
Improving the Performance of SML Garbage Collection

using Application-Specific Virtual Memory Management

Eric Cooper 1, Scott Nettlesl, and Indira Subrarnanian2

Abstract

We improved the performance of garbage collection in

the Standard ML of New Jersey system by using the vir-

tual memory facilities provided by the Mach kernel. We

took advantage of Mach’s support for large sparse address

spaces and user-dejnedpaging servers. We decreased the

elapsed time for realistic applications by as much as a

factor of 44

1 Introduction

Standard ML is a modem functional programming lan-

guage with a large international community of users [8].

The popularity of the language is due in large part to the

Standard ML of New Jersey compiler (SML/NJ), a high-

quality, freely available implementation that runs on most

UNIX platforms [4].

SML/NJ does not use a stack at rtmtime; all objects,

including activation records, are allocated from the heap.

Authors’ affiliations: 1School of Computer Science, ‘Department of

Electrical and Computer Engineering, Carnegie Mellon University, Pitts-

burgh, Pennsylvania 15213.

Tius research was sponsored by the Avionics Lab, Wright Research and

Development Center, Aeronautical Systems Division (AFSC), U.S. Air

Force, Wright-Patterson AF8, OH 45433-6543 under ContractF33615-

90-C-1465, Arpa Order No. 7597 and by the Air Force Systems Com-

mand and the Defense Advanced Research Projects Agency (DARPA)

under Contract F1 9628-91-C-0128.

The views and conclusions contained in this document are those of the

authors and should not be interpreted as representing the official policies,

either expressed or imptied, of the Defense Advanced Rcaearch Projects
Agency or the U.S. Government.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or epecific permieeion.

1992 ACM LISP & F. P.-6/92/CA
@ 1992 ACM O-89791 -483 -X/9210006 /0043 . ..l’EJ3J3

The runtime system uses an efficient variation of copying

garbage collection called generational collection [2].

One only has to sit in the same room with a DECsta-

tion 3100 running SML/NJ to realize that the performance

bottlenecks disk I/O due to paging. The liberal use of heap

allocation results in large working sets, and a large amount

of paging on workstations with moderate amounts of mem-

ory. A particularly common platform in our environment

is a DECstation 3100 (based on the MIPS R2000 CPU)

with 24 Megabytes of memory, running the Mach 2.5 op-

erating system. With this configuration, compiling a small

but significant portion of the SML/NJ compiler takes al-

most half an hour.

In this paper, we describe two optimizations that we

made to the SML/NJ garbage collector in order to improve

paging performzmce. The first is an improved way of

managing the old and new areas of the heap, by taking

advantage of Mach’s support for sparse address spaces.

The second is an application-specific external pager that

dramatically reduces disk 1/0 due to paging, by exploiting

the garbage collector’s extraordinary knowledge of the

state of its address space.

We also present three benchmarks that were used to

validate these modifications. The benchmarks show that

the combined effect of these two optimization can im-

proved the performance of SML/NJ on real applications

by as much as a factor of 4. For example, the compilation

described above now takes only 7 minutes. The results of

these benchmarks also suggest some general approaches

to the placement of heaps in physical memory.

2 The UNIX version of SML/NJ

One of the goals of the SML/NJ implementors was porta-

bility; the runtime system assumes only a 32-bit word

size and the UNIX model of an address space (text seg-

ment, data segment, and stack segment). The ML heap
is placed in the data segment. As the amount of live data

increases, the heap size is increased via an operating sys-

tem call (sbrk) that extends the upper boundary of the data

43

segment.

The heap is arranged into the following regions:

1.

2.

3.

4.

An old region, consisting of objects that have sur-

vived at least one collection.

An unused region, into which the old region can ex-

pand.

A new region, consisting of objects created since the

last collection.

Afree region, where all new allocation is done.

When the free region is exhausted, a minor collection

takes place: the live data from the new region is appended

to the old region, and execution continues with an empty

new region. When the old region reaches half the heap

size, a major collection takes place, leaving the live data

in the upper half of the heap; this is then block-copied to

the lower hatf so that the next minor cycle can begin.

