
Fast Parallel Implementation of Lazy Languages –

The EQUALS Experience*

O. Kaser S. Pawagi C.R. Ramakrishnan I.V. Ramakrishnan

Department of Computer Science

SUNY at Stony Brook, NY 11794.

{owen, shaunak, cram, ram}tks.stmysb.edu

Abstract

This paper describes EQUALS, a fast parallel implemen-

tation of a lazy functional language on a commercially

available shared-memory parallel machine, the Sequent

Symmetry. In contrast to previous implementations,

we detect parallelism automatically by propagating ex-

haustive (normal form) demand. Another important

difference between EQUALS and previous implementa-

tions is the use of reference counting for memory man-

agement instead of garbage collection. Our implemen-

tation shows that reference counting leads to very good

scalability, low memory requirements and improved 10-

cality. We compare our results with sequential SML/NJ

as well as paralle

tations.

1 Introd

(v, G)-machi ne and C.AML implemen-

lct ion

It is well known that functional languages offer a con-

ceptually simple vehicle for programming parallel com-

puters. The main reason for this is that expressions may

be evaluated in any order, due to absence of side-effects.

Therefore detection as well as exploitation of paral-

lelism is much simpler than in imperative languages.

This has been exploited in many previous parallel

implementations such as ALICE [Dar81], FLAGSHIP

[WW87], GRIP [PJ87], Buckwheat [Go188a], (v, G)-

machine [Aug89] and GAML [Mar91]. Whereas AL-

ICE, FLAGSHIP and GRIP make use of specialized

*This research has been support ed by grants from Grumman
Data Systems (8476231) and National Science Foundation (CCR-
8805734, CCR-9010269 & CCR-9102159).

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appaar, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA

01992 ACM O-89791 -483 -X1921000610335 . ..$I .50

R.C. Sekar

Bellcore, 445 South Street

Morristown, NJ 07962.

sekar@thumper. bellcore. com

hardware, the other three implementations are based

on commercially available shared-memory multiproces-

sors. In this paper, we focus on the latter approach

and describe EQUALS, a fast parallel implementation of

a lazy functional languagel on Sequent Symmetry.

One of the earliest lazy parallel implementation on

shared-memory multiprocessor was Buckwheat. It

demonstrated the feasibility of parallel implementation,

but was not tuned for performance. On the other

hand, (v, G)-machine and GAML showed performance

improvement over sequential implementations such as

LML [Aug84], starting from two processors. Both these

implementations were able to reduce the parallel over-

heads, and consequently their performance continued

to improve even when the number of processors was

increased to ten or more.

However, these implementations do not satisfactorily

exploit one of the primary advantages of functional lan-

guages for parallel evaluation, namely, automatic de-

tection of parallelism. For instance, (v, G)-machine and

GAML use program annotations as the only means to

identify parallelism These annotations can be quite

cumbersome for the programmer. The approach used

in Buckwheat relies on strictness information to iden-

tify parallelism, but the strictness information used is

based on head-normal form (HNF)2 and is not sufficient

(as we show later) to identify sigmficant parallelism in

most programs. To alleviate this problem they make as-

sumptions such as cons and append being strict, which

runs counter to the goals of lazy evaluation.

A second problem with (v, G)-machine and GAML

is that they use memory management techniques that

do not scale well. (v, G)-machine uses a sequential

garbage collector; performance figures of (v, G)-machine

given in [Aug89] do not include garbage collection times.

GAML uses a parallelized garbage collector, but it

scales poorly, e.g., one of the garbage collector speedup

curves flattens at a speedup of 2 when the number of

1 A lazy implementation is one that performs only those com-

putations that are necessary to obtain the normal form of an

input expression [HL79].

‘W’e we HNF and weak HNF interchangeably.

335

processors is increased to 7 or 8. The EQUALS imple-

mentation overcomes both these drawbacks as follows:

● Automatic detection of parallelism by propagating

exhaustive demand as far as possible. We accomplish

this using ee-strictness analysis developed in [SPR90]3.

As we show in section 2, exhaustive evaluation also in-

creases task granularity by packing several HNF tasks

into one task. It also improves sequential performance

by avoiding repeated traversals of the graph.

● Using reference counting for memory management.

Our implementation results show that it scales well and

also has low memory requirements without compromis-

ing efficiency.

In thu+ paper we present EQUALS, a fast parallel im-

plementation of a lazy, first-order functional language

on a six-processor Sequent Symmetry. The EQUALS sys-

tem consists of an optimizing compiler and a runtime

system. Functional programs are first translated into an

intermediate code which is then optimized. Following

this, the intermediate code is macro expanded into C

code. (We chose to use C for portability reasons.) The

C programs are then compiled and executed under the

control of a runtime system which consists of routines

for task and memory management.

