 3.

Finally, call-to-clef propagation is used to specialize the

callee for this caller. Here S1 = S2 = {a}, and RI = R2 =
R3 = {u, v}. This introduces no squiggly edges in the callee,
but makes all receive inlets the same ({a}) and all send out-

lets the same ({u, v}). Partitioning the newly annotated

callee, we arrive at two threads (fourth row of figure). An-

other pass of propagation across the interface yields a small
change to the caller annotation, but no improvement is pos-
sible in the partitioning.

329

Caller Callee
Initial Annotation:

Every receive is annotated with
a uniqe singleton inlet, every
send with a unique singleton outlet.

Initial Partitioning:

For the caller, dependence set
partitioning rmrdts in six partitions.
Forming the reduced graph and then
applying demand set gives four
partitions: {s,t), (u), (v), and (u,v).

For the callee, five dependence sets
determine the partitioning: {e}, {f),
(e,g), (f,h), and (e,f,g,h).

Reannotation:

Propagation from the ealke to the
callec
Indirect certain dependence from
AS1 to RRl and RR2, as well as
from AS2 to RR2 and RR3 is
represented by the four squiggly
arcs in the caller.
Outlet annotations on AS1 and AS2
can be eliminated.
Inlet annotation on RRl, RR2, and
RR3 reflect the inlets internal to

the callee.

Partitioning Caller:

Dependence set partitioning
of the reduced graph
from the second row
results in three partitions:
(a), (a,h), and {a,g,h).

Forming the reduced graph and
then applying demand set
partitioning wiU give one
partition. Subpartitioning
restdts in two threads, as shown,

Reannotation:

Propagation from the caller to the

callee: Dependence sets for

arg-sends and demand sets for

resuhs-revs are reflected in the

callee annotations.

Partitioning Callee:

For the wdlee, demand set partitioning
places all nodes into a single partition.
Subpartitiotring results in two threads,

Figure 4: Example of Global Analysis

330

5 Congruence Syndromes

We digress for a moment to answer the following question:

what is the information carried in inlet (outlet) annota-
tions by the propagation step of Algorithm 3? Clearly,

the names themselves are not relevant. For example, in

Figure 4 the annotations {g}, {g, h}, {h} were carried from
the callee to the caller, but the partitioning would have
been the same if the caller had received the annotations

{~}, {j, k}, {k} instead. It is not the names appearing in the
inlet (outlet) annotations that matter, only which nodes end

up with the same dependence (demand) sets—in this exam-
ple, whether the bottom two nodes end up with the same
dependence set. Thus, the annotations {g, j}, {g, ~, h}, {h}

would also do as well, even though this is not just a cr-

renaming of {g}, {g, h}, {h}. On the other hand, the an-
notations {g}, {j}, {h} do nothave the same effect, as the
bottom two nodes in Figure 4 end up with different depen-
dence sets: {a, g, h), {a,.j}.

The relevant information carried by a set of annotations
is its sharing properties, which are captured by its congru-
ence syndrome, defined below.

Definition 3 The congruence syndrome oj Q collection oj
sets of numes C= S~, ..., S’n is a 2n x 2n matrix defined as

follows:

Syn(C) : Pow({l,..., n})x Pow({l, n}), n}) + {0,1} where

Syn(C)(l~,lZ) = 1 iff U S~ = U Sj

ieI~ j61~

The reader may verify that the congruence syndrome
of {9}, {9, h}, {h} is the same as the congruence syndrome

of {g, j}, {9, j, h}, {h}, but different from the congruence

syndrome of {g}, {j}, {h}. In the reannotation procedure,
Step 5, a bank of n nodes Rcv~ were reannotated with new

inlet sets Sj. In fact, the nodes could be reannotated with

any collection of inlet sets S$, as long as Syn({ S’{, SL }) =

Sgn({Sl,. . . . Sn }), and as long as all names in S[are dis-
joint from other inlets in the caller (to prevent unintended

congruence). An analogous generalization applies to Step 4.
Note that an a-renaming of a collection always yields a col-

lection with the same congruence syndrome.
We stress that the algorithms we propose do not require

computing any congruence syndromes; we have only used
congruence syndromes to explain the underlying mathemat-

ics.

