
A Foundation for an Efficient Multi-Threaded Scheme System

Suresh Jagannathan Jim Philbin

NEC Research Institute

4 Independence Way

Princeton, NJ 08540

<suresh I philbin)~research.nj,nec,con

Abstract

We have built a parallel dialect of Scheme called STING

that differs from its contemporaries in a number of impor-

tant respects. STING is intended to be used as an oper-
ating system substrate for modern parallel programming

languages.

The basic concurrency management objects in ST~G are

first-class lightweight threads of control and virtual pro-
cessors (VPS). Unlike high-level concurrency structures,

STING threads and VPS are not encumbered by complex

synchronization protocols. Threads and VPS are manip
ulated in the same way es any other Scheme structure.

STING separates thread policy decisions from thread im-

plementation ones. Implementations of different paral-
lel languages built on top of STING can define their own
scheduling and migration policies without requiring mod-
ification to the runtime system or the provided interface.
Process migration and scheduling can be customized by
applications on a per-VP basis.

The semantics and implementation of threads minimizes

the cost of thread creation, and puts a premium on storage

locality. The storage management policies in STING lead
to better cache and page utilization, and allows users to

experiment with a variety of different execution regimes

- from fully delayed to completely eager evaluation,

1 Introduction

The growing availability of general-purpose multiproces-
sors haa led to increaaed interest in building efficient and

expressive platforms for concurrent programming. Most
efforts to incorporate concurrency into high-level symbolic

programming languages such as Scheme[l, 23] or ML[18]
involve the addition of special-purpose primitives (e.g.,
parallel let operations[9], futures[l 1], events[24], etc.).

These primitives are typically implemented using a dedi-
cated runtime system sensitive to the particular semantics
of these primitives.

Permission to copy without fee all or part of this material is

grantad providad that the copies are not mede or distributed for
ctlrect commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

While reasonably efficient, these systems have nonetheless
proven to be difficult to use as a substrate or foundation
for a concurrent (symbolic) programming environment.
This is because (a) the high-level semantics of the con-
currency primitives they support lead to complex or inef-
ficient implementations of other concurrency structures or
paradigms; (b) the inaccesaibllity of the language’s run-
time structures make it cumbersome for applications to
tailor the implementation based on their particular re-

quirements; and, (c) the reliance on operating system ser-
vices for process management and control found in many

of these languages incurs high overhead in the presence of

fine-grained, interactive, or realtime concurrency.

This paper describes an alternative approach to imple-
menting concurrent symbolic programming languages. We
have built a parallel dialect of Scheme called STING that
differs from its contemporaries in a number of important

respects. We outline the salient properties of the system
below and elaborate upon these points throughout the
paper:

Generality: The fundamental concurrency objects in
STING are first-clase lightweight threads of con-

trol and virtual processors (VPS). Unlike high-

level concurrency structures, STING threads and
VPS are not encumbered by complex synchro-
nization protocols. Threads define a represen-

tation for a processor task and execute concur-

rently with other threade, Virtual processors
are an abstraction of a physical computing de-

vice. VPS can be tailored to implement spe-
cialized process migration and scheduling pro-
tocols. Threads and VPS are manipulated in
the same way as any other Scheme structure.

Eficiencg: Because threads are fully integrated into

the base language, and not provided as part of
a library package[6], it is straightforward to op-

timize their implementation and use.

Thread operations are performed by a thread
controller implemented as a procedure that al-
locates no storage. In addition, the semantics of

threads and the design of the thread controller
minimizes the cost of thread creation, and pute
a premium cm fitora~e locality. Thus, the GK-

ecution context for a newly terminated thread
(e.g., its stack and heap) is recycled and used

immediately by other newly created threads,

and/or specific permission.

1992 ACM LISP & !=.P.-6l92/CA

01992 ACM O-89791 -483 -X1921000610345 . ..$ 1.50

345

storage allocation is delayed until the thread
actually executes, and different threads share
the same stack and heap if data dependencies

warrant, The storage management policies in
STING lead to better cache and page utilization,

and allows users to experiment with a variety of
different execution regimes - from fullg delayed

to cornpletei~ eager evaluation.

Progmrnrnability: Beyond providing mechanisms for
managing concurrency, STING also handles ex-
ceptions across thread boundaries, preemption,

non-blocking 1/0, asynchronous storage man-
agement, and maint tins extensive thread ge-
nealogy information. In addition, STING pro-

vides an infra-structure for implementing mul-

tiple address spaces, and long-lived persistent
objects. As a result, we envision STING as an ex-

pressive operating system substrate upon which
an advanced programming environment for par-
allel symbolic computing can be built.

Customizability: STING separates thread policy de-
cisions from thread implementation ones. Al-
though all threads conform to the same basic
structure, implementations of different parallel
languages built on top of STING may define their
own scheduling, migration, and load-balancing
policies without requiring modification to the

thread controller or the provided interface. Pro-
cess migration and scheduling concerns typi-

cally handled internally by a runtime library or

an operating system in other languages can be

customized by applications on a per-VP basis,

Unlike other systems that implement applica-

tion dependent scheduling policies[28], ST~G

does not incur a performance penalty for this

flexibility; scheduling policy decisions are im-
plemented entirely in STING and thus do not
require a trap into a low-level system kernel.

The focus of this paper is on the design and implemen-

tation of the system. The implications of its design and
its utility in expressing high-level paradigms for parallel

symbolic computing are discussed in [13].

The remainder of the paper is structured as follows, Sec-

tion 2 gives a brief description of the STING compiler

and runtime system. Section 3 describes the structure
of threads, and outlines the design of the thread man-

ager. Section 4 provides a brief discussion the structure
of virtual processors and support for process scheduling
and thread migration. Section 5 presents details on thread
creation, and runtinw o~timizations are discussed in Sec-
tion 6. Section 7 gives an outline of the garbage collector.

