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Abstract

We propose a projective lambda calculus as the ba-

sis for operations on records. Projections operate on

elevations, that is, records with defaults. This calcu-

lus extends lambda calculus while keeping its essential

properties. We build projective ML from this calculus

by adding the ML Let typing rule to the simply typed

projective calculus. We show that projective ML pos-

sesses the subject reduction property, which means that

well-typed programs can be reduced safely. Elevations

are practical data structures that can be compiled ef-

ficiently. Moreover, standard records are definable in

terms of projections.

Introduction

The importance of records in programming languages

is commonly accepted. There have been many propos-

als for adding records in strongly typed functional lan-

guages [Car84, Wan87, JM88, OB88, Oho90, R6m89,

R&m91, CM89, Car91, HP90a, HP90b]. However the

topic is still active and there is not yet a best solution.

Even for the most popular of them, ML, each imple-

mentation extends the core language with records of a

very different kind.

I?or experts of record calculi, the multitude of works

converges continuously towards a better comprehension

of records, but it appears as a jungle of proposals for

the novice that can hardly understand their very insidi-

ous differences. There is a lack of a simple formalism in

which evaluation of row expressions could be described

concisely and precisely. Furthermore, in a typed lan-

guage, the typing rules often add technical restrictions

that increase the confusion. This work started as a

modest attempt to find a simple untyped record calcu-

lus in which most classical operations of records could

be described. It ended in yet another proposal, but one

that subsumes some others.
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In the simplest view of records, there are only two

operations. A record is a finite collection of objects,

each component being addressed by name. The cre-

ation of a record takes as many name-object pairs as

there are components and creates the corresponding

record. The names used to address components are

called labels; a label together with its component is a

field, Reading information from a record takes a label

that defines a field in the record and returns the com-

ponent of that field. Thus the access of a component

in a record should only require that the label does de-

fine a field in the record. Some type systems are more

drastic, and require that the labels of all other fields of

the records be also given at access time. This makes it

impossible to use the same function to access the same

field in two records having that field in common, but

differing by other fields — a feature that is highly de-

sirable.

The most popular extension of simple records is the

creation of a record from another one by adding one

field. This operation is called record ezterwion, If the

component may already be defined in the argument

the extension is free, otherwise it is strict. Conversely,

record restriction creates a record from another one by

removing one of its field. As for extension, restriction

can be free or strict.

The most difficult operation to type is still the con-

catenation of records that creates a record by combining

the fields of two others [Wan89, HP90b]. Again, record

concatenation can be free or strict. There is also re-

cursive concatenation that recursively merges the com-

ponents of common fields, provided they are records

themselves [OB88]. Record concatenation can be en-

coded with record extension, which gives one way of

typechecking record concatenation [R6m92d]. However,

none of the proposal for typing record concatenation is

fully satisfactory.

Between extension and concatenation, there exists

an intermediate operation that takes two records and

a label and builds a record by copying all the fields of

the first record except for the given label whose field

is taken from the second one, whether it is defined or

not. That is, either the label is undefined in both the

second argument and the result or it is defined with

the same value in both records. This operation, called

modification, is strictly more powerful than extension

and restriction, but much easier to type than concate-

nation, since it involves only one field. Other construc-
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tions, such as the exchange or renaming of fields are less

popular, though they easily typecheck in some systems.

We introduce a projective lambda calculus as the

basis for designing functional languages with records,

In the first section, we study the Projective Lambda

Calculus, written PA, extends the lambda calculus

while preserving the Church-Rosser property. There

is a simple projective type system for this calculus, for

which the subject reduction theorem holds. In the sec-

ond section, we extend the simple projective type sys-

tem with the ML Let typing rules and add concrete

data types to the language: this defines the language

we call projective ML. In the last section we elaborate

on the significance of Projective ML from three different

standpoints.

By lack of space, most of the proofs have been omit-

ted, other are roughly sketched. See [R6m92b] for a

more thorough presentation.

1 The projective lambda calcu-

lus

In this section we introduce the untyped projective

lambda calculus. Then, we propose a simple type sys-

tem for this calculus, we prove the subject reduction

property and show that there are principal typings.

1.1 The calculus PA

The projective lambda calculus PA is the lambda cal-

culus extended with three constructions, namely the

elevation, the modification and the projection. It is de-

fined relatively to a denumerable collection of labels,

written with letters a and b.

