
Parsers in ML
Michel MAUNY Daniel de RAUGLAUDRE

INRIA-Rocquencourt*

Abstract

We present the operational semantics of streams and

stream matching as discussed in [12]. Streams are data

structures such as lists, but with different primitive op-

erations. Streams not only provide an interface to usual

input joutput channels, but may used as a data structure

per se, holding any kind of element. A special pattern

matching construct is dedicated to streams and the ac-

tual matching process will be called parsing.

The primary parsing semantics that we propose here is

predictive parsing, i.e. recursive descent semantics with

a one token look-ahead: although this choice seems to

restrict us to the recognition of LL(l) languages, we show

by examples that full functionality and parameter passing

allow us to write parsers for complex languages. The

operational semantics of parsers is given by transforming

parsers into regular functions.

We introduce a non-strict semantics of streams by

translating stream expressions into more classical data

structures; we also investigate different sharing mecha-

nisms for some of the stream operations.

1 Introduction

Several functional languages provide ways to assign a con-

crete syntax to data types [18, 1] and to define parsing

functions [18, 3].

In [12], the first author proposed an integration of a

parser definition facility in functional languages. This

proposal was based on pattern matching values of a

stream data type. The present paper presents an op-

erational semantics for these streams and their pattern-

matching (parsing): recursive descent semantics for pars-

ing, with one look-ahead token (predictive parsing). In

*Authors address: INRIA, B.P. 105, F-78153 Le Chesnay Cedex.
Email: {Michel. Mauny ,Daniel. deRauglaudre}@inria .fr

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 ACM LISP & F. P.-6/92/CA
@!1992 ACM 0.~979J-483.~/92 /0006 /0076,.. $J ,50

other words, a parsing rule is chosen if the first terminal of

the stream argument is accepted by the first component

of the stream pattern. This simple semantics combined

with the full functionality of ML makes it possible to write

in a simple way very powerful parsers.

Generally, the technique used for compiling grammar

specifications into parsing functions produces bottom-up

parsers and is often limited to LALR(l) languages [2].

This technique has the advantage of allowing the writing

of rather high-level specifications (context-free grammars)

and of producing efficient parsers. However, the gener-

ated parsers are driven by parsing tables, which make de-

bugging of parsers difficult (e.g. one cannot trace a spe-

cific non-terminal). Furthermore, these techniques pro-

vide no parametricity for parsers.

Depending on the host language (purely functional or

admitting side-effects), parsing can have a destructive ef-

fect on the stream argument or not. The destructive se-

mantics has been implemented in the Carol Light sys-

tem [9], and it proved to be efficient.

The remainder of the paper is organized as follows, We

first recall the syntax and typing rules of stream expres-

sions and parsers. Section 4 gives an operational seman-

tics for parsing and for stream expressions. Section 5

gives examples of parsers. The current implementation of

streams and parsers is described in section 6, where per-

formance is discussed. Finally, the integration of these

features in a purely functional language is presented in

section 7, and recursive descent parsing with a limited

form of backtrackkg is outlined.

2 Syntax

We extend ML with a data type for stream values and

functions defined by case on their stream argument. We

follow the syntax of the Carol dialect of ML [5, 18]. The

syntax of expressions is extended by the following con-

structs:

ExpT::= . . .

[[< >1

I [< t%. C07TLP. ; . . . ; stT. CO??lp. >]

[parser StT. pat. + EXpT

. . .

I Str. pat. + Expr

where Str. comp. is the syntactic category of stream

components:

76

type token = INT of int I ID of string I LAM I DOT I LPAR I RPAR I PLUS I MINUS I MULT I DIV

The lexical analyzer (omitted) hasthe type char stream + token stream.

type lambda = Id of string I Int of int

I App of lambda * lambda I Abs of string * lambda

I Plus of lambda * lambda I Minus of lambda * lambda

I Mult of lambda * lambda I Div of lambda * lambda

The exprfunction oftype token stream + lambda is the entry point:

1. let rec expr = parser [< ‘LAM; ‘ID s; ‘DOT; expr e >] + Abs(s,e)

2, I[<ackle>]+e

3, and add = let rec rest el = parser

4 [< ‘PLUS; mult ez; (rest (Plus(el,ez))) e >1 + e

5 I [< ‘MINUS; mult ez; (rest (Minus(e1,e2))) e >] + e

6, I [< >] + e~

7 in parser [< mult el; (rest el) ez >1 + ez

8.