We present performance figures in Section 8. Section 9

gives comparison to related work, and Section 10 presents
future directions.

2 The STING Abstract Machine

2.1 The Abstraction Hierarchy

The STmG runtime environment is organized as a layer of
abstractions. The lowest level consists of a physical ma-

chine containing a number of physical processors. Phys-

ical machines implement virtual machines; there may be
many virtual machines executing on a single physical one,

Each virtual machine may contain a number of virtual

processors.

Each physical processor corresponds to a computing en-

gine in a multiprocessor environment. Associated with
every physical processor P is a physical policy manager

(P PM) that handles scheduling decisions for the virtual
processors that execute on P. A P P M will context switch
among virtual processors because of preemption, or be-
cause it is explicitly requested to do sol. A physical pro-
cessor may execute virtual processors associated with dif-
ferent virtual machines.

Virtual machines encapsulate a single address space man-

aged exclusively by its virtual processors. Virtual ma-

chines may share global information (e.g., libraries, file

systems, etc.), and are responsible for mapping global ob-
jects (i. e., objects resident in a global address space) into

their local address space. Virtual machines also contain
the root of a live object object graph (i. e., the root envi-
ronment) that is used to trace all live objects in its address
space.

Virtual processors are responsible for executing and
scheduling lightweight threads of control, In addition,
they manage software interrupts (page faults, preemption,
etc.). Different VPS within the same virtual machine may

be closed over different scheduling policy managers, State
transition operations on threads are implemented by a

thread controller common to all VPS in the system.

All STING objects (including threads, VPS, and virtual
machines) reside in a persistent memory. The memory

is organized in terms of a collection of disjoint areas[4].

Objects are garbage collected within an area using a gen-
erational collector[17, 25]. An object can reference any
other object found in its address space. Objects initially
reside in short-lived thread-local areas. Objects that per-
sist percolate upwards in the generation hierarchy, This
functionality is completely transparent to the user.

2.2 Extensions to Scheme

The STING compiler is a modified version of 0rbit[15]. The
consing routine implemented by the compiler uses write-
protected guard pages found at the top of every thread

heap; an attempt to write onto this page triggers garbage
collection. The garbage collector itself is significantly dif-
ferent from Orbit’s because heaps and stacks are local to
threads, and because inter-area references are supported.

The target machine seen by the compiler also includes a
dedicated thread register to hold a reference to the cur-

rently running thread object. Moreover, time critical op-
erations such as those that save and restore registers on

a context switch, allocate thread storage (Le., stacks and
heaps), and execute test-and-set functions are provided
as primops. Sequential Scheme programs will compile

1For example, a virtual processor may relinquish control of its

physical processor if no threads are executing on it, and none are

migratable from other VPa.

346

Waitu Ib’11’rc, Cv51ud>om

d
dynamcCZN

gcncdogy

Thrcnd

Figure 1: Organization of

k
wall count

pmfk hr.

VP

Pn..w

m

El
wn~

Re@us

SIack

llw+l

threads and TCBS.

and execute without modification. STING implemelkta-

tionsoffutures, distributed data structures[5], andspecu-
lative concurrency operations also exist; Scheme programs

can be freely augmented with the concurrency operations
supported by any of these paradigms.

3 Threads

A STING thread defines a separate locus of control. A
thread hasastatic and dynamic component (see Fig. 1).

The static portion of a thread ‘1’contains state informa-
tion indicating T’s status (e,g., delayed, scheduled, eval-

uating, etc.), a lock, the procedure P to be run, wait-
ing threads blocked on the completion of 1’, P’s dynamic

and exception environment, and genealogy information
indicating T’s parent, children and sibling threads. Ge-

nealogy information is used for debugging and analysis.
The value yielded by P’s application is also stored in the
thread upon completion.

Currently evaluating threads are associated with a thread
control block (or TCB). The TCB contains information

about the thread’s dynamic context; a TCB is a general-

ized representation of a continuation and is closed over its

own stack and heap. Besides storage objects, a TCB in-

cludes an associated lock, values of all live registers extant
at the time the thread last performed a context switch,
the current dynamic state of the running thread (e.g., ini-
tialized, ready, evaluating, blocked, suspended, etc.), the
next transition state for the thread, the VP on which the
thread was last executing, thread priority, and time quan-
tum. We introduce the operations allowable on threads
and TCBS during the course of the paper.

Thre’mi

%

StOlal Tramdftom

7
Ei3+E3—@P——

X8

““”””*ml

Figure 2: Transition diagram for threads and TCBS,

The relationship between thread states and TCB states is
given in Fig. 2. A thread in state delayed corresponds to

a delayed or lazy object. A delayed thread will never be
run unless the value of the thread’s procedure is explicitly
demanded. A scheduled thread is a thread known to a vir-
tual processor, but which has not yet started evaluating.
An evaluating thread is a thread which has been allo-
cated a TCB and has started executing on some proces-
sor. Stolen threads are an important optimization of eval-

uating threads and are discussed in Section 6. A thread is
determined if its associated procedure has been executed.

TCB states reflect the operations allowed on running
threads. If running thread T has TCB Tb, the state field

of Tb indicates one of the following:

initialized The stack and heap associated with Tk,

have been initialized, but no code has yet been
executed.

read~ T can execute on any available VP, but is
currently not.

running T is currently executing on some VP.

blocked T is currently blocked on some thread or
condition.

suspended T is suspended for some potentially infi-
nite duration, and exists on a suspend queue of
some VP.

terminated T has finished executing.

347

Threads are first-class objects in STING and thus may be
created dynamically, stored in objects, passed as argu-
ments to (or returned as results from) procedures, Thread

TCB’S, on the other hand, are accessible only to thread
controllers and policy managers. When a new thread is

ready to run, a TCB is allocated for it; when a thread
becomes determined, its TCB is available for use by the

thread controller for threads created subsequently. TCBS
never escape into user maintained data structures; they
are manipulated exclusively by system-level procedures,

Since the register values recorded in the TCB of an evalu-
ating thread T are used to establish thread context when
T next executes, T’s TCB represents the thread’s con-
tinuation extant at the time T last performed a context

switch. Since TCBS are not released to users, STING does

not provide a user-level operation analogous to call/cc
that operates over TCBS.