The size and location of each of these regions is con-

trolled by a strategy which is described in detail in Appel’s

paper [2]. Briefly, the strategy has two parameters:

1. mem_limit, the memory use target

2. ratio, the target ratio of heap size to live size

After each major collection the amount of live data is

known, and the total heap size and size of the free region

is calculated by

if ratio *live size < mem limit then. —
heap size = ratio *Live size— —

else if 3*live size < mem limit then— —
heap size = mem_limit—

else

heap size = 3*live size— —

free size = (heap_size - live_ size) /2;—

After each minor collection free .s i ze is recalculated,

and the free region is placed at the end of the heap.

When we are in the limit that 3 *lives i ze <

mem_limit then free-size = live-size. The

free region fills rapidly, which means in this limit a lower

bound on the working set is 2 *live-size.

3 Improving Heap Management

Our first set of improvements involved the management of

the heap by the SML/NJ garbage collector. We changed

the strategy for determining the sizes of the old and new

heaps, and their placement in memory.

The new strategy has three parameters:

1. mem_lim, the memory use target

2. min_new_s i ze, the minimum new heap size

3. mi.n_old_incr, the minimum old heap increment

‘l%e basic idea is to keep the portion of SMJJNJ’S working

set used by the heap at or below the memory use target.

After a major collection, we set

new heap size = max

(meX_lim–- live_si ze, min_new_size)

old heap size = max

live size + min_old_incr)(meR_lim72, _

The intent is to give the new heap all of the working set that

the old heap isn’t using, and make the old heap fit in half

the working set, so major collections go fast. After a minor

collection, we reduce the size of the new heap by however

much the old heap grew, while respecting the new heap

minimum. With this scheme when the live size is large,

the lower bound on the working set size is 1 ive.s i ze

+ minmew_size.

We also changed the garbage collector to atlow the old

heap to drift through memory, by relying on Mach’s sup-

port for sparse virtual address spaces. In the original

SML/NJ scheme, the old heap was copied back to the

beginning of the allocation area after every major collec-

tion; we now leave it wherever the major collection copied

it. When possible, we make this the beginning of the al-

location area. This avoids several linear scans of the old

heap. The kernel’s LRU page replacement policy interacts

especially poorly with these scans.

4 Using an External Pager

The SML/NJ runtime system has almost complete knowl-

edge of which pages in the heap are discardable and which

are non-discardable. A discardable page is one which

contains no useful dat% for example, the pages in from-

space after a major collection. A system that exploits

this knowledge can greatly improve paging performance.

For example, when a discardable page is selected for re-

placement, it need not be written to backing store, because

it does not contain any useful data. Similarly, when a

nonresident discardable page is referenced, it need not be

retrieved from backing store; instead, the existing contents

of any physical page can be provided.
The Mach kernel allows the user to create memory ob-

jects that can be managed by auser-level process, called an

external pager [10]. The extemat pager interface enables
a user process to manage the paging of memory objects for

client applications. The communication between the pager

and the kernel occurs via Mach IPC. Through the external

pager, a client may create an object and request that the

kernel map the object into the client’s address space. The

pages that constitute the object are subsequently managed

44

by the external pager. We have implemented an external

pager which allows a client to communicate the discard-

able or nondiscmdable state of a page with the pager. For

details of the internals of our implementation see Subra-

manian [9].

4.1 Interaction between SML/NJ and the

External Pager

State information about the memory object is maintained

in a shared bitmap that is written by the client (SML/NJ)

and read by the pager. Each bit indicates whether the

corresponding memory object page should be considered

discardable or nondiscardable.

The SML runtime sets this bitmap in the following way.

During the execution of the user’s code, the old, new, and

free regions are marked non-discardable while all oth-

ers are marked discardable. During minor collection, the

pages at the end of the old region which are being copied

to are marked non-discardable, Before a major collec-

tion, the pages of the new and free regions are mmked

discardable. During a major collection the pages being

copied to are marked non-discardable, After the major

collection, the old, new, and free regions are again marked

non-discardable while all others are marked discardable.