9. and mult = let rec rest el = parser

10 [< ‘MULT; appl e2; (rest (Ilult(el,e2))) e >] + e

11 I [< ‘DIV; rnult ez; (rest (Di.v(e1,e2))) e >] + e

12 I [< >] + e~

13. in parser [< appl el; (rest el) ez >] + ez

14.

ls.and appl = let rec rest el = parser

16, [< atom e2; (rest (App(el,e2))) e >] + e

17, l[<>]-iel

18. in parser C< atom el; (rest el) ez >1 + ez

19,

zo.and atom = parser [< ‘INT n >] + Int n

21, l[<)IDs>]+IclS

22. I [< ‘LPAR; expr e; ‘RPAR >] + e

Figure 1: A parser for A-terms

Str. comp. ::=) Ezp r

[Eqn-

The syntax of streams looks like that for lists. Astream

component is either a “singleton” stream ‘E, where E

is an expression, or a substream E, where E is an ex-

pression. For instance, if both s and t are streams of

integers, then [< ~1; s; t; ‘ 10 >] is a stream of inte-

gers containing in order the element 1, the elements of

s, the elements of t, and 10. The infinite stream of all

integers can be built in the following way:

(* lnts: lnt stre~ *)

let ints =

let rec ints_from n = [<’n; ints_from(n+l)>]

in ints_from O

Parsers useparse rules composedof astreampattern (St~,

pat.) and an expression. Stream pattern components are

either “terminalp atterns” or “non-terminal’’c allsonthe

implicit stream argument:

Str. pate ::= [< >1

j [< Str. pat. comp. ; . . . ; Str. pat. comp. >]

with arithmetic infix operators.

Str. pat. comp. ::= ExpI’.Pattern

! >Pattern

Stream patterns componentsof the form ‘Pattern areto

be matched against stream elements. The expression part

of ExprPattern denotes the cd ofa non-termina.lto the

actual stream argument, whose result will be matched

against the pattern.

Stream patterns are intended to match initial segments

of streams. Therefore, the empty stream pattern matches

any stream, acting as a “wildcard”. For example, the

following parser returns the first element of its integer

stream argument or the integer O if the stream is empty:

(* next-int: int stream + int *)

let next_int = parser [< ‘n >1 + n

1[<>]+0

A more complete example appears in figure 1: a parser

for }-terms extended with integers and infix arithmetic

operators, We will useit as a running example,

77

(1) 17IExp [< >1 : a stresnr

17~xpe:7
(3)

r&C ‘e : ~ stre~

(2)

(4)

rbJJcSCi:7_StreaIn i=l,. ... ?t

rbxp [<scI; . . . ;scn>l : I- stream

rbxp e : T stream

rbEC e : T StreSJII

(5) 17l-sp,, [< >1: a stream*@

(6)
r+ Al+... +Ai-lbPc sc~:~stream=+A; ,... ,ni=l .Do~(Ai) fl Dom(Aj) n @ i # ~

rkpat C<SC1; ...; SCn>l :-rstream ~A1+. ..+An

r&kp:7~A
(7)

17&Pe:7stream-+a
(8)

rt-patp:C7+A

r tSpc ‘p : ~ streem * A rbp~ep : T S’&e~ ~ CZOS(A,~V(r) U ~V(T))

I’~pat Spi : ~ streams At I’+Ai&Pei:a i=l,. ... n
(9)

r~xP (p=== SPI + el I . . . I Spm + en) : I- stream + a

Figure 2: Typing rules for streams and parsers.

3 Types

The inference rules are given in figure 2. The notation

should be explained: typing environments (I’, A, . . .) are

partial maps from identifiers to type schemes. We write

I’+ A for the typing environment associating A(x) to the

identifier z if A(z) is defined, I’(z) otherwise.

FV (-i-) is the set of free type variables occurring in the

type ~. For type schemes, FV(Val . . . an.~) = FV(r) \

{a,,..., an }. The Clos function is in charge of type gen-

eralization. It is defined by C/os(-r, V) = VCZ1 . . . an.T,

where {al,. . . . an} is FV(T) \ V. Clos and FV are ex-

tended to type environments: Clos (I’, V) generalizes all

type assumptions of r with respect to V, and FV(I’) is

the set of all free type variables occurring in 17.

Rules 1 to 4 deal with the typing of stream expres-

sions: rules 3 and 4 type stream components (defining

the ~EC auxiliary predicate), and rules 1 and 2 type

stream expressions (extending the typing relation tEXP

for expressions). As expected, they force all elements of

a -r stream to be of type ~, and all its substreams to be

of type ~ stream.

Rules 5 to 8 assign types to stream patterns and pro-

duce the typing environments (written A) that will be

used on the right-hand side of parsing rules.

Rules 7 and 8 define the typing relation FSPC (typ-

ing stream pattern components). Rule 7 deals with pat-

terns matching stream elements (terminals), while rule 8

deal with non-terminal calls. Since non-terminal calls can

produce polymorphic values, these values being matched

against a pattern, we generalize all typing assumptions

produced by the pattern, with respect to type variables

occurring free in the current environment or in the type

of the stream argument.