Users manipulate threads and TCBS via a set of pro-
cedures defined by the thread controller (TC); the TC

implements state transition operations on threads. It is
written entirely in STING with the exception of the pri-

mops outlined earlier. The core of the TC interface is
given in an appendix,

A novel feature of the design permits threads to request
state changes to other threads, In general, threads exe-
cute without need for requesting state changes to other
threads. However, in certain important instances, such

capability is desirable (e.g., implementing speculative con-

currency, or building common operating system services).
The TCB next-state field provides this functionality. A

state change to an evaluating thread T requested by other
threads are record in T’s next-state field (provided the

requester has appropriate authority). Threads are only
permitted to request a change to another thread; the ac-
tual realization of this change can only be done by the

target thread when it next enters the thread controller,

The actual next state of a thread is determined by com-
paring its desired next state with its next-state field.
This comparison is based on a simple total ordering:

terminate > suspend > block > ready > running

Because the ordering on state transitions is total and be-
cause only a thread can change its own state, the thread
controller does not lock a TCB in order to determine the
TCB’S next state; if the next state requested is less than
the current state, it can be ignored.

4 The Virtual Processor

A virtual processor is closed over a thread controller, a

policy manager that defines the scheduling policy for the
VP, a local “cache” of TCBS, and interrupt handlers that

service page faults and preemption. Policy managers are
closed over a set of queues holding t breads and TC Bs in

various states of execution (e.g., scheduled, ready, SUS-

pended, etc.).

The TCB cache is used by a VP to efficiently assign a
dynamic context to a new thread. When a thread ter-
minates, its TCB is reinitialized and kept in the VP
TCB cache; a new t bread created immediately there-
after on this VP is assigned this TCB. The overhead of

thread/TCB assignment is reduced given the high likeli-

hood that pieces of the terminated thread’s TCB will still
be in the VP’s working set. All VPS within a virtual ma-

chine also share access to a global TCB pool (initishzed
at system startup) that is used if their cache is exhausted.

TCBS are never created dynamically; the overhead in us-
ing T C Bs is limited to their initialization and assignment

to threads.

Virtual processors and virtual machines are first-class ob-

jects; part of the virtual machine state is a vector closed
over the virtual processors defined by the machine. The
system provides an interface to directly map virtual pro-
cessors onto physical processors [22]. Thus, it is possible

for applications to explicitly map computations onto spe-
cific processors as dictated by the parallel algorithm being

implemented. For example, a process P known to com-
municate closely with Q (which is executing on VP V)

should also run on a VP topologically near V[13]. As an-
other example, first-class VPS and virtual machines make

it possible to map arbitrary abstract topologies onto a
concrete architectural surface[lo].

The scheduling and migration routines executed by a vir-
tual processor are customizable. Thus, different VPS may
be closed over different scheduling regimes. The ability to
customize policy managers has some significant implica-

tions. First, applications are free to optimize the schedul-
ing of threads based on expected runtime dynamics of

thread creation, longevity, and communication. Second,
tasks found within a given application may be mapped

onto virtual processors that implement the scheduling pol-
icy best suited for them. Different VPS can be dedicated

to implement different schedulers; applications then map
tasks onto VPS based on the scheduler required.

The policy manager implements a scheduling policy for
the threads found on its Vi?, establishes a priority and

quantum for the currently executing thread, and a load
balancing policy that dictates how threads get mapped
onto VPS. Load balancing in this context addresses two
concerns: (1) how do threads initially get associated with

a VP?, and (2) what are the criteria by which threads
migrate across VPS?

The policy manager may implement any one of a num-
ber of scheduling policies (e.g., FIFO, LIFO, realtime,

interactive, round-robin, etc.). The overhead in access-
ing and updating thread queues can be customized as

well; thus, a policy manager can classify threads as lo-
cal (non-migratable) or global (migratable); local threads

are stored on queues that involve no lock manipulation.
There may be several ready queues holding threads with

various priorities; long-lived threads may be stored on
queues with lower priority than newly created threads.

VPS may share access to global queues or can maintain
their own local (private) images. The STING runtime en-

vironment provides a number of default policy managers;
these managers (all written in STING) perform no dynamic
storage allocation. Thus, users need not be aware of the
policy manager to write STING programs, Applications
that rely exclusively on these schedulers are guaranteed
not to have threads trigger garbage collection on a state
transition. We describe the semantics of some of the pol-
icy manager operations in the following sections.

348

5 Thread Creation and Execution resumes execution (i. e., assuming its TCB has not termi-

nated), it simply returns from state-transition.

The implementation of thesTrNG thread controUer high-

lights anumber ofinteresting issues. The state transition

procedure is shown in Fig. 3. Note that operations on
TCBS found in this procedure are not available to user
applications.

The procedure takes two arguments - the desired next
state for the current thread (i. e., the thread which has
entered the TC), and an argument field containing auxil-
iary information for threads that block or suspend. The

procedure get-tcb-next-state returns the actwd next
state of the current TC B by comparing the value recorded

in its next-state field with the desired-next-state.

Since the thread controller is written in STING, all syn-
chronous calls to TC procedures are treated as ordinary
procedure calls; thus, live registers used by the procedure
running in the current thread are saved automatically in
the thread’s TCB. The procedure first attempts to ac-
quire a new thread to execute from the ready queue of this

VP. The policy manager procedure pm-get-next-thread

is used for this purpose. Note that pm-get-next-thread
enqueues the current thread’s TCB if the TCB is in a

ready state; this permits the thread to be rerun at some
future point,

If the queue is empty, the root TCB of the current VP

is invoked (via the call to vp. root-tcb vp), This proce-

duremay (a)perform housekeeping operations, (b)simply
reinvoke the state transition procedure, or (c) request the
PPM to switch to a new VP.