M ::= z Variable

[AX. M Abstraction

\MM Application

I [M] Elevation

I &I[(2 = M] Modification

] M/a Projection

The intended meaning of these constructions is given by

the reduction rules of the projective lambda calculus.

Namely, the rules are the classical ~ rule:

(AZ. M) N - M[22 := N] (B)

plus the following projective rules (P):

[M]/a + M (DEFAUJJT)

M[a = Aq/a - N (ACCESS)

J4[b = N]/a + M/u (SKIP)

As opposed to records, elevations can be projected on

all labels.

The compatible closure of --t is written —-+ .

The transitive closure of —~ is written —+ and

call ,bP-reduction.

Theorem 1 (Church-Rosser) The calculus ~P is

Church- Rosser.

This means that if .&f /3P-reduces to N and N’, then

there exists a term A/f’ such that both N and N’ ,8P-

reduces to M’.

Proof The reductions /3 and P are Church-Rosser. The

reduction P is a rewriting system that has no critical

pair and is ncetherien, thus it is Church-Rosser. The

reductions /3 and P commute, since the diagram

M —N

I P

P P:

ill’ . . . .. . . . . . ..- N’
P

commutes (this is checked by considering the relative

positions of /3- and P-redexes). ■

1.2 Projective types

Projective types extend the record types that have

been introduced in [R6m90, R6m92c] in order to get

a type system for the record extension of ML presented

in [R6m90, R6m91].

Record types are based on the idea that types of

records should carry information on all fields saying for

every label either the field is present or absent [R6m89].

The way to deal with an infinite collection of labels is

to give explicit information for a finite number of fields

and gather all information about other fields in a tem-

plate, called a row. Record types allow sharing between

the same fields of two rows, but do not allow sharing

between all fields of the same row (except for ground

rows). When a type is coerced to a row, all projections

must be shared for the same reason that lambda bound

variables in ML cannot have polymorphic types.

T ::= type T and u

type variable a and /3

l:+T arrow type

I [P] projection type

p ::= row type p and 9

row variable p and *

1!*P arrow row

la:~;p defined row

/ 8’/- shared row

In fact, rows are sorted according to the set of labels

that they cannot define. We omit this distinction here.

The reader is referred to [R6m92c] for a more thorough

presentation.

The equality on types is defined by the following

axioms. Lefl commutatavity

a:a; (b:~; p)= b:~; (a:a; p)
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The next set of rules deals with the elevations:simply means that the orcler of definition of rows does

not matter. Replzcatzon:

means that shared rows are the same as rows defining

the same type on all labels. Distributivity of arrows:

and

(a:a; p)*(a:,D ;+)= f3:(@+P); (p+@)

means that arrow rows are truly rows of arrows.

Lemma 1 The theoTy of projective types is regular,

unitaTy unifying and has a decidable unification algo-

rithm.

~: The regularity directly follows from the shape

of the axioms. The theory of projective types is

shown syntactic by extending the method developed

in [R6m92c] for simple record terms. This is the dif-

ficult part of the proof. It is a consequence that the

rewrite rules given in the appendix A are sound and

complete. The termination of the algorithm is quite

standard. Then, since the rewrite rules never introduce

any disjunction, the theory is unitary. ■

The unification algorithm is described in the ap-

pendix A.

1.3 A type system for PA

There are two kinds of typing judgments. A type as-

sertion is the binding of a variable $ to a type, written

x :~ r and a row assertion is the binding of a variable

x to a row p, written x :R p. A context, is a list of

assertions with rightmost priority. Mixed contexts con-

tain both type and row assertions. Row contexts only

contain row assertions. Concatenation of contexts is

written by juxtaposition.

The judgement H FT J4 : r means that in the

mixed context H, the program M has type t-. The

judgement H, K I-R M : p means that in the mixed

context H and the row context K, the program M has

row p, The first set of typing rules are the ones of the

simply-typed lambda calculus:

X:Tr EH

Ht-l X:T

H[x :T T] I--T M : a

HI-T AZ. M: T-+CT

(T-VAR)

(T-FuN)

HI-T M:C+I - Ht-~N:c

HtTMN:r
(T-APP)

HE~M:[a:o; p] HI--TN:T

HE~M[a=N]:[a:~; p]
(MODIFY)

Ht-TM:[a:r; p]

H tT &l/a : T

.i7,0kRM:p

H t-T [M] : [p]

(PROJECT)

(ELEV,ATE)

The first two rules are quite standard with record cal-

culi. The last one describes the typing of an elevation.