Rules 5 and 6 give types to stream patterns, defining

the l-spat typing relation. Rule 6 types stream pattern

components in sequence, composing the typing environ-

ments produced by typing previous components. This

allows for the usage of values produced by a stream pat-

tern component in subsequent non-terminal calls in the

same stream pattern. For example, in figure 1, line 4, e2,

produced by non-terminal mult is used in the argument

of the recursive call to rest.

This implies a left-to-right matching, since a value

bound by a stream pattern component can be used in

a non-terminal call occurring on its right, in the same

stream pattern. However, stream patterns are still linear:

a variable cannot have more than one binding occurrence

in a stream pattern, hence the side-condition of rule 61.

Finally, rule 9 gives a type to parsers, and is similar to

the rule for typing pattern-matching functions.

4 Operational semantics

In this section, we give an operational semantics for

streams and parsers. We use a translation from a func-

tional language extended with stream expressions and

parsers to a conventional functional language. We first de-

scribe the semantics of parsers, by introducing two primi-

tive operations on streams, The precise behavior of these

1This point can be discussed: the operational semantics given
below imply a left-to-right matching of streams, and two binding
occurrences of the same vwi.a ble in the same stream pattern are seen

as two consecutive let’s on the same variable, the second hiding the
first. Therefore, non-linear stream patterns could be accepted, as
long as it is clear that variable binding occurs in sequence, from
left-to-right.

78

TExpT [] : Expression 4 Expression

TExpr [parser c1 I . . . I Cn] = function strm + TRuk[cl] (TRuk[c2] (... (Tlluk[cn] (None)) . . .))

TExpT [[< >]] = Stream(ref (value Sempty))

TExpr [[< scs >]] = Stream(ref (Delayed (function () + Sapp(Stream(ref (Value Empty)), TSC [SCS]))))

TExpr ~el ez] = (TExpr ~el~) (TExpr [ez])

TExpr [z] = z where z is a variable name

And similarly for other ML constructs.

TRule [~ . : Parse case + Expression -+ Expression

TRule [[< ‘P; spcs >] + 1?] K = match (peek strm)

with Some P + junk strm ; TRule [[< spcs >] + E] (raise ParseFailed)

I .*K

TRule [[< j(P); spcs >] +E] K = match (TExpr [f]) strm

with Some P + TRule [[< spcs >] + E] (raise ParseFailed)

I None+ K

/ . + raise MatchFailed

TRule [[< >] +E] K = Some(TExpr [E])

TSC [] : List of stream components -+ Expression

TSC ~..?l; SCS] = Stream(ref (Delayed (function () + Scons (TExpr [E] , TSC [SCS]))))

TSC [E; SCS] = Stream(ref (Delayed (function () + Sapp (TExpr [E], TSC [SCSI))))

TSC ~] = %ream(re-f (Value Sempty))

Figure 3: Translation of streams and stream matching,

primitives depends on the semantics of stream expressions

which will be given in section 4.2.

4.1 Stream pattern matching

We give the operational semantics of parsing by translat-

ing parsers into the core ML language, extended with

stream expressions and special functions operating on

streams. The primitives operating on streams are:

peek: a stream + a option

junk: a stream + unit

The option type is defined as:

type a option = Some of a I None

The peek function returns either the first element of its

stream argument, or the constant None if the argument

is the empty stream. In the semantics presented in this

section, the junk function has a destructive effect on its

stream argument: the first component is removed, and

the stream is physically updated by its tail, In the gen-

erated programs, junk is always called after a successful

call to peek, and thus cannot be applied to the empty

stream.

We assume defined the exception MatchFailed, pro-

vided by the host language and raised when pattern-

matching fails. We introduce a new exception

ParseFailed. The semantics of stream matching is given

by the TExpr [] function, which takes as argument a

parser body (i.e. a list of parse cases) and returns a

function body with a single case. The stmm variable

name is supposed to be new and occur nowhere else in

the program. The TExpr [] transformation recursively

translates other ML constructs, preserving their original

structure. The translation is given in figure 32. The

TRule [n K transformation takes as arguments a parse

case to be translated and a translated program text K,

acting as a continuation.

The translation of a non-terminal call (second case of

the definition of TRule [] K) produces a mat ch construct,

which should generate polymorphism, extending the ML

let construct.

Type variables of (TExpr [fj) strm that do not occur

free in the current typing environment (which contains a

binding for the stream argument strm) can therefore be

generalized. This justifies typing rule 8, figure 2.

As an example, the translation of the definition of expr

(figure 1, lines 1-2) has the following shape:

1.

2.

3.

4.

5.

6.

(* expr: token stream + lambda option *)

. . .

and expr = function strm +

match peek strm with

Some LAM + junk strm;

(match peek strm

2The $~m~tch , . . with . . . 77 construct matches an expression
aga]nst patterns: It can also be written “case , , , of . ., “; the “raise
Exe” expression raises the exception Exe.