Ifthequeue is not empty, anew thread (or TCB) isre-

turned. Anew thread object isreturned only ifthe thread
is taotevaluating. Such an object (callit 1’) is created and
scheduled as a consequence of evaluating the expression:

(fork-thread ezpr W)

This operation enqueues T on wp’s ready queue. It be-
comes eligible for evaluation when the TC removesit from

the queue.

Once a thread begins evaluation, it is never directly stored
in any queue maintained by a VP. Its TCB is stored
instead2. Thus, aTCB returned by pm-get-next-thread

is always associated with an evaluating thread,

Theoutermost conditional in state-transition performs
the actual context switch. If the current TCB happens
to be the TCB returned by pm-get-next-thread, it is

simply rerun - no extra register saves or restores need

be performed (other than those needed to execute the
call/return sequence to/from this procedure).

Iftheobject returned by pm-get-next-thread is another

(distinct) TCB, all live TCB registers of the current TCB
are saved, and the continuation encapsulated in the TCB
returned is restored. If the current TCB is dead (because
it has terminated), it is recycled in the current VP’s TCB

pool. Because restore-tcb-aud-registers is aprimop,
the compiler treats save-current-tcb-registers as if
it werein atail call position; thus, when the saved thread

2The thread C,bject associated with a non-terminated l’cf3 is
accessible via the thread slot found in that TCB.

Ifthe object returned is a thread, aTCBis allocated for

it via the call setup-new-thread provided the thread has
not been stolen (see Section 6). The current thread state
is saved (via the call save-current-tcb-registers, and

the new thread begin execution via the call to the primop
start -new-tcb. This primop sets up a new continuation

encapsulating the evaluation of start-new-thread and

commences its evaluation using tcb as its dynamic con-
text.

Here again, the compiler treats the register save operation
as if it were in a tail call position; thus, when the saved
thread resumes execution it simply falls through the con-

ditiom-d andreturns to the caller,

The code for start-new-thread isshownin Fig.4.

A thread object with thunk Et can begin evaluation once
a TCB is allocated for it. and it becomes associated with

a default error handler and appropriate cleanup code.
Throws to exit (the default error handler) from lltcause

the thread stack to be unwound properly, thereby per-

mitting resources such as locks held by the thread to be
properly released. The exit code following the evaluation
of Et garbage collects the thread stack and heap, stores

the value yielded by Et as part of the thread state, wakes

upallthreads waiting for this value, reinitializes the TCB
state and stores it back into the TCB pool (via the call
to re-initialize-tcb), and finally makes a tail recur-

sive call to the top-level transition procedure to choose a
new thread to run. Because Et is wrapped within ady-
namic wind form, we guarantee that thread storage will
be garbage collected and initialized even if a thread ter-
minates abnormally.

Garbage collection must take place before the thread’s

waiters are awakened because objects that outlive the
thread (including the object returned by the thread’s

thunk) found on its heap must be migrated to another
live heap. Failure to do so would allow other threads to

obtain references to the newly terminated thread’s stor-

age.

Preemption is disabled within the TC. Disabling preemp-
tion guarantees that the TC will not be interrupted as

a result of timer expiration. Other interrupts need not
be disabled since TC-maintained data structures are not

manipulated by VP interrupt handlers. Each VP has a
separate area (implemented using small stacks and heaps)

used by interrupts and the garbage collector for servicing

any storage requirements they may have.

6 Stealing Threads

The STING implementation defers the allocation of stor-
age for a thread until necessary. In many thread packages,
the act of creating a thread involves not merely setting up
the environment fortheprocess to be forked, but also al-
locating and initializing storage. This approach lowers
efficiency in two important respects: first, in the presence
of fine-grained parallelism, the TC may spend more time
creating and initializing threads than actually running

them. Second, since stacks and process control blocks

349

(define (state-transition desired-next-state arg)

(receive (actual-next-state arg)
(get-tcb-next-state desired-next-state arg)

(set-new-state actual-next-state arg)
(let ((vp (current-vp)))

(let ((next

(let ((next-thread (pm-get-next-thread vp))
(if (false? next-thread)

(vp.root-tcbvp)
next)))))

(cond ((eq? next (current-tcb)))
((tcb? next)

(set-tcb.state next tcb-state/running)
(if (eq? desired-next-state tcb-stateldead)

(return-current-tcb-to-vp-pool VP))

(set-vp.current-tcb vpnext)
(set-thread.vp (tcb.thread next) VP)
(save-current-tcb-registers)

(restore-t.cb-and-registers next))
((thread? next)

(if (thread-stolen? thread)
(state-transition desired-next-state arg)

(let ((tcb (set.up-new-thread next-state next vp)))

(save-current-tcb-registers)
(start-new-tcbtcb start-new-thread)))))))))

Figure 3: Implementation of the state transition procedure. We use “.” notation to express structure selection.

(define (start-new-thread)

(let ((z (lambda ()
(error ’’Thread hasno value’’)}))

(unuind-protect (set z (catch exit
(set-tcb.exit-handler (current-tcb) exit)

((thread.thunk (current-thread}))))
(let ((thread (current-thread)))

(set-tcb.state (current-tcb) tcb-state/terminated))

(thread-gc thread)
(set-thread.value thread z)

(wakeup-waiters thread)
(re-initi.alize-tcb (current-tcb))

(record-current-thread-death)
(state-transitiontcb-state/dead ‘#f))

Figure4: Starting anew thread.

350

are immediately allocated upon thread creation, context
switches among threads often cannot take advantage of

cache and page locality.