The rest of this paper is organized as follows. The

next section elaborates on the issues raised above,

namely, parallelism detection and memory manage-

ment. An overview of the EQUALS system is presented

in section 3. The EQUALS compiler is described in sec-

tion 4. Sections 5 and 6 describe our task and memory

management schemes. A detailed discussion of perfor-

mance of EQUALS is presented in section 7. Our re-

sults show that sequential performance is comparable

to SML/NJ, one of the fastest functional language im-

plementations. The parallel performance of EQUALS is

about the same as (v, G)-machine, even though EQUALS

times include memory management whereas (v, G)-

machme times exclude garbage collection time. Results

also show that reference counting mechanism scales

well, uses less memory and has bet ter memory locality.

Concluding remarks about our experience with EQUALS

appear in section 8.

2 Parallelism and Memory

Management

There have been two approaches to identify paral-

lelism in lazy languages. One approach, used in (v, G)-

machine and GAML requires programs to be annotated

for parallelism. This can be quite cumbersome since

3 Lfost of the other strictness methods do not deal with (ex-

ha~lstive) normal form demands For the parallelism detection

discussed here, any strictness method that deals with no~-mal form

demands can be used,

1gs(z : Xs +
qs(rd -

Spltt(z : Zs, y)u, v) +

spltt(ntl, y, u, v)-
qsl(< Z,y, z >) +

1

append(x : ZS) y +
append (nzl, y +

Figure 1: QuickSort

annotations are always

qsl(spltt(zs, x,nil, ntl))
rid

~.f(~ > Y,spwzs, y,z : U, V),
Spltt(zs, y, ‘u, z : v))

<U, y,v>
append(qs(z), Y : w(z))

x : append(zs, y)
?/

(’:’ denotes cons operator)

required. Moreover, in order

that laziness not be compromised, the task scheduler

must have a mechanism to ensure that the normal order

branch of computation makes progress. An alternative

approach that does not suffer from these drawbacks is

to use strictness information to identify parallel com-

ponents, as in [Geo89] and [Go188b]. However, their

model of computation is based on head evaluation and

does not at all deal with exhaustive evaluation. Hence

the strictness information they use also deals with head-

normal forms alone4. This strictness information is not

sufficient (as shown below) to detect significant paral-

lelism in many programs. Therefore they assume that

even non-strict functions such as cons and append are

strict.

To illustrate why strictness based upon HNF alone

is not sufficient to identify parallelism, consider the

QuzckSort example shown in fig. 1. Note that qs(l)

first splits the list into 11 and 12 and subsequently calls

append(qs(ll), qs(iz)). Unless we know that append

needs to evaluate its second argument, qs(ll) and qs(~z)

cannot be evaluated in parallel. However, append is not

strict in its second argument, and so strictness infor-

mation does not detect any parallelism here. Even if

we annotate append as being strict, no parallelism is

detected because qs(iz) will be evaluated concurrently

with that 11 only till its HNF is obtained. After this,

its evaluation will be suspended till append consumes

all of its first argument, i.e., until qs(il) is completely

evaluated. This forces us to the extreme measure of an-

notating cons (in addition to append) as being strict in

both arguments so as to identify any parallelism at all.

2.1 Propagating Exhaustive Demand

and its Merits

In order to overcome the problems mentioned above,

we need to take the context of evaluation into account

when performing strictness analysis. Observe that if the

output of append (or cons) is exhaustively demanded

(i.e., needed in normal form) then both its arguments

are needed in normal form. In other words, append and

4i ,e., it provjdes information about which arguments of a func-

tion are to be head-normalized in order to head-normalize the

function application.

336

cons are ee-strict (see [SPR90] for details) in their ar-

guments. By propagating exhaustive demand in this

manner and utilizing ee-strictness information we can

identify all the parallelism in the examples discussed in

this paper. Observe that since parallelism detection is

still based on strictness, laziness is never compromised.

Therefore, the task scheduler needs no explicit mecha-

nism to ensure progress of normal order computation.

In previous implementations, tasks compute weak

head-normal forms of terms. (Henceforth, we use

“terms”, “graphs” and “expressions” interchangeably.)

However, HNF tasks are typically fine grained and

therefore can easdy lead to significant overheads. Al-

though this problem can be alleviated to a large extent

by a careful design of task management (as is done in

[Aug89] and [Mar91]), nevertheless it is quite advan-

tageous to use larger grain tasks. Use of exhaustive

demand (or e-demand) aids us in achieving this, since

it packs several HNF tasks into a single task.

Propagating exhaustive demand also increases the ef-

ficiency of sequential evaluation since it avoids repeated

traversals of the graph. For instance, observe that in the

QuickSort example, gs(l) eventually reduces to

append(append(append(tl, t2) . ~.)5

If we do not propagate exhaustive demand, then the re-

quest to head normalize the outermost append results in

another call to head-normalize the inner append. This

proceeds all the way to the innermost append, which

then outputs a single element. This element is con-

sumed by the next outer append and so on until the

top-level append outputs one element. Then the whole

process is repeated, thereby resulting in n traversals of

the graph in order to compute n elements. In contrast,

if we propagate e-demand then the top-level append will

force complete evaluation of inner append, which in turn

will force full evaluation of its inner append and so on.