It should be possible always to keep the pages of the free

region marked discardable, but the need for rapid alloca-

tion makes this difficult as marking pages in the free area

non-discardable would require trapping into the SML/NJ

runtime, an expensive operation given the rate at which

memory is allocated.

4.2 Preflushing

Although there is a significant performance gain achieved

by using the discardable/non-discrudable state of a page,

the kernel might choose to replace a non-discmdable page

even when there are still discardable pages in memory.

This is an undesirable consequence of the fact that the

external pager is not involved in the page replacement

policy, only its execution.

To increase the chances that non-discardable pages will

remain resident, the pager can independently ask the kernel

to flush one or more discardable pages. But there is a

tradeoff here: if we flush pages too eagerly, we may incur

unnecessary IPC costs in doing so, and zero-fill costs when

we go to reference them again.

We looked at two variations of preflushing. In pager-

inidatedpreflushing, the pager uses the arrival of apageout
request from the kernel as an indication that memory is

getting tight, and initiates preflushing.
In user-initiated preflushing, the client uses a special

Flus hDis card able operation provided by the pager.

Pages are flushed after a major collection.

5 Experimental Method and Results

We ran our benchmarks on a DECstation 3100 worksta-

tion with 24 Megabytes of memory, running the Mach 2.5

kernel. This is the maximum memory configuration for

this machine. In this configuration there is approximately

11 Mb of free space available for the SML/NJ heap. Per-

formance is particularly poor on this workstation because

it has no hardware support for DMA transfers; all disk

1/0 is done by the CPU. It is nevertheless a very realis-

tic example, since these workstations are currently used

throughout our computing facility,

We used three different benchmarks to test the effective-

ness of our modifications to SML/NJ. They were chosen

to exhibit a wide variety of memory use patterns from

paging-bound to cpu-bound. For each of these bench-

marks, we tested both the original allocation strategy and

the modified one with each possible setting for the pager:

1. no pager (NP)

2. pager only (PO)

3. pager with pager-initiated flushing (PF)

4. pager with user-initiated flushing (PU)

We also studied the effect of whether the heap was

copied back to the beginning of memory, or not. By

instrumenting the pager we were able to get details of the

paging activity.

The optimal settings of the heap parameters described

above depend on the particular benchmark and machine

configuration, We have not yet incorporated an algorithm

to adjust these dynamically; instead, we used a brute-force

search of the parameter space to find the minima. We

performed this search for each major variation described

above. When testing copy-back we used the parameters

found for the major variations, so these results represent

upper bounds. In general we found that the original heap

sizing strategy was less sensitive to settings of its param-

eters than the modified one.

In each of the three following sections we discuss a

specific benchmark. We first discuss the benchmark in

general, including a plot of the live size vs. total mem-

ory allocated. Total memory allocated represents a simple

kind of pseudotime. These plots allow one to understand

the demands of the benchmark for memory. Next, we

present the basic results for each of the allocation schemes

with all possible pager parameters. These are wall clock

times in seconds. Finally we present the results of varying

copy-back. For the original scheme this means turning

copy-back off, while for the modified scheme it means

turning copy-back on. Details such as the settings of the

memory parameters, values of clock and system time, pag-

ing statistics, etc. are found in the appendix.

45

5.1 The Compiler Benehmark

The compiler benchmark compiles a portion of the

SML/NJ compiler. A plot of the live data size vs. the

total memory allocated is shown in figure 1. For much

of its execution, this benchmark has more than 5 Mb of

live data. For significant portions of its execution, this

benchmark is paging-limited. The saw tooth structure in-

dicates periods when it is building large intermediate data

structures, and then discarding them. We speculate that

these occur during the compilation of individual functions

or modules, with storage being freed after code generation.

Figure 2 shows the times for the various basic param-

eters. The new allocation strategy is always faster than

the original, some times by more than a factor of 2.5. The

paging statistics indicate that less paging is occurring. For

both allocation strategies, use of the pager results in signif-

icant performance gains, with many of the paging events

no longer accessing the disk. Adding flushing is also quite

beneficial. For the new allocation strategy, both forms

of flushing result in approximately 3070 improvements,

and similar paging statistics. For the original allocation

scheme pager-initiated flushing seems to be preferred. It

resulted in less paging activity of all kinds, even though,

interestingly, it flushed approximately the same number of

pages. The overall improvement is almost a factor of four.