Page locality in thread create operations isobviouslyim-

portant. Consider a virtual processor P executing thread
Tl, Suppose Tl spawns anew thread Tz. Under a fully
eager thread creation strategy, storage for Tz will be al-
located from a new TCB, T2’s heap and stack will be

mapped to a new set of physical pages in P’s virtual ma-
chine. Thus, assume T2 runson Ponly after Tl completes
(e.g., because there is no other free processor available or
because T1 is strict in the value yielded by applying T2’s

thunk). Setting upT2 nowinvolves afairly costly context
switch. The working set valid when TI was executing is

now possibly invalid; in particular, the contents of the

data and instruction cache containing T1’s physical pages
will probably need to be flushed when T2 starts executing.

STING reduces the cost of eager thread allocation by de-

ferring the acquisition of TCB stack and heap areas for
a thread until it is actually about to be run. If an eval-

uating thread terminates, the next ready thread to be
executed can reuse the TCB stack and heap space pre-
viously allocated to the terminated thread[16]. When a

thread exits, its stack and heap storage are recycled for

use by subsequent evaluating threads. Reusing thread
storage increases locality since the contents of the pro-

cessor cache and page mapping tables will contain pieces
of the terminated process stack and heap. Just as sig-

nificantly, delaying the allocation of thread storage mini-
mizes the amount of housekeeping required; threads that

are scheduled but which are never run (e.g., because of
unnecessary speculative parallelism) need never be allo-
cated storage. Moreover, one processor can migrate such
threads from another without inducing significant data

movement since scheduled or delayed threads have small
storage requirements.

The distinction between threads that are scheduled and
those that are evaluating is used in STING to optimize the
implement ation of non-st rict structures such as ~utures[l 1];
it’s also used to throttle the unfolding of the process call
tree in fine-grained parallel programs. In a naive imple-

mentation, a process that accesses a future (orwhichiniti-
atesanew process whose value it requires) blocks until the

future becomes determined (or the newly instantiated pro-
cess yields a value). This behavior is sub-optimal for the

reasons described above - cache and page locality is com-
promised, bookkeeping information for context switching

increases, and processor utihzation is not increased since
the original process must block until the new process com-

pletes.

STING implements the following optimization: a thunk t

associated with a thread T that is in a schedtdedor delayed
state is applied using the dynamic context of a thread S if

S demands T’s value, The semantics of future/touch (or
any similar producer/consumer protocol) is not violated.
The rationale is straightforward: since T has not been
allocated storage and has no dynamic state information
associated wit h it, t can be treated as an ordinary proce-
dure and evaluated using the TCB already allocated for
S. In effect, S and T share the same dynamic storage.
T’s state is set to stolen as a consequence. A thread is

stolen if its thunk executes using the TCB associated with
another running thread.

Thus, in the STING implementation of futures3, a process

can run the code associated with an unevaluated future
it touches within its own dynamic context - no TCB is
allocated in this case and the accessing process does not

block. A consumer blocks only when the producer has
already started evaluating. The producer is already asso-
ciat ed wit h a TC B in this case, and no opportunity for

steahng presents itself.

Applying the closure of a stolen thread incurs some over-
heads not present in an ordinary procedure call. (Let T

be a scheduled or delayed thread and let S be an evaluat-
ing thread that demands the value of T’s thunk.) To steal
S, the implementation performs the following actions:

1.

2.

3.

4.

The thread slot in S’s TCB and the TCB slot in T

is updated.

The dynamic state of S is stored in T; dynamic state
information is used in case T raises an exception or
throws to a catch point stored in S’s TCB stack.

A catch point is wrapped around the application of

S’s thunk guaranteeing the stack and heap are in a
consistent state if control throws out of the procedure
being applied.

Thread related bookkee~in~ (e.g., wakirw blocked

threads, recording term~na~on, ~tc,) is ~erformed
once S becomes determined.

These overheads are not significant, involving mostly stores
to data structures (stacks, heaps, and records). No garbage
collection is required in order to implement thread steal-
ing.

Thread stealing is distinguished from the lazy task cre-

ation mechanism (also known as lazy futures) found in
Mu1-T[19] or Gambit [8], and load based-inlining as im-

plemented in WorkCrews[26]. Whereas stealing permits
the work needed to start a thread running to be deferred

as long as possible, Mu1-T lazy task creation is a tech-
nique intended to increase process granularity by permit-
ting inlined tasks to be retroactively forked based on run-

time conditions; load-based inlining in WorkCrews per-
mits programs to notify free processors that a task is avail-
able for execution. Unlike either of these two approaches,
thread stealhg is not intended to be an implementation of

a load balancing policy, although it does simplify the task
of building such implementations; instead, the stealing
operation prevents saturating the virtual machine with

storage allocation requests, and improves cache and page
performance of newly created threads. This is especially
useful in result parallel programs in which processes typi-

cally exhibit significant data dependencies among one an-
other. Neither lazy task creation nor load based inlining

are intended to improve storage locality.

6.1 Synchronization

The primitive synchronization operation on threads is
thread-wait. Given a thread T as its argument, this

procedure first checks if T is determined. If T is under
evaluation, the procedure stores the current t bread in a

3 ~~read~ are ~ natural representation st ruchu= for futures. A

future is created in sting using fork-thread ; a touch on a future is

equivalent to applying thread-value (see Section 6.1) on its thread

argument.

351

CuITenl TILrmd
TCB Tlmsd T

=F

;Vdudng

czuwnu

==0Lhmk !cad

Registcr$

Swck

l.ddukd

wnterw

lhunk 1--1

.....................”. -”..-.. ..w

Current Thread
TCB ‘head T A’

--mG&-+
+ r

Nming ddennincd

contents ~ . Ilwad v

Ihlmk Ihunk

Rcgisti]

rowh T

& – L “

I’slurs Y

mget regmer ~or louch

.....

...............

TCB Current Thread

—s

k thread ~ contents

thunk
K

Registers

,,, ..,,,..., .!