This results in just a single traversal of the graph to

compute all the elements in the output list. Moreover,

Due to exhaustive demand propagation, EQUALS code

is similar to that generated by a strict language and

hence its sequential performance is comparable to strict

implementations. In summary, propagating exhaustive

demand leads to:

● easier detection of parallelism

● larger task granularity

● avoidance of repeated traversals of the graph.

2.2 Memory Management

Most previous implementations use garbage collection

to reclalm storage. This approach suffers from several

5 This term may not be constructed explicitly in its entirety;

parts of]t (e.g., its spine) may be on the stack.

drawbacks in the context of parallel evaluation. First,

the garbage collector scales poorly when the number

of processors is increased. This is because there are

certain inherently sequential components and hot spots

in the copying phase of the collector such as the need

to lock every structure before moving6. This problem

is compounded by the fact that the garbage collectors

traverse a considerable portion of the heap space and

consequently produce a considerable amount of paging

activity, which is again inherently sequential.

Another problem with the garbage collection ap-

proach is that it can lead to poor locality of reference,

which is quite important in a virtual memory/cache en-

vironment. In evaluation of functional programs, very

often we build structures that are used just once. In the

garbage collection approach, this space is not reused un-

til after the next collection. This means that a page may

be brought in from the disk, accessed very few times and

then written back.

We use reference counting in EQu.4Ls for memory

management. We will show later how reference count-

ing avoids memory contention and improves locality due

to immediate reclamation and reuse of free space. It is

also very economical on memory use and is quite effi-

cient. For inst ante, our sequential run times are compa-

rable to that of SML/NJ (with dereferencing typically

taking less than 20% of the time) and heap space usage

is typically 15 to 25% that used by SML/NJ.

Although the reference counting approach cannot

handle cyclic structures, this is not a problem in a

purely functional language implemented using combi-

nators. For instance, Goldberg [CTo188b] also uses refer-

ence counting~.

3 Overview

The EQUALS system consists of a compiler, a task man-

ager and memory manager. In this section we present

an overview of each of these modules, deferring the de-

tails to later sections.

The EQUALS compiler uses ee-strictness analysis

[SPR90] to detect parallelism. This information is used

in translating the source program into a combinator-

based intermediate language. The intermediate lan-

guage includes constructs for creating parallel tasks and

synchronizing among them. Several optimization are

performed on the intermediate code before it is trans-

lated to C-code.

61t should be noted here that the Appel-Ellis [AELS8] collector

is sequential; the concurrency arises in a single process performing

collection while other process are executing the program.

7Although reference counting was used in [Go188b], its efK-

ciency compared to garbage collection and effectiveness in over-

coming the above problems was not estabh shed.

337

The goal of compiled code is to normalize a given in-

put expression. If we identify multiple subterms that

are to be evaluated to accomplish this, EQUALS eval-

uates these subterms in parallel. Evaluation of each

subterm is taken up by a task, which executes the com-

piled code on its private stack. There may be many

more tasks created than processors, hence tasks are

created only when they are deemed useful. Some of

these decisions are made at compile time, while others

are deferred until run-time. For instance, the compiler

will never emit code to create anew task, unless it can

generate code for work to be done concurrently by the

existing task. At run-time, on the other hand, oppor-

tunities for additional parallelism will be passed up, if

many parallel tasks already exist.

Although these tasks can be executed as UNIX pro-

cesses, it is very expensive to do so. Therefore tasks are

executed under the control of evaluator processes (one

per processor). Load sharing is based on a global queue

from which idle evaluators can take up tasks.

If a task needs the value of a subterrn that is currently

being evaluated by another task, then it must suspend

itself until the evaluation is complete. In the meantime,

its evaluator runs other tasks. Once the evaluation of a

term is completed, all tasks awaiting its evaluation are

put back in the global queue.

4 Compiler

‘The EQUALS source program consists of a set of func-

tions defined by pattern match. The abstract syntax

of EQUALS source language is given below. Here j de-

notes a function symbol, c a constructor, d a functor or

a constructor and .r a variable.

program ::= funde~ ~. .; fundef

fundef ::= ~(pat, pat) = expr

expr ::= if expr then expr else expr

] d(expr, expr)

Iz

pat ::= c(pat, pat)

\z

Each function definition in the program is translated

into a corresponding function in the intermediate lan-

guage. Its body gets translated into a sequence of inter-

mediate code statements. The constructs in the inter-

mediate language are given below. This language bears

some similarities to G-machine, but differs in many

ways such as explicitly named variables and functions,

and constructs for demand propagation. The target

language (C) influenced some constructs; for instance,

compound expressions were permitted since they are

allowed in C and hence can be more efficiently com-

piled than a sequence of simple expressions achieving

the same objective. In the description of the intermedi-

ate language, extent specifies the extent of evaluation

(NF or HNF); ecpr stands for constants, variables or

compound expressions using predefine functions such

as +; block stands for any sequence of statements in in-

termediate code. Location specifies whether a task is to

be evaluated locally or at a remote site (i.e., on another

processor). Some of the constructs such as Barrier and

Deref that are introduced during optimization are not

shown here.