5.1 Partial Order on Congruence Syndromes

We define a partial order on congruence syndromes as fol-

lows:

synl ~ s~nz iff synl(ll, lz) < syn2(11,1-2) VI1,lZ

The syndromes of all finite collections of a given size n form

a finite lattice under this ordering; for n = 2, fo~ example,
there are seven possible syndromes.

If syn(C1) p Syn (C2), then c1 is a conservative approx-

imation of the annotations in C2. That is, if labeling a bank

of inlets or outlets with Cl allows two vertices to be placed
in the same partition, then they can also be placed in the

same partition if the inlets or outlets were labeled with C2,

though G2 may also allow groupings not allowed by G1.
Therefore, in the earlier example it is safe (though not opti-

mal) to reannotate the outlets with any collection R: where

Syn({Rj,.. ., R\}) ~ Sgn({Rl,..., Rn }). This observation

shows exactly what sort of combination needs to be done
at a multiple-clef or multiple-call interface: the new annota-
tions must have a congruence syndrome which is the greatest
lower bound (glb) of the congruence syndromes from each
of the defk or calls.

Fortunately, it is possible to construct a collection C12

such that Sgn(C12) = glb(Syn (Cl), Syra(C2)) without actu-
ally computing any congruence syndromes. First, a-rename

Cl and C2 so that they have disjoint sets of names (i. e., no

name in a member of Cl appears in any member of C2, and
vice versa). Then

Cp = c) u c?

We leave it as an exercise for the reader to verify that the

congruence syndrome of C12 as defined above is indeed the

glb of the congruence syndromes of C1 and C2. It is still

open whether there is an efficient algorithm to compute such
a collection of minimal size, i.e., with as few names as pos-
sible. This would help to keep the dependence and demand
sets small during partitioning.

6 Conditionals

Global analysis for a single-call-multiple-clef interface is de-

scribed here, In Algorithm 3, Step 3 is slightly modified.

When propagating from the single call to the multiple clefs,
Steps 3a, 3b, and 3C are applied to each of the multiple
clefs. When propagating from the multiple clefs to the sin-

gle call, the condition in Step 2 must be true of all of the
blocks ~1, B2, . . . containing the clefs, and the right hand
side of the equation in Step 3C is taken as the union over the

blocks B1, B2,.. . . The propagation rule in Step 3a (Le.,

Algorithm 4) needs to combine the information from the def
sites, and is given below. The def sites are indexed by k.

1.

2.

3.

4

Let R! = Dem (d(l?cv~)), where this demand set is
computed in the reduced graph of basic block l?~, but
where the result send outlets are given new unique

names, CMlet(Send~) = {u]}, 1 < j < m, for the

purpose of computing these demand sets.

Let S} = Dep(6’(Sendf)), where this dependence set is

computed in the reduced graph of Bk, but where the
argument receive inlets are given new unique names,

~n~et(Rcv~) = {p:}, I < i < n, for the purpose of
computing these dependence sets.

For each i, j’ such that L# c R! for all k (equivalently,

such that p! c S} for all k),

(a) Add a squiggly arc (Sendi, Rcvj) in the caller.

(b) Set R! + R$ - {u:} for all k.

(c) Set s; + S; – {P$} for all k.

Set Out/et (Sendi) + IJk R: in the caller for all 1 <
i $ n (alpha-renamed if necessary to avoid congruence

with other call sites in the caller).

331

5, set Jniet(Rcvj) t- (Jk St in the caller for all 1 <
j < m (alpha-renamed if necessary to avoid congru-
ence with other call sites in the caller),

As discussed in the previous section, the unioning opera-
tion in the last twc] steps computes a collection whose con-

gruence syndrome is the glb of the Rk (or Sk) collections’
syndromes, assuming the collections are pairwise disjoint be-
forehand (alpha-renaming can be used to make sure this is
so) .