SLd

HcnP

. . nunuaum
.,, ”

1
. . .

rrlufn v

Figure 5: The dynamics of thread stealing.

352

queue, q, accessed via the waiters slot in T, and blocks

the current thread4. When T becomes determined, all

waiting threads on q are rescheduled using the procedure

wakeup-waiters.

The value of a thread is the result yielded by applying
its thunk. Threads can ask for the value of other threads
using the procedure thread-value shown in Fig. 6.

If the argument thread T is determined, and its value is
another thread, the procedure is applied recursively to
this new thread; otherwise, the value is returned,

If T is either scheduled or delayed, T’s state is set to stolen
and it’s thunk is evaluated using the current thread’s

TCB. Run-stolen-thread implements this behavior. Oth-

erwise, the current thread blocks (via the thread-wait

procedure); when it is rescheduled, its continuation makes
a tail-recursive call to find T’s value.

7 Garbage Collection

Each thread has a stack, a private heap and a public
heap. Objects located in the stack are always private

to the thread and are never collected. Objects in the pri-
vate heap are accessible only to the thread that created

them, while objects in the public heap are accessible to
any thread in the system. A private object can become

public by allowing a reference to it to escape the dynamic
cent ext of the t bread in which it’s found. Such objects

are copied from the thread’s private heap to its public

heap. Both the private and public heaps use a genera-
tional style copying garbage collector. Any heap in the
system can be collected independently of any other, but

during the collection, objects in the heap are inaccessible
to threads,

Our investigations and those of others[17, 25] indicate
that most objects are created in the private heap nurs-

ery and die there. Because it is private, this heap can be
collected by the thread at any time without affecting any

other t bread in the system. The root set for this collec-
tion is contained in the thread’s stack and is thus usually

quite small.

While any garbage collection is synchronous with respect
to the thread doing the collecting, it is as~nchronous with
respect to other threads in the system. This type of asyn-

chrony offers several benefits over completely synchronous
garbage collectors[14]: (1) useful computation can pro-
ceed in the system even if some threads are garbage col-

lecting, (2) the cost of garbage collection is not distributed
evenly across all threads, but is charged proportionately
to the amount of storage allocated by each thread; and (3)

data locdlty is enhanced since objects are allocated in an
area managed exclusively by the thread that creates them.
Because of these properties, we also believe that our col-
lector will be more efficient and maintain better data lo-

calit y then concurrent garbage collection systems[2, 3, 20].
We are currently in the process of validating our assump-
tions,

1The policy ~~nager does not store a blocked thread in any

structure it maintains. Blocking is therefore tantamount to a
context-switch in which the current thread is not recorded by the
thread controller.

8 Performance

STING is currently implemented on an 8 processor Silicon

Graphics MIPS R3000 shared-memory (cache-coherent)
multiprocessor. The physical machine configuration maps
physical processors to lightweight Unix threads; each node
in the machine runs one such thread. The benchmarks

shown in Fig, 7 were implemented using STING’s imple-
mentation of futures, and used a virtual machine config-
uration in which each physical processor implements at

most one virtual processor. The policy manager imple-
mented a single global LIFO queue. All timings are in
seconds. None of the benchmarks trigger garbage collec-
tion.

The benchmarks were not coded to maximize execution

efficiency, but to highlight and exercise different aspects
of the STING implementation. “Matrix Multiply” is a fine-

grained program that multiplies two 50 x 50 integer matri-
ces. In this program, a thread is created for each element
in the result matrix. Threads share no data dependen-
cies with one another. “Primes” is a naive prime finder
program that computes the first 3000 primes. Threads ex-
hibit significant data dependencies with one another, and
thus present opportunities for stealing (at least for small

processor ensembles). “Random Tree” creates a tree of
2000 nodes in a random shape using a branching prob-

ability y of 50Yo; like “Primes”, threads created by “Ran-
dom Tree” also share strong data dependencies with one

another, “Boyer” is a consing intensive theorem prover
whose threads are created speculatively; the input in our
particular benchmark is the tautological formula:

((z-+ y) A((y-+ z) A((.z+u)A (u-+w)))+ (z+ w)

There are five statistics associated with each benchmark.
“Threads” and “Threads stolen” indicate the number of

threads created and stolen respectively. “TCBS created”

is the number of new dynamic contexts created during
the execution of the benchmark. “TCBS allocated” is

the number of TCBS assigned to evaluating threads taken

from the VP TCB pool. “TCBS reused” is the number of
TCBS that were associated with determined threads and

which were immediately recycled for use by other newly
created (runnable) threads. These last two statistics re-
flects VP caching policy efficiency. The drop in stolen
threads in both “Primes” and “Boyer” as the number of

VPS increase is most likely due to the fact that the sequen-
tial component of the threads generated is not sufficient

to keep processors busy, and the ready queue relatively
full; thus, VPS are able to remove scheduled threads from

the ready queue and commence their evaluation of threads
before they can become stolen.

9 Comparison to Related Work

There have been several efforts to implement concurrency
in Lisp-based languages. QLambda, MultiLisp and Mul-
T are some notable examples; continuation-based imple-
ment ations (e.g., [12, 27]) are another. Despite the com-
mon base language used, STING differs in important ways

353

(define (thread-value thread)

(cond ((thread-deterruined? thread)

(let ((val (thread.value thread)))
(if (thread? val) (thread-value val) val)))

(else

(mutex-acquire (thread.mutex thread))
(cond ((or (thread-scheduled? thread)

(thread-delayed? thread))

(set-thread.state threadthread-state/stolen)

(mutex-release (thread.mutex thread))
(run-stolen-thread thread))

(else
(mutex-release (thread.mutex thread))

(thread-wait thread)))
(thread-value thread))))

Figure 6: Determining the value of a thread. A mutex is a binary semaphore.