●

b

●

+

●

●

●

●

●

Function f(conte.rt, ZI, . zn):

Header for function ~. Every function in the in-

termediate code takes a parameter named cent ext.

This parameter specifies (at run-time) the extent

to which the output of (the current invocation of)

a function needs to be evaluated. Using this pa-

rameter we propagate demand at run-time.

Assign var, ezpr.

If ezpr then blockl else block2.

Switch x case c1 : blockl, case c~ : block~.

Evaluate x to extent at location.

FunctionEval .f(v1, v~) to extent

at location result z.

BuildTerm d(q, Vn) result z.

GetChild i of z result y.

Return x.

4.1 Compilation Algorithm

First, the pattern matching constructs of EQUALS

are transformed to case expressions, using Huet-Levy

[HL79] algorithm for lazy pattern matching’. After pat-

tern matching, the only change to the structure of the

source is introduction of case expressions. The code

generator (see fig. 2) takes these transformed function

definitions and produces intermediate code. It consists

of the several functions listed below. Most of them take

two parameters: the fragment of the source program to

be translated and extent, which specifies the demand

on this fragment. The value of extent can be UNK,

which means that the demand is not known statically,

or one of NF or HNF. This parameter eztent is not to

be confused with context: the former is a comptler pa-

rameter whereas the latter is a parameter to functions

in intermediate code and is used to propagate demand

at run-tzme. In the figure, best(eztent, context) stands

for ‘NF’ if extent = NF and ‘context’ otherwise.

F: the top-level code generator for a function.

~: translates an expression. It takes three parame-

ters: the expression to be translated, the name of the

8Our current system does not handle prioritized patterns. It

can be done using the techniques of Laville [Lav88], Puel and

Suarez [PS90] and those in Sekar et al. [SRR92].

338

F ff(ZI,..., Zn) = e] = Function ~(contezt, zl, Zm);

t [e] y UNK;

Return y

t [case z in (pm~,pmm)] = Eval z to HNF at Remote;

y extent Switch z P ~ml] z y eztent;

P ~mn] x y extent

Z [z] y eztent = Eval r to best(ezterzt, contezt) at Remote;

Assign y, x;

& ~f el then e2 else et] = ~ [el] z NF;

y extent If z then Z [ez] y eztent else t [e3] y extent

E [d(eI, . . . , en)] y eztent = A [cl] 1 d Z1 extent;

A [en] n d zn ezteni;

BuildTerm d(zl, Zn) result y if d is a constructor

Assign y, d(zl, z~) if d is a predefine funchon

FunctionEval d(zl, Zn) to if d is a user-defined junction

best(eztent, contezt) at Remote result y

~ [C(ZI, z~) + e] z y eztent = case c : GetChild 1 of z result Xl;

GetChild n of z result x.;

S [e] y eztent

-/

& [e] y NF if ith arg. of d is ee-strict and extent = NF

If contezt = NF if iih arg. of d is ee-strict and ezteut is not NF

A [e] z d y eztenf — then t [e] y NF

else B [e] y

B [e] y otherwise

B [x] y = Assign y, z

t? [duel,..., en)] y = t? [e]] z1;

B [en] ,zn;

BuildTerm d(zl, z~) result y;

Figure 2: Compilation Scheme

variable into which the value of the expression is to be

stored (y) and extent.

7: is like ~, but handles pattern-matching.

A: generates code for evaluating argument expres-

sions to a function. A takes five arguments: the expres-

sion e to be evaluated, the argument position of e, the

name d of the function whose argument e is, the name of

the variable y into which the result is stored and extent.

A differs from & in that it takes the strictness of d into

account to determine the demand on e.

1?: generates code to build the graph representing its

argument e. The result is stored into the argument y.

Note that all function evaluations have been labeled

for possible remote evaluation, and no synchronization

barriers have been placed, Moreover, code for man-

aging the free space (e.g., dereferences) have not been

generated. These are generated after a flow analysis

performed during optimization.

The code generated by the above scheme is not effi-

cient. It uses many temporary variables and manipu-

lates all values in boxed form. Also, the code is gener-

ated without regard to common sub-expressions. Sev-

eral optimization are performed to improve the time

and space efficiency of the final code, These optimiza-

tion are not, new: in EQUALS known techniques have

been combined to achieve good efficiency.