Figure 3 shows the time for the original strategy without

copy-back and Figure 4 shows the time for the modified

strategy with it. We found the results for the no pager

case to be quite surprising. Using copy-back seems to

improve the results by a factor of two for the original

strategy and a significant amount for the modified one

as well. The detailed paging statistics show that for the

original scheme, the no copy-back case does almost twice

as much paging as the copy-back case. Since executions

are basically paging limited, this explains the factor of two.

We believe this is because for most of its execution the total

live size is close to half the available memory, When copy-

back is performed, this forces the available pages into a

contiguous region which then become the old and new

area. This essentially pre-pages the free region. When

copy-back is not performed, the free region is located in a

portion of memory which has not been touched recently.

Before memory can be allocated to the free region, it must

be taken from the old from-space and paged out.

When the pager is used, the cost of moving pages from
the old from-space to the free region drops, since these

pages no longer have to be written to disk. Adding flushing

further changes the situation since they are flushed. This

results in the expected behavior for copy-back.

_.,#-+ I
o 200 400 600 800

memory allocated (Mb)

Figure 1: live size vs. total allocation for compiler

I
3000

+

2000
4

El 0 riginal

El Inoclifiec!

1000

(sees)

NP Po PF Pu

Figure 2: results for compiler

I

3000

2000

1000

NP Po PF Pu

Figure 3: original allocation strategy for compiler

I

2000

t

El no copy-back

1000 . .

(sees)

NP Po PF Pu

Figure 4: modified allocation strategy for compiler

46

5.2 The Sort Benchmark

The sort benchmark performs a merge sort based on divide

and conquer. The divide steps are implemented by spawn-

ing futures, which are in turn implemented using a simple

threads package [5]. A plot of the live data size vs. the total

memory allocated is shown in figure 5. The computation

starts out cpu-bound, but becomes very paging-bound. At

its largest, the live data alone exceeds the available ffee

memory. The fact that we do not see a divide phase during

which time the live data decreases is probably an artifact

of using allocation as a time metric. The divide phase does

almost no allocation, and therefore is hidden at the end of

the plot.

Figure 6 shows the run times for the two allocation

strategies and each of the pager parameters. The new al-

location scheme performs approximately a factor of two

better than the original. The paging statistics indicate this

corresponds quite closely to the difference in paging ac-

tivity. The most surpising feature of these results is the

fact that for the new allocation scheme, the pager actu-

ally performs worse than without the pager. We are at a

loss to explain this; perhaps it is an artifact of the mini-

mization process. Pager-initiated flushing is always better

than user-initiated even though it flushes approximately

the same number of pages. Altogether there is a perfor-

mance improvement of approximately four.

Figure 7 shows the time for the original strategy with

copy-back turned off. There is little difference from the

original for the no pager case. We believe that this is

due to a balance between the prepaging of the new area

and the extra paging due to copying during copy-back.

In general this case is probably dominated by the cost of

paging during the phase of execution when the live size is

very large. When the pager is used, the copy-back starts

to become less attractive. In this case we have made it less

expensive to transfer pages from the old I%om-space to

the new area, so pre-paging is less helpful, but copy-back

still incurs the cost of paging during copies. This effect

becomes even more pronounced as we add flushing, with

the kernel flushing case approaching the best performance

of the new allocation strategy.

Figure 8 shows the time for the modified strategy with

copy-back turned on. In this case copy-back is clearly

undesirable, with the performance penalties ranging from

factors of two to as much as a factor of three. Examining

the worst case, we see that there are three times as many

reads and page outs which go to disk, and fifteen times as

many write faults which go to disk. The other cases show

similar although less dramatic results.

alN
.Ii
m

61

.2
r-i

o 100 200 300 400
memory allocated (Mb)

Figure 5: live size vs. total allocation for sort
t

1500 1
#Esoriginal

1000

500

(sees)

NP Po PF Pu

Figure 6: results for sort

1 ❑ coPy-back

1500

1000

500

(sees)
. .