The elevated expression must be assigned a row. The

row context shall binds variables that will be introduced

during the typing of the current elevation, while previ-

ously bound variables are in the mixed context H. All

expressions can be elevated, thus we need to assign rows

to applications and abstractions as well:

x:Rp EK

H, KtRx:p

H, K[z :R p] +~ M : d

H, KtRAx. M:p+O

(R-VAR)

(R-FuN)

H, K1-RM:19+p H, Kt-~N:O

H, Kt-RMN:p
(R-APP)

Sometimes, one might get a type when a row is required.

For instance, when a type derivation of ~ z. [z], the

variable x will be assigned a type T, but a row will be

expected when typing x in the elevation. The type r

can be lifted to a shared row.

HK1-TM:r

H,h’tRM:8r
(LIFT)

Conversely, a variable bound to the row ~ (r) can be

used with type T:

X: R8TEH

fftTx:r
(DROP-VAR)

Finally, since types are taken modulo E-equality:

HFTM:c c7=ET

HkTM:T
(T-EQuAL)

HI-RM:O 8=Ep

HkRM:p
(R-EQuAL)

We presented the previous set of rules (RT) since there

are simple and very intuitive. There is a smaller and

more regular set (S), given in the appendix B, that are

equivalent to the rules (RT). The judgments of (S)

are H, h’ t-s: p were both H and K are row contexts

(where superscript R is omitted).
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Lemma 2 The judgement H F-T M : r is derivable if

and only if the judgement H, @ K M : 8 T as derivable

where x :T r in T M translated as x : 8 r in S.

~ The proof is by successive transformations of

(RT) into equivalent systems ending with (S). The

first step converts every type assertion x :T r in con-

texts into row assertions x :R 8 (r), replacing in the

derivations, every occurrence of the rule T-VAR by a

rule DROP-VAR. Rule T-VAR is removed. The con-

verse of the LIFT rule:

H, I{l-RM:~T

H~tTki:r
(DROP)

is derivable in (RT), by an easy induction on the size of

the derivation of the premise and by cases on the last

rule of the derivation. It is added to (RT),

Successively, rules FUN and AP~ are removed,

record rules of (S) are added, then those of (RT) can

be removed, rule VAR is added and rule DROP-VAR is

removed. Last, DROP and LIFT are shown to be useful

only at the end of a derivation. ■

Lemma 3 (Stability by substitution) Typings are

stable by substitution.

This property is quite immediate in the case of the a

simple calculus.

The type inference problem is: given a triple H, K ~

M : p, find all substitutions v such that K(H), p(K) F

hf : p(p). The type system (S) has principal typings if

the set of solutions of every type inference problem is ei-

ther empty, or has a maximal clement called a principal

solution, and if, in addition, there exists an algorithm

that takes a type inference problem as input and re-

turns a principal solution or an indication of failure if

no solution exists.

Theorem 2 (Principal typings) The type system of

P.ci has principal typmgs.

~: Type inference for PA is in the general framework

of extending the ML type system with an equational

theory on types. The comma that splits the contexts

into two parts is a detail, since the system (S) is still

syntax directed. The principal type property for such a

system holds in general whenever the axiomatic theory

on types is regular, unitary unifying and as a decidable

unification algorithm [R6m90].

Type inference is based on the syntacticness of the

theory of projective types and the unification algorithm

that follows. It proceeds exactly as for the language

wit h record extension presented in [R6m91]. ■

The algorithm for type inference can be found in

the Appendix C for the language PML presented in the

next section.

1.4 Subject reduction

Subject reduction holds if reduction preserves typings:

for any program M and N, if M has type T in the

context H, K and /3P-reduces to N, then N has type r

in context H, K.

Theorem 3 (Subject reduction) Subject reduction

holds in PA.

~: It is shown independently for all cases of reduc-

tion at the root, then it easily follows for deeper reduc-

tions. The difficult case is ELEVATE. lt uses the lemma

if HK, ~ F M : (a : T; 6) is derivable in S, then so is

HK, @ h M : ~ r which is proved with a little stronger

hypothesis by induction on the length of the derivation

of the premise and cases on the last rule that is not an

equality rule. ■

2 The language PML

Since the simply typed projective lambda calculus be-

haves nicely, we extend it to a full language, PML, in

two steps, We add the ML Let typing rule and then

concrete data types. 111each case we check that the

principal type property and subject reduction still hold.