3Actually, the let construct should be considered as a derived
form of match, inheriting its typing rules. This is true in the Carol
implementation [18], but not in the SML Definition [14].

79

7, with Some(ID s) + (match . ..)

8. I _ -I raise ParseFailed)

91 . + (match add strm

10 With Some e + Some e

11 I None + None

12. I _ + ~alse NatchFalled)

We can see on this example that the choice ofa pars-

ing rule is done according to the result of matching the

first element of the stream: the translated function first

matches the current token against LAM (line 5), and, if

the rnatchfails orthe streamis empty, calls add on the

stream, and returns None if add returns None (line 11).

Since the translation ofadd will have the sarnebehavior,

the choice of the parsing rule is done according to the

shape ofthe first token.

Inner matches either succeed, orproduce ParseFailed.

MatchFailedis raisedwhen the result ofasuccessful non-

terminal call does not rnatchthespecified pattern.

As we expect, left-recursion generally produces non-

terminating parsers, since a recursive parser prodnces a

recursive function, and a left-recursive parser may call

itself without consuming any input from its stream argu-

ment.

The translation given in figure 3 uses the option type

for the sake of readability. As shown by the example

above, this has the effect of producing a function of type

a stream + ~ option for a parser of type u stream +

p. The types of parsers could be preserved by using an ex-

ception NotFound, raised instead of producing None. This

is the mechanism used by the current implementation (cf.

section 6).

4.2 Stream expressions

Streams are preferably submitted to lazy evaluation. One

reason is efficiency: a big stream can be constructed while

a small part of it is used (in case of parsing error, for

example). Furthermore, it is natural to build infinite

streams and, in this case, lazy evaluation prevents a pro-

gram from looping on that stream if the entire stream is

not needed. Laziness is even more necessary if we want to

model the normal ML input/output features as streams

and stream operations: in the case of interactive input,

building the input stream must not require a character to

be typed on the keyboard before this character is actually

needed by a parser.

Moreover, since we chose the destructive semantics for

stream matching, streams are “consumed” by parsers,

and they are thus similar to references in ML. The de-

structive semantics of stream matching interacts well with

polymorphism: the well-known problem of “polymorphic

references” [6, 16, 10] does not occur as long as streams

cannot be extended in-place: the only destructive opera-

tion allowed on a stream is removing its first element.

We have two possible behaviors for stream concatena-

tion. When substreams appear in streams, we can:

● either share them (i.e. parsing the stream will af-

fect its substreams, and if several occurrences of the

same substream appear, that substream, as well as all

its other occurrences, will be emptied when the first

occurrence will be completely parsed);

● or copy them (i.e parsing the stream will not affect

substreams).

We present below two implementations of stream expres-

sions following each of the semantics given above. The

data type of streams is defined as:

type a stream = Stream of a str delay ref

and a delay = Delayed of (unit + a)

I Value of a

and a str = Sempty

I Scons of a * a stream

I Sapp of a stream * a stream

The type delay, combined with the ref type, is used

to encode lazy evaluation in a strict language. This en-

coding is not satisfactory, since the creation of references

on polymorphic values will prevent some translated pro-

grams from being typable. The availability of lazy data

structures in a strict language [13] avoids this problem.

However, we still need references to simulate destructive

semantics: we thus cannot avoid typing problems for the

translated programs.

The basic functions for direct manipulation of values

of type stream are the peek and junk functions given

below. First of all, we need a function force evaluating

delayed values:

(* f~r~e : a delay + a *)

let force s = match !s

with Delayed f +

let v = fo in s:=Value v; v

I Value v + v

We now come to the translation of stream expressions.

We extend the function TExpr [] to stream expressions

(cf. figure 3). The TExpr [] function delays the evalua-

tion of the first element of a stream by appending the

empty stream in front of the stream argument. The

TSC ~] auxiliary function translates stream components.

4.2.1 Substream sharing

The first semantics presented above can be implemented

by the following peek and junk functions. The peek func-

tion is defined by:

(* peek: a stream + a option *)

let rec peek = function Stream s as str +

match force s

with Sempty + None

I Scons(x, _) + Some x

I Sapp(sl, Stream s2) +

(match peek SI

80

with None + S:=!S2; peek str

1X+X)

and the junk function by:

(* junk: a stream + unit *)

let rec junk = function Stream s +

match force s

with Scons(_, Stream s’) + s:=!s’;()

I Sapp(s’,_) + junk s’

I _ + raise (Failure “Junk: Bug”)

The junk function can only be called after peek hasre-

turned a value different from None, thus cannot receive

the empty stream as argument.

4.2.2 Substream copying

Copying substreams can be implemented by making

copies of (suspensions of) substreams encounteredby the

peek function. Since we have references to represent sus-

pensions, it is then sufficient to copy those references.

Moreover, wecan take advantageof the fact that streams

can remodified in-place to reorganize the streamby bal-

ancingit totheright, in order tooptimize further accesses

to its head. We omit the precise definition of peek.