4.2 Optimization

1. Unboxing: Any boxing operation on a value fol-

lowed by an unboxing operation is removed, eliminat-

ing all unnecessary boxing operations lVhen a function

needs a parameter in a fully evaluated state (which is

determined from strictness), it is passed as an unboxed

value. Also, functions return unboxed values when-

339

ever possible. Such inter-procedural unboxing improves

speed by more than a factor of 2.

2. Tail Recursion Elimination: Direct tail recursion

and certain linear recursions (with associative functions

as outermost symbols) are converted into loops.

3. Lifetime Analysis: A variable is determined to

be in evaluated (to different extents), unevaluated or

unknown state at each point in the code, by lifetime

analysis (performed beyond basic blocks). Using this

analysis the following optimization are performed:

● Reducing the Number of Temporary Variables using

a graph coloring heuristic.

● Placement of Synchronization Barriers just before the

point where the value is needed. If no significant work is

done between a remote evaluation and its corresponding

Barrier (e.g., only straight line code) it is changed to a

local evaluation.

● Common Subexpression Sharing is done to share ex-

pressions with different evaluation extents and across

basic blocks.

● Immediate Reclamation of Free Space. At the end of

the lifetime of a variable, the term it points to is derefer-

enced. This significantly reduces heap space usage, e.g.

heap space requirement is brought down by a factor of

4 in QuickSort.

4. Generating two versions: Finally, we can elimi-

nate the context parameter (together with all the tests

on its value) by generating two versions of the code for

each function. The two versions are invoked when the

result is required in NF and HNF respectively.

Following is an example EQUALS program and its op-

timized (NF-demand version of) intermediate code:

surnfrom(i, j) = if (i==j) then i

elseumfrom(i, (i+j)/2))

+ sumfrom((i+j)\2 + 1, j)

Function sum~rom-iVF(zl, z2)

If X2 = Z1 then

Assign 03, Zl

else

Assign yl, (z1 + z2)/2

FunctionEval sumfrom-NF(xl, yl) at Remote result y2

Assign y3, (yl + 1)

F’unctionEval swnfrom-NF(y3, z2) at Local result VI

Barrier y2, waitfor N F

Assign y3, (Y1 + y2)

Return y3

5 Task Management

The task management system consists of subsystems

to create, synchronize and load-balance tasks. Each of

these subsystems is described in detail below.

Task Creation: Recall that the purpose of a task is to

evaluate a term. Task creation consists of building the

term to be evaluated (if it does not already exist) and

allocating a stack for its evaluation. In contrast with

our scheme for task creation, (v, G)-rnachine avoids ex-

plicit graph construction by building it directly on a

stack. This is not suitable for our approach since stack

frames are of variable size and will complicate memory

management due to fragmentation. Moreover, contigu-

ous stacks are much simpler to manage since they do

not require any dereferencing or garbage collection.

Task Synchronization: While evaluating a term, a

task T may find that it needs to evaluate one of its

subtermsg. If this subterm s is already being evalu-

ated by another task then T must suspend itself until

s is evaluated. In such a case, T executes a Barrier

instruction which places it in a wait-queue correspond-

ing to s. Its evaluator then proceeds to execute the next

task from the global ready queue. In general, there may

be several such tasks in the wait-queue of s. Some of

these tasks may need s in NF whereas the others may

need it in HNF. When s is evaluated, if it is in NF then

all tasks in the wait-queue of s are moved to the global

ready queue. Otherwise only those tasks that need s

in HNF are released. If there are tasks waiting for NF

of s, these tasks are not released and s is taken up for

normalization.

An important point to be noted here is that wait

queues are associated with terms, rather than tasks.

This is because a task T created to evaluate a term s

may also take up many subterms S1, sk of s for (lo-

cal) evaluation. Suppose that another task T’ needs to

evaluate S1. Observe that in this case T’ needs to wait

only until S1 is evaluated. However, T will complete

only after evaluating all of S2, Sk,s. Thus the par-

allelism that can result in simultaneous execution of T

and T’ is lost if T’ waits on T instead of S1.

Load Balancing: Note that new or resumed tasks are

placed in the global ready queue from which free eval-

uators take up tasks l”. Thus, the global ready queue

is the mechanism for load balancing. To reduce con-

tention at the global queue, we create tasks only when

the system is lightly loaded. When the number of tasks

in the ready queue exceeds some threshold, the evalu-

ators avoid creating tasks and instead perform the in-

tended computation locally. Using this mechanism w-e

have been able to significantly reduce contention at the

ready queue. Experiments show that ready queue is not

a bottle neck in our implementation.

~Thi~ ~ubtem may not be a part of the original term, but ‘aY

be created during its normalization.

104 task may be taken UP by different evaluators during its

lifetime, Thus, all mernol-y accessed by a task, including its stack,

must be kept in shared memory.

340

6 Memory Management

Memory is divided into two sections, namely, stack

space and heap space. The stack space is divided into

stacks of two different sizes: 2K and 16K. Initially each

task is allocated a 2K stack. There can be many sus-

pended tasks at any time, many of them waiting with-

out having performed much computation. Allocating a

small stack initially ensures that very little space is tied

up by such tasks. When the stack of a task overflows,

it is extended by linking a 16K stackll.