2.1 Let polymorphism

We extend the projective calculus with a let construc-

tion

M::= . ../letx=Min N

The let is syntactic sugar for marked redexes

(Ax. N)* N

Thus, there is no special reduction rule for let redexes

but the (/3) rule:

(Ax. M)* N +(x* N)(M) (P)

Therefore the calculus remains Church-Rosser.

Types are extended with type schemes. Type

schemes are pairs of a set of variables and a type or

a row, written V W . ~ or VW’ . p. Formally, variables

should be annotated with their sorts, but the sorts can

be recovered from the occurrences of variables in their

scheme. We identify type schemes modulo a-conversion

of bound variables, and elimination of quantification

over variables that are not free.

Type assertions now bind variables to type schemes.

The rules VAR are changed to:

x: VW. pEK dom (p) C W

H, Kt-z: u(p)
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The LET rule is

H. KtJ/f:o

H,K[x : V(p)\ V(Hk)] t- N :0

H, Ktletx=.MiniV:6
(LET)

where V(p) is the set of free variables in p and V is

naturally extended to contexts.

The extension of PA with let binding does not in-

terfere with projections, and the substitution lemma,

and the principal typing property and subject reduc-

tion theorems easily extend to PML.

2.2 Concrete data types

The language is now parameterized by a finite collection

of concrete data types. For sake of simplicity, we con-

sider a single two-constructor data type. We shall make

other simplifying assumptions on types below, but it is

possible to generalize to arbitrary data types.

The data type that we consider could be declared

in ML as:

type bar (p) = A I B of P

The syntax is extended with:

M ::= . . .

I A I B(M)

I match M with A

The new reduction rules are:

{match A with A + M

lB(y)+N)+M

(match B(L) with A + M

lB(y)=+lV)+(Jy. N) L

These &reductions are CR and commute with PP.

Therefore the language PML with sums is still Church-

Rosser.

Types are also extended with a symbol bar of arity

one.

T
..—
. . . . . . Old type

bar (r) bar type

P::= . . . Old row

bar (p) bar row

We should have used two different symbols for bar types

and bar rows, but the context will distinguish them.

The symbol bar obeys the two distributivity axioms:

bar(a : a;~) = a : bar(a); bar(p)

~ (bar (a)) = bar (t?a)

We add the three typing rules:

H,h-FM:p

H, ~{ + A : }JZW (p) H, h“ E B(M) : bar (p)

H, K1-L: bar(0)

H, I{l-M:p H, I<t Ay. N:O+p

match L with A + M I l?(y) + N : p

Theorem 4

pal typings.

Theorem 5

sums.

3 The

The language PML with sums has princi-

Subject reduction holds for PML with

three views of PML

Projective ML is a practical language of records with

default values. It is also a language in which all oper-

ations of classical records but concatenation are defin-

able. Finally, computation inside elevations introduces

a new kind of polymorphism.

3.1 Records with default values

To the author’s knowledge, this feature has never been

introduced in the literature before. Instead of start-

ing with empty records that can be extended with new

fields, projective ML initially creates records with the

same default value on all fields, Then a finite number

of fields can be modified. Thus, all fields are always

defined and can be read.

The introductory examples below have been type-

checked by a prototype typechecker written in Caml-

Light [Ler90]. The first examples are:

#type unit = Unit;;

#let r = [Unit];;

r:shared [unit]

#rfa;;

it:shared unit

#type bool = True I False;;

#let s = r [a = True];;

s:shared [a: bool; unit]

#s/a;;

it: shared bool

The a field of s cannot be removed, but it can be reset

to its default value. Whenever the types of fields are

known statically, but not their presence, the attendance

can be dynamically checked:

#type field (6) = Absent ] Present of

#let r = [Abs] [a = Present (True)]

[b = Present (Unit)];;
r:shared [a: field (booI); b: field (unit);

#let check x =

match x with Present y + y

8;;

field ((3)]

I Absent + failwith “Absent field”;;

check: field (8) + 0

#let v = check (r/a);;

v:shared bool

If the presence of fields is statically known, the two-

constructor data type can be replaced by two one-
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constructor data typesj leaving the typechecker check

attendance.