This balancing guarantees that junk is always applied

on a Scons stream:

(* junk: a stream + unit *)

let junk = function Stream s -I match force s

with Scons(_, Stream s’) + s:=!s’; ()

I _ + raise (Failure “Junk: Bug”)

Copying substreams implies a loss of substream sharing:

they are not emptied when their copies are parsed, but

they do not benefit from the computations performed on

their copies. This mechanism is thus closer to “caH-by-

name” than to lazy evaluation.

5 Examples

We give a few examples of usage of streams and parsers.

All examples run in our implementation.

5.1 Parameterized parsers

The next examples show parsers parameterized by data

structures or functions. The following parser is a partial

rewrite of our running example (figure 1), that produces

~-terms with de Bruijn indices instead of variable names.

The sum type lambda must be changed to include Id

of int, encoding variable names by integers. An extra

argument rho, a list of variable names, has been added

to each parser. When parsing an abstraction, its body

gets parsed with the abstracted variable added to rho,

and parsing an identifier returns its index in rho.

(* expr: string list

+ token stream + lambda *)

let rec expr rho = parser

[< ‘LAM; ‘ID S; ‘DOT; (expr(s: :rho)) e >]

I [< (add env)

and . . .

and atom rho =

[< ‘ INT n >]

+ Abs(e)

e>]+e

parser

-+ Int n

I [< ‘ID s >1 + Id (index s rho)

I [< ‘LPAR; (expr rho) e; ‘RPAR >] + e

We can also parametrize a parser by another parser.

It is common, when writing the grammar of a program-

ming language, to write several times the same parsing

scheme used with different non-terminals. In these cases,

parameterized parsers are of great utility. The following

parser recognizes arbitrary sequences of valid inputs to

its parameter elem.

(* star: (a stream + /3) + a stream + /3 list *)

let rec star elem = parser

[< elem e; (star elem) 1 >1 + e: :1

1[<>]+[]

The star parser returns the list of results returned by

its parameter elem. An example of specialization of the

star parser is:

(* int_star: token stream + int list *)

let int.star = star (parser [< ‘ INT x >1 + x)

5.2 Precedence and associativity

The problem of precedence and associativity of opera-

tors in top-down parsing receives simple solutions with

functional parsers. For arithmetic operators, precedence

must be taken into account. In figure 1, the relative

precedences of multiplication and addition are specified

by defining add in terms of mult, imposing a precedence

of multiplicative operators over additive operators. Op-

erators having the same precedence appear in consecu-

tive parsing rules of the same parser. In figure 1, we

used twice the same parsing scheme to implement left-

associative arithmetic expressions (lines 3–13): the local

functions rest accumulate results of parsing in their first

argument.

Higher-order parsers factorize this work: left.assoc

is a general parser for expressions separated by left asso-

ciative operators. Parameter op is a parser for the opera-

tors; it returns a curried function building abstract syntax

trees. The term parameter is a parser for expressions:

j. (* left. assoc: (a stream + ~ + ~ -+ ~)

2. + (a stream + J?)

3, + a stream + /3 *)

4. let left_ assoc op term =

5. let rec rest tl = parser

6 [<op f; term tz; (rest(f tl tz)) t>] + t

7. 1[<>]-tt~

8. in parser [< term t; (rest t) r >] + r

The parsers for arithmetic operators can be written as:

let op_add = parser
[< ‘pI.US >1 . (function x +

function y + Plus(x,y))

I [< ‘MINUS >] -I (function x +

function y + Mi.nus(x,y))

and op.mult = parser

[< ‘MULT >] + (fnncti,on x +

function y + Mult(x,y))

I [< ‘DIV >1 + (function x +

function y + Div(x,y))

We cam now rewrite add andrmlt inthe following way:

let rec expr = . . .

and add = left.assoc op.add mult

and mult = left_assoc op.mult appl

. . .

Right associativity and non-associativity can be treated

by changing the first parse case of rest (line 6 of the

definition ofleft.assoc) into:

[<op f; term t2; (rest t2) t >1 + f tl t

and:

[<op f; term tz >1 + f tl tz

respectively.

Notice that the appl parser cannot be expressed us-

ing left.assoc since there is no operator for applica-

tions. A parser op.appl for application operators does

not consume any input and always succeeds. Because of

the predictive parsing technique, transforming appl using

left_assoc and op-appl produces a parser that always

fails.