NP PO PF Pu

Figure 7: original allocation strategy for sort

NP Po PF Pu

Figure 8: modified allocation strategy for sort

47

5.3 The Primes Benchmark

The primes benchmark finds primes using the sieve of
Eratosthenes, implemented in a simple inteqneted lazy
language. The interpreter is written in SML. As figure 9
shows, this benchmark is completely CPU limited. Thus

it serves as a good test of whether our techniques carry any

substantial penalty for applications which do not page.

Figure 10 shows the run times for the two allocation

strategies and each of the pager parameters. They show

almost no variation between either allocation strategy or

pager parameter setting. Examination of the paging statis-

tics also show almost identical results. In the case of

user-initiated flushing, the fact that flushes occur does

cause some of the paging statistics to vary, but without

any noticeable effect on the times. This gives weight to

our belief that paging events which do not access the disk

have little impact on run times.

Figure 11 shows the time for the original strategy with

copy-back turned off, Here we do see some penalties for

not using copy-back, probably for the same reasons given

above. We performed a minimum search on the cases

which showed variation. This eliminated the overhead

due to not doing copy-back. These minima had settings

for mem.1 imit which were substantially smaller than for

the copy-back case. Wkh these smaller settings, no paging

occurs.

Figure 12 shows the time for the modified strategy with

copy-back turned on. In this case we see only small vari-

ations which we do not believe to be significant.

6 Summary

Our modifications show impressive results. Both the new

allocation strategy and the external pager are effective

at reducing the amount of paging, and thus at speeding

SML/NJ programs. For programs which do not page they

do no harm. We draw several lessons horn these results.

One set of lessons applies to any OS environment and

has to do with careful management of physical memory.

Our improved allocation strategy shows that significant

gains can be had by simple consideration of working set

size issues. The results of varying copy-back shows further

how use of physical memory resources can affect perfor-

mance. We believe that if we had placed the tkee region
so as to take advantage of the prepaging of new space, we

would have reaped the benefits of copy-back without the

deficits.

0 1000 2000 3000
memory allocated (I@)

Figure 9: live size vs. total allocation for primes

(sees)

550
I

❑ original

❑ modified
500. .

450. .

400

NP Po PF Pu

Fi.smre 10: results for mimes

400+

.

B copy-back

no copy-back

NP Po PF Pu

Figure 11: original allocation strategy for primes
(sees)

550I ❑ co~y-back

500 El no copy-back

400

NP Po PF Pu

Figure 12: mod.itied allocation strategy for primes

48

The other set of lessons are OS specific, First, the

idea of discardable pages is a useful one, especially for

garbage collected languages. In addition we suspect that

a simpler interface based on flushing might show much of

the improvements of discardable pages, without the need

for tightly coupled communication between the pager and

the application. Finally we strongly support the idea of

letting the user gain control of paging. While it may turn

out to be more efficient to support discardable pages in the

kernel, the flexibility and implementation ease of being

able to do it outside the kernel was key. If we had only the

option of an in-kernel implementation, we would probably

not have tested the idea at all.

7 Related Work

The relationship between garbage collection and virtual

memory support has been explored by a number of re-

searchers. One of the early motivations for copying

garbage collection [6] was its improved locality of ref-

erence compared to the mark and sweep technique. More

recently, virtual memory hardware has been used to allow

concurrent garbage collection [3].

There are two main weas of related work that comple-

ment our approach.

We have not experimented with any form of adaptive

control algorithm to vary our heap size parameters dynam-

ically. Alonso and Appel [1] have done such experiments:

they observed that an application like SML/NJ could ex-

pand or contract its working sets to match the amount of

real memory available to it, if only it had access to such

information. They developed a centralized advice server

to provide client processes with this information. Our ex-

ternal pager could equally well double as an advice server.

The Mach interface to external pagers does not allow

user control over the page replacement policy, only what

is done with a page once it has been chosen for replace-

ment. This is unfortunate: in the case of SML/NJ, we

would like to indicate that any discardable page should be

chosen for replacement before any non-discardable page.