Global analysis for a multiple-call-single-clef interface is
just like what is described above, except that the roles of

caller and callee are exchanged,

6.1 Example

Global analysis across a single-call-multiple-clef is illustrated

in Figure 5, which is an example of an if-then-else expres-
sion. The top row of the figure shows the caller (that is,

the expression containing the if-then-else expression), the
“then” side, and the “else” side. The initial annotation and

partitioning in isolation is also depicted in the top row.
The second row shows the call site annotations after

propagation from the two conditional sites. Following the
first three steps of the propagation rule results in three squig-

gles to be inserted, because both conditional sites have a
certain dependence from ARI to RSI, from AR2 to RS2,
and from AR3 to RS3. Just before Step 4 of the propa-

gation rule, we have R; = {}, R+ = {}, R: = {a~,a~},

R? = {oi, 31,az} R] = {}, and R: = {}; and S; = {pi},

S; = {pi}, S3 = {}, S? = {}, S; = {p?}, and S; = {p;}.

Taking the pair-wise unions in Steps 4 and 5 yields the new
annotations shown in the second row of the figure. (To make

the figure easier to read, we have alpha-renamed u;, u;, a:,

and u:, to u, v, y, and z, respectively, and p; and p; to
h and t, respectively.) Partitioning can now group all nodes
at the bottom of the caller into a single thread.

In the third row, we propagate from the caller to the

“then” and “else” sites by applying Step 3 of Algorithm 3 to
each side. Since all new outlet annotations are equal ({s, t}),

demand set partitioning will place all nodes of the “then”
site and all nodes of the ‘(else” site into a single thread.

Reannotating the caller for the second time and applying
demand set partitioning groups together all nodes at the top

of the caller into a single thread, as shown in the fourth row
of the figure. The final partitioning consists of four threads:

the top and bottom of the caller, the ‘(then” side, and the
“else” side.

7 Summary

We have presented a new approach to partitioning non-strict
programs into collections of sequential threads, extending

previous work in the area in several ways. The framework
is simpler and less ad hoc. Iterated basic block partitioning
is defined using two simple constructs: dependence sets and
demand sets. A key contribution is the use inlet and out-

let annotations to provide a concise summary of the effects
of clependences external to each basic block. In particu-
lar, they permit the expression of congruence among de-
pendence, which can be described mathematically as the
congruence syndrome of an annotation set, This provides a

coherent framework for interprocedural analysis and analy-
sis of conditionals, since the common structure of the con-

ditional arms can be described by simple operations on the
sets of annotations, which corresponds to finding a safe ap-
proximation to the two syndromes. Tracking dependence
and sharing across procedures and through conditionals re-
sults in larger threads with less dynamic scheduling. It also
identifies a larger number of redundant synchronizations,

thereby reducing the cost of dynamic scheduling.
We do not yet have empirical measurements of the qual-

ity of partitioning using global anaJysis relative to the sim-
pler algorithm in [SCVE91], but the improvement appears

to be substantial. The most significant shortcoming of the
earlier work was the weak handling of conditionals, which

resulted in a large number of very small threads, In the
present framework, partitioning is applied across the con-
ditional and within both arms before the expansion of the
condition al into primitive cent rol transfer operations. In

many cases, the need to steer multiple threads through the
condition al is eliminated.

Partitioning as described here has similar aims to the
use of strictness analysis to avoid building closures in im-

plementations of lazy functional languages. [BHY88, Joh86]
In fact, one could apply the partitioning approach directly

to lazy languages [Tra89], the key difference being in what
partitioning algorithms are permitted. Lazy evaluation im-
poses the additional restriction that no subexpression may
be computed until it is known to contribute to the final an-

swer. Dependence set partitioning is therefore ruled out,
because in general it will form partitions which compute

several outgoing values, not all of which may be required for
the final answer even if some of them are. Demand set par-

titioning, on the other hand, corresponds exactly to what
is required by lazy evaluation, as it seeks to group together
subexpressions which contribute to the same set of outputs.