5.3 Parsing anon context-free language

A typical example [2] ofnoncontext-free language is:

{Wcw I w e (alb)’}

where a, b and c are terminals. In order to write a parser

forthat language, weneedtwo auxiliary parsers: wd (for

“word definition”) parses its input until a c character is

encountered. It returns a list of parsers, each one dedi-

cated to the recognition of a specific character of the word

w. We write Cat, ‘b’ character constants oftypecha

(* Wd: char stream

+ (char stream + string) list *)

let rec wd = parser

[<’’a’; wd I.>] + (parser [< ’’a(>l + “a”)

I [<’’b’; wd 1>] + (parser [< ’’bt>l + “b”)

1[<>]+[]

:1

:1

The second parser that we need is wu (for “word usage”):

a function taking as first argument a list of parsers, and

returning a parser that applies each parser of the list, in

sequence. The result is thus the sequencing of a list of

parsers, seen as non-terminals.

(* WU: (a stream + string) list

+ a stream + string *)

let rec wu = function

p::pl + (parser [< p x; (WU pl) 1 >1 + x-l)

I [1 + (parser [< >1 + ““)

Aparserwcw for the language given above is:

(* WCW: char stream + string *)

let wcw = parser [<wd pl; “c’; (WU pl) 1>]+ 1

And the expression:

wcw (stream_of_string “abaacabaa”)

evaluatesto “abaa”.

6 Implementation

The second author realized two different implementations

ofstreams andparsersin Carol Light [9]. Bothimplemen-

tations follow the same semantics: parsing hasadestruc-

tive effect on streams, and stream concatenation share

substreams (i.e. do not use copies of substreams).

Both implementations follow closely the operational se-

mantics given here, although the translation of parsers

into functions is more sophisticated. The types of parsers

do not use the option type: instead, the NotFound ex-

ceptions used.

6.1 Source to source translation

The first implementation consists of a source to source

translation, following the scheme presented above, but

with optimization. For instance, consecutive parsing

rules beginning by a terminal are gathered in a single

match construct. This optimization is crucial when de fin-

ing lexical analyzers. Typechecking parsers and stream

expressions is achieved by typing the produced transla-

tion.

6.2 Integration to the Carol Light system

The second implementation is an integration of streams

and parsers in the Carol Light system. Parsers and stream

expressions are typechecked as primitive constructs, and

intermediate code is directly generated. No extension of

the Carol Light execution model was necessary.

Here also, consecutive parsing rules beginning with a

terminal pattern, are gathered in a singIe match instead

of a “cascade” of matches. Furthermore, compile-time /r-

eduction of anonymous parsers used as non-terminals is

also performed. Finally, when the last rule of a parser is

of the form [< E P >1 + P, where P is an irrefutable

pattern, it is simplified into [< >1 + E. If this is the

only rule of a parser, the parser is simply replaced by

E. Unfortunately, we cannot optimize tail calls in the

general case (i.e. when terminals or non-terminals appear

at the left of the call), since in these cases, a possible None

produced by E must be changed into raise Parse fai.led.

6.3 Bootstrap of a realistic language

The complete lexical analyzer and parser of Carol Light

have been written using streams and stream pattern

matching. The new analyzers have been integrated in

the Carol Light compiler, and a complete bootstrap of

82

TExpr [parser c1 I . . . / Cnj = function strm + TRuk [c,] (TRule [c2] (,.. (TRule [c~j (strm, None))...))

TRule [[< ‘P; spcs >] + -E] K = match (peek strm)

with Some P -J let strm = junk strm in

TRule [[< spcs >] + E] (raise ParseFailed)

I .*K

TRule [[< j(P); spcs >] +-E] K = match (TExpr [f]) strm

with (strm, Some P) + TRule [[< spcs >] + 1?] (raise ParseFailed)

I (strm, None) + K

/ _ + raise MatchFailed

. TRule [[<>] +E] K = (strm, Some(TExpr [E]))

Figure 4: Translation for purely functional parsers.

the Carol Light implementation has been done. The re-

sult is an implementation of Carol Light including stream

expressions and parsers, and using them to define its own

syntax. In this implementation, the input channel is itself

a stream of characters. This bootstrap shows that writing

realistic lexical analyzers and parsers using streams and

stream pattern matching is feasible.

The original Carol Light implementation uses a lexical

analyzer generator written in Caml Light by X. Leroy fol-

lowing the lines of Lex [1 I]. The main difference between

this generator and Lex is that instead of interpreting ta-

bles, the automaton is represented by a set of mutually re-

cursive functions. The original Carol Light parser is pro-

duced by Berkeley Yacc4 [8]. It uses Berkeley Yacc pars-

ing tables in a Carol format, and the parsing engine is the

Carol Light translation of the Berkeley Yacc parsing en-

gine. Timing the bootstrapping process showed that the

new bootstrap is only 4% slower than the original boot-

strap (2mn 15s on a Sun SparcStation 2). We conclude

that this relatively simple implementation of streams and

stream matching is already competitive with more classi-

cal techniques.

6.4 Performances

We give some preliminary results about performances.

Two simple programs have been written for that purpose.