#type absent = Absent;;

#type present (f)) = Present (0);;

#let get x = match x with Present y + y;;

get:present (8) * O

#[Absent][a = Present (true)] [b= Present (unit)];;

it: shared [a: present (booI); b: present (unit); absent]

#let v = get (it/a);;

v:shared bool

Record with defaults are not just an untractable toy

feature. They can be compiled very efficiently, as clas-

sical records [R6m92a].

3.2 Classical records

Continuing the example above, we show that classical

records are definable in projective ML. Precisely, clas-

sical record operations are just syntactic sugar for:

{}= [Absent]

{M with a = N} a M[a = Present (N)]

(Ma) - get (lbI/a)

Many other constructions are programmable as well,

since projective ML allows the manipulation of fields

whether they are present or absent.

M \ a a M[a = Absent]

{M but a from N} a M[a = N/a]

{exchange a and b in M} E let u = M/a in

let v = M/bin

M[a = v][b = u]

Though efficiency is not our main goal here, it is im-

portant to emphasize that dealing explicitly with the

presence of fields does not cost anything. Since both

abs and pre data types have unique constructors, the

constructors need not be represented explicitly. That

is, the presence of fields can be statically computed by

the typechecker. Even the default value Absent need

not be represented, since it is the only value in its type.

Thus the (very small) overhead for computing with el-

evations only costs when there are used.

Obviously, the projective implementation of stan-

dard records can be packed in an abstract data type or

a module so that the two types pre and abs and their

constructors are not visible outside, and the presence of

fields cannot be manipulated by hand. But elevations

and projections will remain visible, can be used when-

ever defaults values in records are desirable, or also to

implement another variant of classical records.

3.3 Projection polymorphism

The last view of projective ML is quite unexpected. The

elevations are assigned rows that are in fact “template”

types. That is, they can be read on any component

by taking a copy of the template; therefore the type of

two projections will not be equal but isomorphic. For

instance, with classical records as in [R6m91] (or using

the syntactic sugar of the previous section) the function

that reads the a field of a record has type:

[a:pre~; p]-+~

But this type can also be seen asl:

With classical records, this polymorphism allows the

finite representation of a potentially infinite product of

types, and nothing more. In projective ML, we can fill

the elevations with any value and even compute inside.

The identity function elevation [A z. z] has type [~ +

p]. Taking its projection on two arbitrary fields gives

twice the same value but with two isomorphic types

a -+ a and /? + ~. The program,

cannot be written in ML without a LET. In projective

ML one can write:

(Ax. x/a z/b) [~ z. z] (2)

which has type a + a. It can be argued that this is not

exactly the same program, and that, if program trans-

formations are allowed, then the following ML program

also computes the same result.

This is certainly true, but the program (3) is much big-

ger than the program (1) and duplicates some of the

code. The expression (2) is almost as small as the ex-

pression (1) and takes less time to typecheck (for bigger

example of course, since all examples here are too small

to allow any comparison). In (3), the body of AZ. z is

typed twice, but it is typed only once in (2) before the

resulting type is duplicated by unification.

Moreover, if we consider a variant of PML without

the possibility of modifying elevations,

M::=xl Az. MI MMl[M]l M/a

then projections always access the default value of el-

evations (since they could not be modified). Elevation

and projection can both be implemented as empty code.

They only modifies the types (they are called retyping

functions), and helps the typechecker as if they were

type annotations. The elevation indicates that an ex-

pression may be used later with different types, and

1In [R6m92c] we define canonical forms and show that both

type have the same canonical form, though they are not equal

(the latter is less general).
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thus should be typed with a row. The projection re-

quires the use of a copy of the row template instead

of the row itself. The copy is kept inside the row for

constraint propagation.

Breaking the expression (2), the sub expression

(Az. z/a r/h) has type:

[a: T+a; b: T]4a (4)

There are obvious similarities with conjunctive

types [Cop80, Pie91]. This expression would have the

conjunctive type

(~+aA~)~a (5)

Projective ML differs from conjunctive types by nam-

ing the conjunctions, but also in some deeper way. The

projection, which correspond to the expansion in conj-

unctive types, is much more restrictive than the ex-

pansion. An interesting comparison would be with the

decidable restriction of conjunctive types that has been

recently proposed by Coppo and Denzianni [CG92].