McNamee and Armstrong [7] have extended the Mach ex-

ternal pager interface with what they call page replacing

memory objects. In their system, the kernel asks the pager

to relinquish some number of pages; the pager can then use

any application-specific policy to determine which ones.

The cost of this approach is more kemel-to-pagerIPC traf-

fic; whether it would be outweighed by the reduction in

paging must await further research.

to tailor the pager specifically to SML/NJ, allowing it to

make more intelligent decisions about how to manage the

address space. This is clearly one of the next significant

step to take. We would also like to explore the techniques

discussed in related works.

Managing discardable pages with an external pager has

been shown to yield good results, especially when using

preflushing techniques. However, it is evident that having

the information about discardable pages within the kernel

would have certain advantages: Performing too many pre-

flushes is likely to impede system performanw, in the

case of in-kernel implementation, knowledge of physical

memory availability would enable the kernel to flush a

discardable page only when necessary, thereby avoiding

unnecessary zero-fills

It is possible to reduce the number of zero-fills with-

out compromising security. For example, in Mach, we

could let the kernel keep track of which memory object

previously owned a page in the free list. When a task

page-faults on a discarded page, the kernel could return

a page in the free list which had previously belonged to

the memory object, thus avoiding the need to zero-fill the

page. It is our belief that systems such as SML/NJ which

page heavily against their own pages and generate many

discardable pages will benefit from this approach. We are

in the process of evaluating an in-kernel implementation

of discardable page management under Mach version 3.0.

9 Conclusion

The idea of using the garbage collector’s knowledge to dis-

tinguish between discardable and non-discardable pages

is a simple one. Our main contribution is to show how

Mach’s flexible virtual memory system can exploit this

idea with great practical benefit,

Acknowledgments: We would like to thank Peter Lee for

a substantial fraction of the several CPU months we needed

for our benchmarking. Anurag Acharya and Greg Mor-

risett provided vahable feedback at various times through

out the work, as did the whole CMU SML community. We

would like to thank Penny Anderson, Ellen Siegel and the

Venari group for proofreading.

8 Future Work

The current pager uses a general interface to the user pro-

gram. Analysis of our current results should allow us

49

References

[1] Rafael Alonso and Andrew W. Appel.

An advisor for flexible working sets,

In Proceedings of the 1990 ACM SIGMET7UCS Confer-

ence on Measurement and Modeling of Computer Sys-

tems, pages 153–162, May 1990.

Also published as Performance Evaluation Review, 18(1).

[2] Andrew W. Appel.

Simple generational gubage collection and fast allocation.

Softwam--%actice & Experience, 19(2):171-183, Febru-

ary 1989.

[3] Andrew W. Appel, John R. Ellis, and Kai Li.

Real-time concurrent collection on stock multiprocessors.

In Proceedings of the SIGPLAN ’88 Conference on Pro-

grammingLanguage Design andImplementation, pages

11-20, June 1988.

Also published as SIGPLAN Notices, 23(7).

[4] Andrew W. Appeland David B. MacQueen.

A Standard ML compiler.

In Functional Programming Languages and Computer Ar-

chitecture, pages 30 1–324. Springer-Verlag, 1987.

Volume 274 of Lecture Notes in Computer Science.

[5] Enc C. Cooper and J. Gregory Mornsett.

Adding threads to Standard ML,

Technical Report CMU-CS-90-186, School of Computer

Science, Carnegie Mellon University, December 1990.

[6] Robert R. Fenichel and Jerome C. Yochelson,

A LISP gafbage collector for virtual-memory computer

systems.

Communications of the ACM, 12(11):611-612, November

1969.

[7] Dylan McNamee rmd Katherine Armstrong,

Extending the Mach extemalpagerinterface to accommodate

user-level page replacement policies.

In Proceedings of the USENIXMach Workshop, pages 17–

29, USENIX Association, October 1990.

[8] Robin Milner, Mads Tofte, and Robert Harper.

The Definition of Standard ML.

MIT Press, 1990.

[9] Indira Subramanian.

Managing discardable pages with an external pager.

In USENLY Mach Symposium, pages 77-85. USENIX

Association, November 1991.