The heap space is divided into fixed-size nodes that

are used to build graphs. To avoid contention when

allocating memory, the heap is split into several free

lists, one list per evaluator. Each evaluator allocates

from (and returns free memory to) its own list. When

an evaluator runs out of nodes, it may borrow nodes.

6.1 Node Design and Locking

In EQUALS, graph nodes have value and status fields.

Value fields include the constructor or function sym-

bol at the node, its type and pointers to its arguments.

When a functor node is normalized, these fields are up-

dated. Status fields show whether the term beneath

that node is entirely normalized, or whether the node

is being normalized. They also include the wait queue

for the node and its reference count.

Another status field is used to implement a lock for

the node. We have built shadow locks, in which we

spin on the copy of the lock bit in cache until it is re-

set and then try to obtain the lock [Seq87]. These locks

are built around the atomic test-and-set (bt SW) instruc-

tion that Sequent supports and generate less bus traffic

than naive locks. In general, a node is accessed only

after the lock is acquired. However, if a node has been

normalized, the extent of its normalization guarantees

that either the entire term, or perhaps just the root, will

not require locking. The implementation ensures that

the status bits indicating the extent of normalization

can be safely read without locking. Since EQUALS is

a lazy language, tests for normalization are done very

often and the above optimization is quite important.

Another case when locking is not required is when a

node cannot be referenced by another processor, e.g.,

when the node has just been allocated. Finally, the

reference count is manipulated exclusively with atomic

increment and decrement instructions and the normal

locking convention is not used.

Two other locks are used in our implementation. One

serializes access to the global queue, and the other seri-

alizes access to the pool of free stacks. Our experiments

I I Checking for stack overflow or underflow normally invOIVes

only a test-and-branch. This check is performed at the beginning

and end of every function.

indicate that these locks are not significant since too

many small tasks are not created in practice.

6.2 Reference Counting

As mentioned before, reference counting is used to re-

claim free space. Since there is no separate phase

in which all processes collect free space, opportunities

for contention at memory reclamation are minimized.

Moreover, using reference counts permits the following

trick to avoid locking when a node is freed. Observe

that a node about to be freed (i.e., a node being deref-

erenced with reference count = 1) will be referred to

only by the current evaluator. Thus there is no need to

lock it before freeing. Since shared nodes are uncom-

mon, this trick succeeds most of the time and hence is

important in practice. Note that this trick cannot be

used to avoid locking at copying time in a garbage col-

lector, since the reference information is not available.

Using reference counting we can immediately reclaim

freed space. This results in greatly reducing the heap

space usage. Furthermore, by maintaining the free list

as a LIFO, we immediately reuse memory that is freed.

Since nodes are created and destroyed very quickly in

typical programs, this strategy greatly increases the

chances of using the same set of memory locations again

and again,resulting in improved locality.

One caveat is that if the compiler generates code that

manipulates the counts improperly, the system may fail.

We have found the LIFO strategy useful in debugging

such problems, as the immediate reallocation of a pre-

maturely deallocated node tends to generate detectable

problems soon after the problem occurs.

7 Implementation Results and

Discussion

In this section we present the results of our imple-

mentation based on example programs adapted from

[Geo89, Go188a, Aug89, SPR90]. First we study the se-

quential performance of EQUALS and show that it is

comparable to the latest release of Standard ML of

New Jersey (SML/NJ). Following this we compare our

speeds and scalability with that of (v, G)-machine and

GAML. We then discuss the impact of reference count-

ing on scalability and performance. In particular, we

provide experimental evidence to show that memory

requirements are significantly less and that locality is

improved.

7.1 Sequential Performance of EQUALS

Table 1 compares the performance of EQUALS to

341

EQUALS SML/NJ

Euler 88.0 104

9queens 10.4 8

MatMult 19.7 14

Sieve 59.0 33

QuickSort 8.6 4

Table 1: Comparison of EQUALS and SML/NJ. (All tim-

ings in sees. on a Sun 3/260)

.
10queens 64.0 73.9 467

Nfib30 32.1 62.1 213

Table 2: Comparison of EQUALS with (v, G)-machine

and GAML. (NA: Not Available)

SML/NJ (release 0.75). SML/NJ is a sequential im-

plementation of SML, a strict language, and is among

the fastest functional language implementations. In the

table, Euler computes the Euler totient function from

1 through 1000. In addition to performing substantial

amounts of computation, this program also spends a

lot of time creating and destroying lists. Matkfult com-

putes the product of two 100 x 100 matrices. Sieve com-

putes list of primes between 2 and 10,000. QuickSort

sorts a list of 5000 integers.

Observe that speeds of SML/NJ and ECIUALS are

123456

Processors

Figure 3: Speedup curves for EQUALS.