There is an important limitation in the type system

of projective ML: it is a two-level design. Elevations

inside elevations get typed with shared rows and pro-

jective polymorphism is lost. A stratified version with

types, rows, rows of rows, etc. composing an infinite

row tower can be imagined. The author has actually

worked on such a version but has not proved yet that

it is correct.

Another form of this limitation of projective poly-

morphism is its failure to cross elevations. The best

type for Ax. [r] is d a ~ [Fl Q], while we would expect

y a [y]. Variables in elevations that are bound outside

of the current elevation in which they appear can only

have shared rows.

Projective polymorphism combines nicely with

generic polymorphism. The two concepts are orthog-

onal. Here is an example that combines both:

let F= Af. Ax, y. f/a x, f/b yin

F [1] (1, 1{), F [K] (1, k“)

where I and K are abbreviations for Ax. x and A XV. x.

It is typeable in projective ML.

Conclusions

We have introduced Projective ML, and shown that it

is a type-safe language. Projective ML exceeds ML on

two opposite fields.

● Elevations, modifications and projections are ex-

tensible records with defaults. With only three

operations that can be compiled very efficiently,

they provide the ML language with enough power

to define all variants of classical records.

● Projective ML brings in the type system a re-

stricted form of conjunctive polymorphism.

The curiosity of Projective ML is that both features are

almost independent but one still need the other. The

most intriguing of the two is projective polymorphism,

for which more investigation is still needed.
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A Unification on projective

types

We describe the unification algorithm by transforma-

tion rules on unificands (multi-sets of equations). The

formalism is the one of [R6m92c] in general, improved

with existential unificands [KJ90]. A multi-equation

is a multi-set of terms written rl = . . . ~n. A SOIU-

tion of a multi-equation is a substitution that unifies all

the terms of the multi-equation. A multi-set of multi-

equations is noted U1 A . . . UP. Its solutions are the

substitutions that satisfy all the multi-equations, We

also use existential unificands, written %.U, whose so-

lutions are the restrictions of the solutions of U on vari-

ables distinct from a. Indeed, 3 acts as a binder, and

existential unificands are equal modulo a-conversion.

Consecutive binders can be exchanged, and %.U is

equal to U whenever a is not free in U. We identify

unificands modulo the previous equalities.

Two unificands U and U’ are equivalent, and we

write U ~ U{ if they have the same set of solutions.

The relation ~ is obviously an equivalence. It is also a

congruence, that is, parts of unificands can be replaced

by equivalent parts. We also write _L and T for unifi-

cands that are respectively equivalent to the empty set

and the set of all substitutions.

The input of the unification algorithm is a multi-

set of equations. The output will be failure or a most

general solution of the input unificand. It proceeds in

three steps. All of these steps are described by trans-

formations of unificands that are equivalences.

Most of the transformations are valid for both types

and rows, We write x and if for terms and ~ for vari-

ables that can be of both kinds, The first step is the

generalization:
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An iteration of this rule will transform any system into

one that contains only small terms (terms of height at

most one).

The second step is only defined on small unificands,

and keeps them small. The mutation of unificands is

one of the four following transformations ($ is a symbol

of arity p and 1 is the segment of integers [1, p]):

(1 :T; p = f(oi)~

3 (ai)~ (W)l.

{

‘r = f(cYt)l

~ P = f (w),
6’~&CL:CY.i;~i iEI

For all other pairs of terms (~, {), if they have identical

top symbols, they are decomposable, that is

~=[

AI(~/i G &/i)
(DECOMPOSE)

otherwise they produce a collision

x~’t

A~(Mi = &/i)
(COLLISION)

All mutation, decomposition and collision rules can

be generalized to rules where the premise is a multi-

equation rather than an equation: for any mutation

rule
~={
—

Q

we build the generalized mutation rule:

ek,y~~

e&xAQ

The fusion of multi-equations is:

~&eA~&e’
(FUSE)

fi+e+e’

Applying the generalized mutation and the fusion in

any order always terminates on small unificands. Unif-

icands that cannot be reduced are necessarily in canon-

zcal forms, that is, completely decomposed and fused.