[10] Michael Young, Avadis Tevanian, Richard Rashid, David

Golub, Jeffrey Eppinger, Jonathan Chew, Wfiam

Bolosky, David Black, and Robert Baron.

The duality of memory and communication in the imple-

mentation of a multiprocessor operating system.

In Proceedings of the 11th ACM Symposium on Operating

Systems Principles, pages 63-76, November 1987.

Published as Operating Systems Review, 21(5).

50

10 Appendix

NP P() PP Pu

memlirn (Kb) 14000 9000 9000 16000
ratio 1000 7 7 4

user time (see) 300.8 344.4 352.1 335.3

system time (see) 59.9 50.7 69.1 82.8

clock time 27:21 19:36 13:32 17:01

read faults zero-filled 19 7 903 1037
read faultz not read o 98 4938 7638

read faults read 6797 8075 4798 8544

write faults zero-filled 6069 6619 4663 4866

write faults not read o 11806 17550 24662

write faulta read 18648 7936 3487 3819

page-out discarded o 14660 428 9445’
page-out written 26883 14890 8349 13016

pages flushed o 0 24109 24338

Figure 13: Compiler original strategy copy-back on

I INP Po PP Pu I

memlim (Kb) 3000 7000 6000 11000

ratio 4 4 100 10

user time (see) 194.2 186.1 196.4 166.8

system tme (see) I 33.8 44.2 46.1 52.6

clock time I 23:13 18:35 16:49 17:48

read faulta zero-filled 14 13 17 17
read faulta not read o 27 145 124

rzad faulra read 10818 10736 11798 17424

write faults zero-filled 8429 8245 9499 10412

write faults not read o 5224 10955 17393
writz faults read 11585 5901 6511 9037
uage-out discarded 10 5553 99 5767.-
page-out written 25682 19492 21681 30393

pages flushed 10 0 13276 14296

Figure 14: Sort original strategy copy-back on

NP P() PP Pu

memlii (Kb) 12000 12000 14000 14000

ratio 1000 1000 100 1in-to
1— -

user time (see) 404.4 398.2 397,6 396.6
system time (see) 4.6 6.7 6.0 9.8
clock tnne 6:53 6:49 6:47 6:52

read faults zero-tilled 5 6 868 897

read faulra not read o 0 0 1132

read faulta read o 0 0 0

writz faults zero-filled I 2995 2994 2632 2603

write faultz not read 10 0 0 1478
write faults read o 0 0 0

page-out discarded o 0 0 0

page-out written o 0 0 0
pages tlushed o 0 0 3409

Figure 15: Primes original strategy copy-back on

1~
[mem-lirn (Kb) I 14000 9000 9000 16000 I. .