Ideal: — Euler: ● Nfib: o

Ma.tMult: + lOqueens: A QuickSort: *

comparable in Euler, MatMult and 9queens. By propa-

gating exhaustive demand and generating two versions,

our code is similar to that generated for a strict lan-

guage, and hence the speeds are comparable. In Quzck-

Sort and Sieve, where there are very few computation

steps and most of the time is spent in creating and de-

stroying list structures, SML/NJ is significantly faster

because it uses unboxed lists, whereas EQUALS uses

boxed listslz. This is not a problem in the first three

examples, since the number of steps that access lists or

perform any other computations are much larger than

those that create or destroy lists. (e.g., in MatMult

there are 106 operations of the first kind versus 104 list

creation/deletion steps.). Boxing can increase the work

involved in copying by as much as 100’ZO. Moreover, the

performance of EQUALS can be substantially improved

by generating assembly code, as is done in SML/NJ. We

are quite encouraged to get performance comparable to

SML/NJ in spite of these factors.

7.2 Parallel Performance

Table 2 shows wall-clock times for EQUALS, (v, G)-

machine and GAML on a single processor. Timings

for both EQUALS and (v, G)-rnachine were obtained on

Sequent Symmetry (16 Mhz clock). However, (v, G)-

machine timings do not include garbage collection time,

which can account for up to 30’XO of total time. GAML

timings were obtained on Sequent Balance which is con-

siderably slower. This impedes a reasonable compari-

son between our times and those of GAML. However,

it is mentioned in [Mar91] that the sequential execution

times for GAML are roughly of the same order as that

of (v, G)-machine.

Fig. 3 shows speedup curves on all of the examples

run using EQUALS. MatMult and Euler c~eate large

grain tasks and hence speedup is almost linear. Al-

though task granularity is very small in Nfib30, we still

scale well, showing that we have managed to keep down

task overheads and contention at the global queue. The

split phase of QuickSort is inherently sequential and

hence even the ideal speedup is considerably worse than

linear. (For instance, the maximum speedup achievable

for an input list of length n is only log 71 and this too

re~uires n ~rocessors,) In 10queens there is a lot of

vertical parallelism (i.e. parallelism that arises in si-

multaneous evaluation of a function and its arguments)

which we do not currently exploit.

Figs. 4, 5 and 6 compare the scalability of EQUALS

with that of (v, G)-machine and GAhfL on Euler,

Nfib30 and 10queens respectively. Observe that EQUALS

scales as well as the (v, G)-machine and GAML on

Nfib30. On Euler, it scales as well as {v, G)-rnachine

Izcurl.ently EQUALS unboxes only primitive ciata tYPes.

342

Speedup

123456

Processors

Figure 4: Speedups on Euler.

Ideal: — EQUALS:* (v, G): A GAML: O

6

5
) ‘

4 — —

Speedup A

3 — 4 .

)

/

/

2

12345

Processors

Figure 5: Speedups for Nfib30.

Ideal: –- EQUALS: ● GAML: O

6

(v, G): A

and better than GAML. But both (v, G)-machine and

GAML scale better in lOqueens since they exploit ver-

tical parallelism (unlike us) with the aid of programmer

annotations. Furthermore (v, G)-machine timings do

not include garbage collection times. As can be seen

from the results in GAML, garbage collection times

scale poorly, e.g., in Euler, the garbage collection time

decreases by only a factor of 2 when number of proces-

sors increases to 8.

7.3 Impact of EQUALS Memory Manage-

ment

We had mentioned in the introduction that memory

management was a crucial component and that by using

reference counting we can achieve very good scalability,

Speedup Ill

I I

1

6

5

4

3

2

123456

Processors

Figure 6: Speedups for lOqueens.

Ideal: — EQUALS: ● GAML: O (v, G): A

EQUALS

SML/NJ heap stack

Euler 2.2 0.10 0.07

9queens 0.8 0.34 0.09
MatMult 0.8 0.64 0.01
Sieve 2.2 0.32 0.32

QuickSort 1.4 0.16 0.20

Table 3: Memory usage of EQUALS and SML/NJ (in

MB’s).

low memory requirement and improved locality. In this

section we give empirical evidence for these claims.

The Euler program spends over 4070 of the total time

in memory allocation and deallocation, creating and de-

stroying as many as 3 million nodes. The fact that this

program scales almost linearly clearly demonstrates the

scalability of our memory manager. In contrast, the

speedup of GAML appears to saturate even for 5 pro-

cessors, largely due to poor scaling of the memory man-

agement techniques used. Table 3 shows the memory

utilization of some programs in EQUALS and SML/NJ.

Table 4: Ratio of Diskless Sun timings over Server tinl-

ings.