The last step does the occur check on canonical unif-

icands while instantiating the equations by partial so-

lutions. On canonical unificands Q, we say that the

multi-equation e’ is directly inner the multi-equation e

if there is at least a variable term of e’ that appears

in a non variable term of e. We note + Q its transitive

closure. The occur check is the rule

Q
if e <Q e,

~

1-

(OCCUR)

Otherwise, we can apply the rule:

ife+Q,

eAQ

e A 6(Q)
(REPLACE)

where E is the trivial solution of e that sends all vari-

able terms of e to the non variable term if it exists, or

to any variable term otherwise. The REPLACE rule is

completed by the elimination of useless existential

3r. (n=e AQ)

if~~enQ, (RESTRICT)
eAQ

The succession of the three steps either fails or ends

with a system 3W. Q where all multi-equations are inde-

pendent. A principal solution of the system is Q, that

is, the composition, in any order, of the trivial solutions

of its multi-equations. It is defined up to a renaming of

variables in W.

The last step may be reduced to the occur check,

and the equations in the unificand need not be instan-

tiated by rule REPLACE, since the canonical unificand

itself is a good and compact representation of a princi-

pal unifier.

Although it is described in a more general frame-

work, the algorithm is very close to the one of Martelli-

Montanari for empty theories [MM82], some of the col-

lisions have been replaced by mutations in a way that

copies the axioms of the theory. This is a property of

syntactic theories [Kir86, KK89]. Proving the correct-

ness of the algorithm is reduced to proving the syntac-

ticness of the theory and the termination of the second

step. Proving the termination is standard, but proving

that the theory is syntactic is the difficult part.

The second step may not be restricted to small

terms. In this case the generalized mutation and de-

composition rules need to include the minimum of gen-

eralization so that there is enough sharing to ensure the

termination.
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B A simpler set of typing rules

for the projective calculus

‘he judgments are of the form H, K 1- ill : p, where

H and 1{ are row assertions. The typing rules, called

(S) are:

z:8r EH\K x:p EK

H, Ktx:8r H, Kkx:p

H, K[.z:p]l-M:O

H, KkAx. M:p+O

H, KtM:O+p H, K1-N:O

H, K1-MN:p

HK, @EM:p

H, K 1- [M] :8 [p]

H, Ii-l- N: ~(a)

H, KhM:tl[a:~; d]

H, I{l-M[a =N]:tl[a:a;8]

H, I{l-[M]:~[a:r; O]

H, KkM/a:8r

H,lil-M:6’ g=Ep

H,il-l-ill:p

C Type inference

The above set of rules is completed with:

H, KtM:p

H, 1([Z : V (V(p)\ V(HK)) . p] t- N :0

H, Kkletx=Min N:O

(VAR)

(FuN)

(APP)

(ELEVATE)

(MODIFY)

(PROJECT)

(EQ-UAL)

(LET)

The rules are not exactly those of ML. The two rules

MODIFY and PROJECT can be treated as application

of constants. The rule equal, due to an extended type

equality, does not add any difficulty, provided that the

theory is regular and has a decidable and unitary unifi-

cation algorithm [R611190]. The only clifference with ML

(extended with equations on types) is the mark in the

context. However, the position of the mark is rigid, and

the type inference algorithms of ML very easily extends

to the system S. We describe the algorithm in terms

of unificands. The substitution lemma (that extends

to PML) allows to consider type inference problems as

unificands, written H, h“ b M : p, whose solutions are

the substitutions IL such that w(H), /~(K) !-- M : ~(p) is

a valid judgement. We give below equivalence transfor-

mations of these unificands.

Case VAR: Ifx:drisin H\ K, and

of variables of V(-r) outside of a, then

H, Kbx:o

3 V(/L(T)). a = p(~)

p is a renaming

(T-VAR)

If z : p is in K, and is a renaming of variables of V(p)

outside of f?, then

(R-VAR)

If x is not in HK, then H, K D x : G is not solvable.

Case APP:

H, KpMN:p

(APP)
3+. H, KDM:+AH, KDN:$*P

Case FUN:

Case LET: If /3 is outside of HI< and 3 W, Q is a

solvable independent unificand equivalent to H, h’p M :

~, then

H,Kbletx=MinN:T

3 W. H,K[X : Q(p)] DN : ~
(LET)

If H, KpM : ~ is not solvable, then neither is H, Kb

letx=Min N:a.

Case ELEVATE:

H, K D [M] : p

3a. HK, @D M:a A8a&p
(ELEVATE)

The above rules applied in any order either fail or re-

duce any type inference problem to a unification prob-

lem,
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