ratio I 1000 7 7 4

user time (see) 284.0 297.1 310.0 293.2

system tune (see) 85.1 94.3 84.1 81.0

clock time 59:35 20:35 8:49 13:20

read faults zero-filled 32 27 19 1950

t read faulta not read I o 265 360 9605

read faulta read 11942 9397 1163 15009

writz faults zero-filled 11020 10155 10152 8486

write faults not read o 36532 41923 34454

write faults read / 39083 4303 949 4483

page-out discarded ~o 41668 958 11172

Daee-out written ! 57329 14633 2124 20046.-
pages flushed o 0 47715 38144

Figure 16: Compiler original strategy copy-back off

iNP m PP pu

mem _lim (Kb) ~ 3000 7000 8000 11000

ratio 14 4 100 10

user time (see) ! 158.2 159.9 138.5 146.8

svstem time (see) I 45.4 63.5 38.5 54.4

Figure 17: Sort origimd strategy copy-back off

NP Po PP Pu

memlim @b) 12000 12000 12000 12000

ratio 1000 1000 1000 1000

user time (SW) 404.4 403.0 398.2 405.0

svstem time (see) 4.6 30.2 6.7 26.7.,
clock time I 6:53 10:02 6:49 8:11

read faults zero-filled 5 9 6“7

uaze-out discarded 10 0 0 2951--
Dam-out written 1 0 3501 0 574
,“

uaces flushed I o 0 0 0

Figure 18: Primes original strategy copy-back off

51

NP Po PP IPu

mem Jim (Kb) 3500 3000 10000 0
mm newAze @b) 2500 500 1000 500

mm.old-incr (Kb) 3000 3500 5500 5000

user time (see) 297.8 302.4 259.0 280.5.,
Sys@rn t~e (-) 39.5 52.8 55.4 54.3

clock time 21:02 10:03 7:13 7:11

read faulta zero-filled 29 47 36 40

mad faults not read o 274 330 444

read faults read 5349 3047 540 585

write fauha zero-filled 6925 7910 8141 8201

writz faults not mad o 19292 28783 29340

write faults read 16562 2252 765 887

page-out dwcarded o 23196 537 155

1 page-out wrrtterr 25110 5644 1435 1682

pages flushed o 0 32884 34798

Figure 19: Compiler modified strategy copy-back off

)
]NJ PO PP p~

1 mem-hrrr (Kb\ 10 9000 6000 9000.,
min newsize (Kb) 6000 5000 7000 5000

mm.old.incr (Kb) ‘~ 5000 7000 5000

user tmre (see) ~ 129.2 110.4 132.4

systcm time (see) 34.1 46.0 31.0 42.2

clock time 9:55 10:47 6:09 8:59

read faults zero-filled 242 150 2428 132

read faults not read ~ 111 1797 94

read faults mad 4944 6678 4162 5136

write faults zero-filled 10783~ 10715

write faulta not read o 9358 5340 9285

write faults read 3113 610 2641 520

page-out discarded o 12419 428 2917

page-out written 15135 11246~ 8529

pages flushed o 0 8416 10522

Figure 20: Sort modified strategy copy-back off

NP Po PP Pu

memlim (Kb) o 2500 0 8500

mmmewsze (Kb) 4000 4500 5000 4500

mm.old.mcr &b)’ 4000 500 1000 4000

user time (see) [397.2 399.1 398.7 394.1

write faults zero-filled 3182 2703 2417 4708

write fauita not read o 0 0 3121

write faults read o 0 0 0

page-out discarded o 0 0 0

page-out w-men o 0 0 0

pages flushed o 0 0 7178

Figure 21: Primes modified strategy copy-back off

I-. . .-

memllm (Kb) I 3500 3000 10000 0

500 1000 500

3500 5500 5000

minmewkze (Kb) I 2500

min.old-mcr (Kb) 3000 ---- ----
user time (see) 347.7 336.5 287.7 312.8

26.9 71.6 78.1svstcm time (see) I 35.4.
clock time I 16:51 11:26 11:11 10:24

read faulta zero-filled 15 20 35 15

read faulta not read o 17 221 189

read faulta read 3736 2294 1038 591

wrrtc faults zero-filled 4759 4790 6212 4788

Figure 22: Compiler modified strategy copy-back on

,
1 NP Po PP Pu ~

mem An (Kb)

min mewAze @b)

min .old.incr (Kb)

lo 9000 6000 9000 I

5500 5500 7500 5000

)’ I 10500 5500 6500 5000.,
user time (see) I 111.7 146.0 128.7 161.8

;not read o W

i rea d I 8364 1856z

‘-’faul”--_L

page-out discarded o 12086 2

page-out written 21181 31678 1

pages flushed o 0 10386 9208

Figure 23: Sort modified strategy copy-back on

NP Po PP Pu

mem _lim (Kb) o 2500 0 8500

mmmewAze (Kb) 4000 4500 5000 4500

mm.old.irrcr (Kb) 4000 500 1000 4000

user time (see) 405.5 401.3 406.6 398.7.,
svstcm time (see) I 5.3 45 6.6 10.8. . .
clock tnne I 6:55 6:48 6:59 6:58

read faulta zero-filled 31 20 440 592

read faults not read o 0 0 1199
read faults read o 0 0 0

write faults zero-filled 2175 1529 1458 2718

write faults not read o 0 0 1738

vmtc faulta read o 0 0 0

page-out discarded o 0 0 0

page-out wntterr o 0 0 0

pages flushed o 0 0 3328

Figure 24: Primes modified strategy copy-back on

52