E
Lex-C (cc)

Yacc-Lex-C (cc)

YL-Caml-Light

PP-Caml-Light

Wc

2.27s

7.66s

10.88s

parsing

test 1 test 2

0.64s 1.03s

5.89s 9.74s

8.12s 12.87s

The first one is a simple simulation of the Unix wc com-

mand (“word count”), written as a lexical analyzer, The

command has been run on a Sony 3410 workstation.

4 Bob Corbett’s reimplementation of Yacc, from the Unix BSD

4.4 distribution.

● Lex-C is a Lex generated C program;

● YL-Caml-Light is written using the generators of

the original Carol Light system;

● PP-Caml-Light is implemented using our facilities.

The input was a text file of 128k characters. The timings

show that reading and testing on character streams is 4270

slower with streams and the parser facility than with the

lexical analyzer generator, which is itself 3.4 times slower

than Lex-wc compiled with cc. Since Carol Light is a

byte-coded implementation, this result is good.

The second example is a lexical analyzer composed with

the parser given in figure 1. The parser does not pro-

duce any output: it only recognizes or rejects a phrase.

The produced commands have been called on two inputs:

“test 1“ is a sequence of 960 expressions (25k characters),

and “test 2“ is a single expression (39k characters). The

timings show that the “streams” version is about 25~0

faster than the command produced by Carol Yacc and

Carol Lex, but still almost 10 times slower than the C

versions.

These timings show that even with a simple compila-

tion technique of streams and stream matching, we obtain

reasonable performance. Moreover, the size of code and

data for parsing functions is small: we save the size of the

parsing stack and tables.

7 Purely functional parsers and streams

In order to integrate streams and parsers into purely func-

tional languages, it is necessary to avoid destructive up-

date of streams. The description above has to be slightly

modified in order to fit the needs of purely functional lan-

guages. The “substream copying” semantics of stream

expressions has, of course, to be adopted. But, in order

to be able to recover the remaining input to a parser, we

have to change the type of parsers: they must also re-

turn the remaining stream as part of their result. More-

over, purely functional languages do not have exception

handling: the values returned by a parser must be of an

83

Tllqm [parser c1 I . . . \ Cn] = function strm + TCase [cl] (TCase [c2] (... (TCase [c~] (strm, None)).,.))

TCase [[< ‘P; spcs >] + E] K = match match (peek strm)

with Some P + let strm = junk strm in

TRest [[< spcs >1 + -E]

[- + (strm, None)

with (strm, Some x) + (strm, Some x)

I (-, None) + K

TCase [[< f(p); spcs >] + E] K = match match (TExPr [f]) strrn

with (strm, Some P) + TRest [[< SpCS >1 + E]

I (strm, None)+ (strm, None)

I . + raise MatchFailed

with (strm, Some x) + (strm, Some x)

I (-, None) + ~

TRest [[< ‘P; SPCS >1 + -E] = match

with

I

(peek strm)

Some P + let strm = junk strm in

TRest ~[< spcs >1 + E]

- + (strm, None)

TRest [[< f(P); spcs >] +-E] = match (TExpr [j]) strm

with (strm, Some P) + TRest u [< SpCS >1 + E]

] (strm, None)+ (strm, None)

I . + raise MatchFailed

TRest [[< >] +,El] = (strm, Some(TExpr UE]))

Figure 5: Translation for parsers with limited backtrack.

opt ion type. Thus, the type of a parser will be:

a stream + (a stream * /3 option)

We assume that we have lazy data structures; the defini-

tion of streams can therefore be simplified into:

type a stream = Sempty

I Scons of a * a stream

I Sapp of ci stream * a stream

We use the following peek function:

(* peek: a stream + a option *)

let rec peek = function

Sempty -$ None

I Scons(x, -) + some x

I Sapp(sl ,s2) + (match peek S1

with None + peek S2

Ix +x)

The junk function is now side-effect free and returns the

tail of its argument stream:

(* junk: a stream + a stream *)

let junk = function

Scons(_, s’) + s’

[Sapp(Sempty, s2) + junk S2

[Sapp(Scons(x, s~), SZ) + Sapp(sl, sz)

I Sapp(Sapp(s~, sz), t)

+ junk (Sapp(sl, (Sapp(sz, t))))

I Sempty + raise (Failure “Junk: Bug”)

The translation of streams becomes straightforward.

7.1 Predictive parsers

The translated parsers rebind the variable strm to the tail

of the stream, returned by the call junk strm, hiding its

previous binding. Thenewtranslation isgiveninfigure4.

7.2 Parsers with limited backtracking

From this purely functional implementation, it is fairly

easy to design a version of these parsers using an arbi-

trarily large look-ahead set of tokens. This semantics

implements a restricted form of backtracking: if a non-

terminal at position n in a parsing rule fails, then the

next rule of the calling parser is tried, instead of trying

the next rule of the non-terminal at position n-1 as would

be implied by a full backtracking semantics. This has the

advantage of reducing the search space in a uniform way.