343

The table shows that EQUALS typically uses substan-

tially less memory than SML/NJ13. For EQUALS,we

show stack and heap use separately. (Stack usage is

less critical, since it is easier to manage and its locality

leads to less paging than comparable heap use.) Ta-

ble 4 shows the relative speeds of SML/NJ and EQUALS

progralms on a Sun 3/260 (a server), in comparison to

a diskless Sun 3/75. The slowdown of EQUALS is quite

close to 1.75, which is the factor of difference in raw

cpu power between the two machines used. In con-

trast, the performance of SML/NJ degrades consider-

ably more due to excessive paging activity. This demon-

strates that memory utilization and locality of reference

are much better in EQUALS than in SML/NJ. The dif-

ference in degradation is large enough to make EQUALS

perform better than SML/NJ on most of these examples

on a Sun 3/75.

8 Experience with EQUALS

The EQUALS implementation results show it is possible

to automatically detect and effectively exploit paral-

lelism in functional programs by propagating exhaustive

demand; there is no need to make assumptions such as

cons and append being strict in all contexts. Further-

more, it also establishes reference counting as a valid

mechanism for memory management. In addition to

using much less memory and possessing improved local-

ity, reference counting scales well and therefore appears

appropriate for parallel implementation.

The implementation experience has also shown us the

importance of minimizing task creation and manage-

ment overheads. We assumed that we can minimize the

impact of these overheads by minimizing task creation.

We did succeed in reducing task creation: the number

of tasks created in EQUALS is less than 10’ZO of the to-

tal number that would be created without a throttle on

task creation. StiH, there is observable parallel over-

head, and the task creation time needs to be further

reduced.

Moreover, simple and efficient techniques typically

perform better than more general and elaborate

schemes. For instance, wait counter based synchroniza-

tion (a generalization of the scheme in [Geo89], where a

task waits for multiple subtasks at a single barrier) was

initially implemented. Experience showed that most of

the waits were performed on a single task and use of

the wait counter (with associated overheads of initial-

ization, increment and decrement) was wasteful.

The load balancing scheme used in EQUALS is quite

simple, but may not always succeed on more complex

programs. We are currently looking at static analysis

13 The memory ~~age of SjML/NJ was estimated frOm garbage

collection messages.

of programs for sophisticated load balancing There are

also several other sources of improvement in EQUALS

such as direct generation of assembly code instead of

C-code. This will enable us to use registers effectively

and reduce the overhead of function calls. The code can

also be much tighter and we believe that considerable

improvement in speed can be achieved.

References

[AEL88]

[Aug84]

[Aug89]

[Dar81]

[Geo89]

[Go188a]

[Go188b]

[Joh84]

[HL79]

[Lav88]

[Mar91]

[MKH90]

[PS90]

[PJ87]

[SPR90]

[SRR92]

[Seq87]

[~TJ1787]

A. Appel, J. Ellis and K. Li, Real-twne COnCtiP

rent collection on stock multiprocessors, PLDI,

1988.

L. Augustsson, A comp?ler jor lazy ML,

LFP,1984.

L. Augustsson and T. Johnsson, Parallel graph

reduction with the (v, G) rnachzne, FPCA, 1989.

J. Darlington, Alice: A multz-proce.ssor reductzon

engine for the parallel eualuatton of applicative

languages, FPCA, 1981.

L. George, An abstract machzne for parallel

graph reduction, FPCA, 1989.

B. Goldbergj Buckwheat; Graph reductton on

shared-memory multiprocessor, LFP, 1988.

B. Goldberg, Multiprocessor- ezecution of func-

tional programs, PhD Thesis, Yale Univ. Dept of

Computer Science, YALEU/DCS/RR-618, 1988.

T. Johnsson, Efjictent compdation of lazy evalu-

ation, Compiler Construction, 1984.

G. Huet and J.J. Levy, Cornputattons tn nonarn-

b~guous ltnear term rewrztmg systems, Tech Rep.

No. 359, 1979, IRIA, Le Chesney, France, 1979.

A. Laville, Implementation of lazy pattern

matching algorithms, ESOP, LNCS 300, 1988.

L. Maranget, GA ML: A parallel $mplementatton

of lazy ML, FPCA, 1991.

E. Mohr, D. Kranz and R. Halstead, Lazy task

creation: A technique for increasing the granu-

tarzty of parallel programs, LFP, 1990.

L. Puel and A. Suarez, Compzltng pattern match-

mg by term decomposition, LFP, 1990.

S. L. Peyton Jones, GRIP: A parallel graph re-

ductzon machine, FPCA, 1987.

R.C. Sekar, S. Pawagi, IV. Ramakrishnan,

Small domains spell fast strictness analysis,

POPL, 1990.

R.C. Sekar, R. Ramesh and IV. Ramakrishnan,

Adaptive pattern matchtng, to appear in ICALP,

1992.

Sequent Computer Systems, Sequent guide to

parallel programmmg, 1987.

P. Watson and I. Watson, Evaluating functional

programs on the FLAGSHIP machane, FPCA,

1987.

344