Demand set partitioning combined with our global analysis
may yield larger threads than conventional strictness-based

approaches: for example, given a function

def f x y = cons (x+y) nil;

and a call f El E2, our analysis would allow the expressions
El and E2 to be put in the same thread, even though f

is not strict in either argument. On the other hand, our
global analysis is weaker than strictness analysis in its ability

to handle recursion. One area of future work is a better
treatme~t of recursion in our global analysis.

There are several additional directions for future work.

The partitioning and global analysis algorithms have been
presented here in their most straightforward form. There

remains a lot of room for clever data structures and algorith-
mic techniques to improve the time and space complexity.
Related to this is the open question of how best to approx-
imate the glb of the congruence syndromes in conditionals

so to minimize the size of the annotations. Considerable
work remains to develop effective strategies for partitioning
and prop agation throughout the collection of basic blocks,

Finally, we have assumed that ‘(bigger is better” in forming

threads, but ultimately we expect there to be some trade-
offs between thread size, parallelism, communication, and
synchronization overhead,

332

Caller Then side

Initial Annotation:
Every receive is amotated with
a uniqe singleton inlet, evety
send with a unique singleton outlet.

Reannotation:
Propagation from the conditional sites
tothecalle~ three squigglies are added
becauseboth conditional sites have a
certain dependence from ARl to RSl,
AR2 to RS2, and from AR3 to RS3.
Inlet and outlet amotations reflect the
glb of the congruence syndromes.

Reannotation:
Propagation from the caller to the
conditional sites: Inlet and outlet
annotations reflect the dependence
setsfor the arg-sends and demand
setsfor results-revs.

Reannotation:
Propagation from the conditional sites
to the callen nine squiggles appear.
There ISa certain dependence from every
arg-rcv to every res-sendbecause both
conditional sites have only one thread.
Inlet and outlet annotations are all

Else side

Initial Partitioning:
For the caller, iterated partitioning
results in six partitions,

For the then side, iterated partitioning
results in three partitions.
For the else side, iterated partitioning
results in three partitions.

Partitioning Caller:
Dependence set partitioning results in
fourpartitions: (a), (a,b), (b), and
(a,b,gh).

Partitioning Conditionals:
In bodr conditional sites demand
set partitioning places all nodes
into a single partition.

Partitioning Caller:
Demand set partitioning rwmlts in
one partition: (s,t), Subpartitiortirrg
will split it into two threads.

empty since squiggles capture already
all possible dependencies,

Figure 5: Example: Global Analysis of a Conditional

333

Acknowledgements

We thank Thorsten von Eicken, Seth Copen Goldstein, Venkat

Nat arajan, R. S. Nikhil, and Ellen Spertus for providing
many useful comments on earlier drafts of the paper.

David Culler received support from a National Science
Foundation PYI Award (CCR-9058342) with matching funds

from Motorola Inc. and the TRW Foundation. Klaus Erik
Schauser is supported by an IBM Graduate Fellowship.

References

[AA89]

[AN87]

[ANP86]

[BHA85]

[BHY88]

[BNA91]

[BP89]

[CSS+91]

[FOW8’7]

[HDGS91]

Z. Ariola and Arvind. P-TAC: A parallel inter-
mediate language. In FPCA ’89, pages 230–242.

ACM, Sep 1989,

Arvind and R. S. Nikhil. Executing a pro-

gram on the Massachusetts Institute of Tech-

nology tagged-token dataflow architecture. In
PARLE: Parallel Architectures and Languages
Europe Volume II, volume 259 of LNCS, pages
1-29. Springer-Verlag, Jun 1987.

Arvind, R. S. Nikhil, and K. K. Pingali. I-

structures: Data structures for parallel comput-

ing. In Graph Reduction, volume 279 of LNCS,

pages 336-369. Springer-Verlag, Ott 1986.

G. L. Burn, C. L. Hankin, and S. Abramsky.

The theory of strictness analysis for higher order
functions. In Programs as Data Objects, volume
217 of LNCS, pages 42–62. Springer-Verlag, Ott

1985.

A. Bless, P. Hudak, and J. Young. Code opti-

mization for lazy evaluation. Lisp and Symb.