The translation of parsers with limited backtrack is given

in figure 5.

84

8 Jtelated works

Writing parsers in functional languages has been explored

by 13urge [4] and Fairbairn [7], among others. Their work

is based on so-called “parser-builders)’ [15], consisting

mainly in programming the alternation of parsers, cor-

responding to the “I” separating parsing rules, and (pos-

sibly empty) sequencing of parsers, corresponding to the

“;” separating stream patterns components. Burge [4]

also introduces general higher-order parsers.

These parsers share a common semantics: recursive de-

scent wit h full backtracking. In [15], it is advised to limit

the search space by inserting error functions at appropri-

ate places, e.g. when an IF token has been found, but

no ELSE can be found, there is no need for trying other

parsing rules, unless they also wait for an IF token. This

eliminates obviously useless portions of the search space.

We have concentrated hereon more classical semantics:

recursive-descent with only one look-ahead token, which

is the technique used in conventional programming lan-

guages when writing parsers “by hand”. This provides

us with an efficient parser definition facility, well-suited

to the ML destructive input-output model. Moreover,

this semantics allows for writing parsers for interactive

languages and is powerful enough to enable the complete

bootstrapping of a realistic programming language. Fur-

thermore, this simple technique guarantees that semantic

actions will be executed only once during parsing: this

is a useful property for mostly-functional programming

languages such as ML.

9 Conclusion

We have presented the operational semantics for streams

and stream matching in ML-like languages. Streams are

lazy data structures, and we have considered different se-

mantics for stream matching. We emphasized predictive

parsing, which seems to represent a good trade-off be-

tween expressivity, efficiency, and ease of debugging.

The parser facility works well with purely functional

languages, and allows for different semantics: predictive

parsing or arbitrary large look-ahead set with limited

backtracking semantics can also be designed for these

parsers, providing us with useful alternatives to gen-

eral backtracking techniques that appear in the literature

[4, 7,17, 15].

10 Acknowledgements

We thank Ian Jacobs and Xavier Leroy for their merciless

reading of a draft of this paper.

References

[1] A. Aasa, K. Petersson, and D. Synek. Concrete syntax

for data objects in functional languages. In Proceedings of

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

/16]

[17]

[18]

i
<.

1

E

the 1988 ACM Conference on Lisp and Functional Pro-

gramming, pages 96–105, 1988.

A. Aho, R. Sethi, and J. Unman. Compilers: Principle,

Techniques and Tools. Addison Wesley, 1986.

A. Appel and D. MacQueen. A Standard ML compiler. In

G. Kahn, editor, proceedings of the A Ch4 Conference on

Functional Programming Languages and Computer Ar-

chitecture, 1987.

W.H. Burge. Recursive Programming Techniques.

Addison-Wesley, 1975.

G. Cousineau and G. Huet. The CAML primer. Technical

Report 122, INRIA, 1990.

Luis llamas. Type assignment in programming languages.

PhD thesis, University of Edinburgh, 1985.

J. Fairbairn. Making form follow function: An exercise

in functional programming style, Software, Practice and

Experience, 17(6):379-386, 1987.

S.C. Johnson. Yacc: Yet Another Compiler-Compiler. In

Unix PvogrammeT’s Man~al, volume PSI. Usenix Associ-

ation, 1986.

X. Leroy. The ZINC experiment: an economical imple-

mentation of the ML language. Technical Report 117,

INRIA, 1990.

X. Leroy and P. Weis. Polymorphic type inference and

assignment. In Proc. Symp. Principles of Programming

Languages, pages 291-302. ACM press, 1991.

M.E. Lesk. Lex — a lexical analyser generator. Technical

Report 39, AT&T Bell Laboratories, 1975.

M. Mauny. Parsers and printers as stream destructors and

constructors embedded in functional languages. In Pro-

ceedings of the A C&f Conference on Functional Program-

ming Languages and computer Architectwe. Addison-

Wesley, 1989.

M. Mauny, Integrating lazy evaluation in strict ML, Tech-

nical Report 137, INRIA, 1992.

Robin Milner, Mads Tofte, and Robert Harper. The def-

inition of Standard ML. The MIT Press, 1990.

C. Reade. Elements of Factional Programming. Inter-

national Computer Science Series. Addison- Wesley, 1989.

M. Tofte. Type inference for polymorphic references, In-

formation and Computation, 1(89):1-34, 1990.

P. Wadler. How to replace failure with a list of suc-

;esses. In J.-P. Jouannaud, editor, Functional Program-

ming Languages and Computer Architectwe, number 201

n Lecture Notes in Computer Science, pages 113–128.

]pringer-Verlag, 1985.

?. Weis, M-V. Aponte, A. Laville, M. Mauny, and

4. Sutirez. The CAML reference manual. Technical Re-
>ort 121, INRIA, 1990.

85