Matrix Multiply
Threads

Threads stolen
TCBscreated

TCBsallocated

TCBsreused

Primes
Threads
Threads stolen
TCBS created

TCBsallocated
TCBsreused

Random Tree
Threads

Threads Stolen
TCBS created
TCBsallocated

TCBS reused

Boyer

Threads
Threads stolen
TCBS created
TCBsallocated
TCBsreused

1

3.32
2501
0
1
1
2502

1.84
1501
1499
1
1
3

.91
581
580
1
1
1

.3
32
13
1
1
20

2

1.66
2501
0
2
536
1968

.96
1501
19
2
305
1180

.52
581
579
2
2
3

.18
32
8
2
2
25

4

.94
2501
0
4
1375
1131

.63
1501
1
4
737
768

.23
581
539
13
13
21

.08
32
1
4
7
29

8

.51
2501
0
8
2052
457

.28
1501
0
8
1120
381

.17
581
502
20
18
40

.042
32
1
8
10
30

Figure 7: STING benchmarks, The columns indicate number of virtual processors,

354

from these efforts as we have described earlier. In sum-

mary, the semantics of threads and the design of the ab-

stract virtual machine makes STING amenable for use as a

high-level systems programming language and, in particu-
lar, as an OS kernel for modern programming languages.
Other parallel Lisps that provide mechanisms for creat-
ing processes do not permit flexible thread management

and customization of their runtime environment essential
to implementing a robust systems programming environ-
ment. The STING design was furthermore intended to pro-
vide a platform on which different concurrency paradigms

could be competitively evaluated; the high-level concur-
rency primitives and opaque runtime environment found

in other concurrent symbolic languages make such exper-
iments problematic.

STING shares many of the same properties as asyn-
chronous dialects of ML[7]. The ML thread system

built on top of Mach, for example, provides support
for lightweight threads of control similar in many essen-

tial respects to the threads described here; e.g., context
switching manipulates a continuation structure, preemp-

tion is supported, and there is a flexible exception han-

dling mechanism. STING differs from this effort, how-
ever, in several significant respects, Most importantly,
policy management decisions using ML threads (schedul-

ing, migration, etc.) are managed by the underlying Mach
thread, not by the thread system. Moreover thread opera-
tions that require functionality provided by the C runtime

system (e.g., allocating a new thread to a processor) in-

volve a context switch operation that saves the current
state of the thread, restores registers needed by the run-
time system and invokes a C routine that will provide the

appropriate service. Another important point of differ-
ence is the distinction maintained between scheduled and
running threads in our system. Finally, STING’S support

for data locality and process throttling via thread stealing
and local TCB caches, and the presence of first-class vir-

tual processors and machines are novel design features5.

The tight coupling of the Scheme compiler and the run-
time system to implement threads is also similar in spirit
to dat aflow programming systems[21] in which threads

are extracted from the source program by the compiler
and thread scheduling decisions are shared by the com-

piler and the runtime system. STING differs obviously
from these systems insofar w threads are manifest data
objects and parallel programs make explicit reference to
them. Nonetheless, the idea of involving the compiler in

the management of threads was influenced by these con-
temporary efforts.

10 Future Work

While the thread system takes advantage of several com-

piler optimization, there are a few other significant op-
timization we still have not put in place. Most notably,
storage and flow anaJysis routines to minimize storage al-
location for threads that do not require stacks or heaps
have not yet been fully integrated into the compiler. As

5.A v~r~i~n of ML threads running on a SGI multiprOcessOr ap-

parently addresses many of these issues (Personal communication,
Andrew Tolmach, Feb. 1992).

another example, interprocedural flow analysis would per-

mit us to determine statically whether a scheduled thread

has been evaJuated (or rdready stolen) at a touch point.

The cost of preemption might be reduced by maintain-
ing per-procedure information on register use. We also
expect that the implementation of threads can be bet-
ter customized in the presence of a more aggressive type
system, Our system currently does not support call/cc
across thread boundaries; an implementation that pro-
vides this functionality is underway.

We eventually intend to extend this work to a full blown
OS running on bare hardware, The full kernel will sup-
port multiple address spaces, i.e., multiple virtual ma-

chines. Thus, page faults, file mapping, and many device
interrupts can all be handled at the user-level by the ap-

propriate address space.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Harold Abelson and Gerald Sussman. Structure and
Interpretation of Computer Programs. MIT Press,

Cambridge, Mass., 1985.

Andrew Appel, John Ellis, and Kai Li. Real-time
Concurrent Collection on Stock Multiprocessors. In

ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation, pages 11–21,
1988.

Henry Baker. List Processing in Real Time on
a Serial Computer. Communications of the ACM,
21(4):280-294, April 1978.

Peter Bishop. Computer Systems with a Very Large

Address Space and Garbage Collection. PhD thesis,
MIT Laboratory for Computer Science, 1977.

Nick Carriero and David Gelernter. Linda in Con-
text. Communications of the ACM, 32(4):444 -458,
April 1989,

Eric Cooper and Richard Draves. C Threads. Tech-
nical Report CM U- CS-88-154, Carnegie-Mellon Uni-

versity, June.

Eric Cooper and J. Gregory Morrisett. Adding

Threads to Standard ML. Technical Report CMU-
CS-90-186, Carnegie-Mellon University, 1990.

Mark Feeley and James Miller. A Parallel Virtual
Machine for Efficient Scheme Compilation. In Pr-o-
ceedings of the 1990 Conference on Lisp and Func-
tional Programming, pages 119-131, 1990.

R. Gabriel and J. McCarthy. Queue-Based Multi-
Processing Lisp. In Proceedings of the 1984 Con-

ference on Lisp and Functional Programming, pages
25-44, August 1984.

David Greenberg. Full Utilization of Communication
Resources. PhD thesis, Yale University, 1991. Also
published as Yale University Computer Science Tech-
nical Report, YALEU/DCS/TR-860.

355

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Robert Hrdstead. Multilisp: A Language for Concur-
rent Symbolic Computation. Transactions on Pro-
gramming Languages and Systems, 7(4):501–538, OC-

tober 1985.