Comp., 1(2):147-164, Sep 1988.

P. S. Barth, R. S. Nikhil, and Arvind. M-
structures: Extending a parallel, non-strict,

functional language with state. In FPCA ’91,
volume 523 of LNCS, pages 538–568. Springer-

Verlag, Aug 1991.

M. Beck and K. Pingali. From control flow to

dataflow. Technical Report TR 89-1050, Cornell
U. Dept. of Comp. Sci., Ithaca NY, Ott 1989.

D. E. Culler, A. Sah, K. E. Schauser, T. von
Eicken, and J. Wawrzynek. Fine-grain par-

allelism with minimal hardware support: A
compiler-controlled threaded abstract machine.

In JthASPLOS, pages 164-175. ACM, Apr 1991.

J. Ferraute, K, J. Ottenstein, and J. D. Warren.
The program dependence graph and its use in

optimization, ACM TOPLAS, 9(3):319-349, Jul
1987.

J. E. Hoch, D. M. Davenport, V. G. Grafe, and
K. M. Steele. Compile-time partitioning of a norl-
strict language into sequential threads. In Proc.

3rd Syrup. on Par. and Dist. Processing. IEEE,

Dec 1991.

[HWe90]

[Ian90]

[Joh86]

[Myc80]

[Nik90]

[NPA92]

[PC90]

[PT91]

[SCVE91]

[Tra86]

[Tra89]

[Tra91a]

[Tra91b]

P. Hndak and P. Wadler (editors), Report on
the programming language Haskell, a non-strict

purely functional language (Version 1.0). Tech-
nical Report YALEU/DCS/RR777, Yale Uni-
versity Department of Computer Science, New
Haven CT, Apr 1990.

R. A. Iannucci. Parallel Machines: Parallel Ma-

chine Languages. Kluwer Academic Publishers,
Boston, 1990.

T, Johnsson. Target code generation from G-

machine code. In Graph Reduction, volume 279
of LNCS, pages 11 9–159. Springer-Verlag, Ott

1986.

A. Mycroft, The theory and practice of trans-
forming call-by-need into call-by-value. In Inter.

national Symposium on Programming, volume 83
of LNCS, pages 269–281. Springer-Verlag, Apr
1980.

R. S. Nikhil. Id version 90.0 reference manual.
CSG Memo 284-1, MIT Lab. for Comp. Sci.,

Cambridge MA, Sep 1990.

R. S, Nikhil, G, M. Papadopoulos, and Arvind,
*T: A multithreaded massively parallel architec-

ture. In Proc. 19th AnPs. Int. Symp. on Comp.

Arch. IEEE, May 1992. (To appear),

G. M. Papadopoulos and D. E. Culler. Monsoon:
an explicit token store architecture. In Proc. 17th

Ann. Int. Symp. on Corrsp. Arch., pages 82-91.
IEEE, 1990.

G. M. Papadopoulos and K. R. Traub. Mul-
tithreading: A revisionist view of dataflow ar-

chitectures. In Proc. 18th Ann. Int. Symp. on

Corrsp. Arch., pages 342-351. IEEE, May 1991.

K. E. Schauser, D. E. Culler, and T. von Eicken,
Compiler-controlled multithreading for lenient

parallel languages. In FPCA ’91, volume 523 of
LNCS, pages 50-72. Springer-Verlag, Aug 1991.

K. R. Traub. A compiler for the MIT tagged-
token dataflow architecture. Technical Report
TR-370, MIT Lab. for Comp. Sci., Cambridge
MA, Aug 1986.

K. R. Traub. Compilation as partitioning: A
new approach to compiling non-strict functional
languages. In FPCA ’89, pages 75-88. ACM, Sep

1989.

K. R. Traub. Implementation of Non-Strict

Functional Programming Languages. Pitman
Publishing, London, 1991. Also published by
MIT Press, Cambridge MA.

K. R. Traub. Multi-thread code generation for

dataflow architectures from non-strict programs.
In FPCA ’91, volume 523 of LNCS, pages 73–

101. Springer-Verlag, Aug 1991.

334