Robert Hieb and R. Kent Dybvig. Continuations and

Concurrency. In Second A CM SIGFLAN Symposium
on Principles and Practice of Parallel Programming,

pages 128–137, March 1990.

Suresh Jagannathan and James Philbin. A Cus-
tomizable Substrate for Concurrent Languages. In
ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, June 1992.

David Kranz, Robert Halstead, and Eric Mohr. Mul-
T: A High Performance Parallel Lisp. In Proceedings

of the ACM Symposium on Programming Language

Design and Implementation, pages 81-91, June 1989.

David Kranz, R. Kelsey, Jonathan Rees, Paul Hudak,

J. Philbin, and N. Adams, ORBIT: An Optimiz-
ing Compiler for Scheme. ACM SIGPLAN Notices,
21(7):219-233, July 1986.

Butler Lampson and D. Redell. Experiences with

Processes and Monitors in Mesa. Communications
of the ACM, 23(2):104–117, February 1980.

Henry Lieberman and Carl Hewitt. A ReaJ-Time
Garbage Collector Based on the Lifetime of Objects.
Communications of the ACM, 26(6):419–429, June

1973!

Robin Milner, Mads Tofte, and Robert Harper, The
Definition of Standard ML. MIT Press, 1990.

Rick Mohr, David Kranz, and Robert Halstead. Lazy
Task Creation: A Technique for Increasing the Gran-
ularity of Parallel Programs. In Proceedings of the
1990 ACM Conference on Lisp and Functional Pr-o-

gramming, June 1990.

David Moon, Garbage Collection in a Large Lisp
System. In Proceedings of the 198~ Conference on
Lisp and Functional Programming, pages 235-246,
1984.

Greg Papadopolus and David Culler. Monsoon: An
Explicit Token-Store Architecture. In Proceedings
of the 1990 Conference on Computer Architecture,

pages 82-92, 1990.

James Philbin. STING Users Manual. NEC Research
Institute, 1992. Forthcoming.

Jonathan Rees and William Clinger, editors. The
Revised3 Report on the Algorithmic Language

Scheme. ACM Sigplan Notices, 21(12), 1986.

John Reppy. CML: A Higher-Order Concurrent Lan-
guage. In Proceedings of the SIGPLA N’91 Confer-

ence on Programming Language Design and Imple -
mentatiorr, pages 293-306, June 1991.

David Ungar. Generation Scavenging: A Non-
Disruptive High Performance Storage Reclamation
Algorithm. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
pages 157–167, 1984.

[26]

[27]

[28]

M. Vandevoorde and E. Roberts. WorkCrews: An
Abstraction for Controlling Parallelism. Interraa-
tional Journal of Parallel Programming, 17(4):347-
366, August 1988.

Mitch Wand. Continuation-Based MultiProcessing.
In Proceedings of the 1980A CM Lisp and Functional

Programming Conference, pages 19-28, 1980.

William Wulf, Roy Levin, and Samuel Harbison. HY-
DRA/C. rnrnp: An Experimental Computer System.
McGraw-Hill, 1981.

Appendix: The Core of the Thread and Policy Manager
Interface

Thread Operations

(fork-thread expr vp) creates a thread to evaluate

expr, and schedules it to run on VIA

(create-thread expr) creates a delaged thread that
when demanded evaluates expr-.

(thread-run thread wp) schedules a delayed, blocked
or suspended thread to run on VP.

(thread-wait tltreacl) causes the thread executing

this operation to block until thread’s state be-
comes determined.

(thread-value thread) returns the value of thread’s
thunk. If thread is evaluating, the operation

blocks until thread become determined. If thread
is scheduled or delayed, the operation may choose
to either steal it or block6.

(thread-block thread condition) requests threadto
block on condition. Condition is presumably
the object on which thread is enqueued. Condi-
tion is used only for debugging purposes.

(thread-euspend thread . quantum) requests thread
to suspend execution. If the quantum argument
is provided, the thread is resumed when the pe-

riod specified has elapsed; otherwise, the thread

is suspended indefinitely until it is explicitly re-
sumed using thread–run.

(thread-terminate thread . values) re uests thread
$to terminate with values as its result.

(yield-processor) causes the current thread to re-
linquish control of its VP and place itself on the
ready queue of its current virtual processor.

(current-thread) returns the thread executing this
operation.

(current-vp) returns the VP on which this opera-

tion executes.

s Currently, this choice is dictated by the value of a global flag
set by the application.

7AS in WXINSother Scheme dialects, expressions can yield mul-

tiple values.

356

Policy Operations

(pm-get-next-thread vp) returns the next ready

TCB or thread to run on VP. If aTCB is re-
turned, its associated thread is evcduatinqif a
thread is returned, its state is scheduled, and a
new TCB must be allocated for it.

(pm-enqueue-ready-thread obj VP state) enqueues
obj which may be either a thread or a TCB
into the ready queue of the policy manager as-
sociated with vp. The state argument indicates

the current state of the state in which the call
totheprocedure is made: delaged, kernel-block,
user- block, or suspended. Kernel-b lockand user-
block indicates that the thread was previously

blocked on a kernel operation (e.g., 1/0) or a
user-specified condition. State is used only for
debugging.

(pm-allocate-vp) returns inappropriate virtual pro-
cessoron the current virtual machine; for exam-

ple, this procedure maybe defined as returning
the leaat loaded VPin the machine.

(pm-need-thread) migrates arunnable thread from

another VP onto its VP andreturns the thread
as its result, If no threads are available for mi-
gration, the procedure returns false.

(pm-vp-idle VP) is called by the thread controller
if there are no evaluating threads on VP. This

procedure can migrate a thread from another
virtual processor (using pm-need-thread), do
bookkeeping, orcallthe physical processor pol-
icy manager to have the processor switch itself
to another VP.

357

