
Finiteness Conditions for Fixed

(Extended Abstract)

Point Iteration

Flemming Nielson, Hanne Riis Nielson

Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C

Denmark

E-mail: {fnielson ,hrnielson}@daimi. aau. dk

Abstract

This paper provides a link between the formula-

tion of static program analyses using the frame-

work of abstract interpretation (popular for func-

tional languages) and using the more classical

framework of data flow analysis (popular for im-

perative languages). In particular we show how

the classical notions of fastness, rapidity and k-

boundedness carry over to the abstract interpre-

tation framework and how this may be used to

bound the number of times a functional should be

unfolded in order to yield the fixed point. This

is supplemented with a number of results on how

to calculate the bounds for iterative forms (as for

tail recursion), for linear forms (as for one nested

recursive call), and for primitive recursive forms.

In some cases this improves the “worst case” re-

sults of [9], but more importantly it gives much

better “average case” results.

1 Introduction

In a recent paper [9] we gave precise bounds on a

number k such that

-FIX M = Hkl
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where

H:(A+B)+(A-+B)

is a continuous functional corresponding to some

static program analysis (or abstract interpreta-

tion). Here A and B are finite complete lattices

and

F-IX = Ml. U{lfnl [ n > O}

is the least fixed point operator. The develop-

ment of [9] was sticiently general to apply to

impenztive languages, where A = B is a natural

choice, as well as functional languages, where A =

%’ and B = 2 is a natural choice for first-order

strictness analysis.

In this paper we investigate functional .H of the

form

Hh=go U(Gh)

where e.g. Gh=gohogl

and show that it is often possible to use special

properties of go, g and gl to obtain considerably

lower bounds than the “worst-case” results of [9]1.

Even for the case of iterative forms, where g = id,

this may result in better bounds than those of

[9, Section 4] provided that g, is sufficiently well-

behaved.

However, one of the most interesting aspects

of this work is that the kind of properties (of

1This is not intended to say that the “worst-case”

bounds of [9] are wrong but rather that they may not arise

for functional H of the form considered in this paper.
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go, 9, 91) considered in this paper are close to the

kind of properties studied in classical flow anal-

ysis [5]; this includes properties like fastness and

k-boundedness. Thus at long last we seem to be

able to bridge the gap between the fixed point

techniques of the functional world and the im-

perative world! This was left open in [9] and

[5, p.129] simply states: “determination of pro-

gram properties by application of approximating

semantics is often called abstract interpretation;

this approach is formally (although not concep-

tually) equivalent to the algebraic framework ap-

proach presented [in [5]]”.

Overview of paper

We begin by reviewing the lattice-theoretic no-

tions that we will need (Section 2). Then we for-

mulate the notions of fastness and k-boundedness

[5] in the notation of abstract interpretation and

we explore a few of their consequences (Section

3).

In Section 4 we then study “iterative forms”

which are functional H of the form displayed

above but with g = id. We consider three cases,

depending on whether the functions from A to B

are

●

●

●

total (written A --+t .B)

monotone (written A --+~ B)

strict and additive2 (written A +$a B)

In short we prove that the functional G is lW(gl)-

bounded where P is one oft, m or sa and where

L9 is some measure on functions. In practical

terms this means that .FIX H = Hkl whenever

k > lv(gl); thus only lv(gl ) unfoldings of H are

needed.

In Section 5 we then study how to extend these

results to “linear forms” which are funct ionals H

of the form displayed above but where g is not

2In [5] additivity is called “distributivity” and complete

additivity (which is equivalent to strictness and additivity

given the finiteness of A and B) is called “continuity”.

restrained to be id. A limitation of this develop-

ment is that g must be strict and additive for the

results of Section 3 to be applicable. We can then

show that G is Iv(g). l!v(gl)-bounded in the cases

where p is t or n. Unfortunately, the case where

p is sa eludes us.

The applicability of the restits on “iterative

forms” is further extended in Section 6. Here we

show that the program t ransformat ion technique

of “accumulator introduction” may oft en be used

to transform a functional in “primitive recursive

form” into one in “iterative form”. Furthermore,

if k unfoldings suffice for the transformed fuc-

tional then also k unfoldings suffice for the origi-

nal functional.

Finally, we compare our results with those of [9]

and suggest directions for further research (Sec-

tion 7). In the Appendix we characterize the

“it erat ive forms”, “linear forms” and “primitive

recursive forms” in terms of the functional pro-

grams and analyses for which they naturally arise.

The fill version appeared as [10].

2 Preliminaries

A jinite complete lattice (L, ~) is a finite set L,

together with a partial order Z, such that each

subset Y of L has a least upper bound; since a

least upper bound is unique (if it exists) it makes

sense to write U Y for it. It is customary to write

1 = U 0 for the least element and T = u L for

the greatest element of L and to write 11 u 12 for

U{ll, 12}. When (L, ~) is a Ihite complete lattice

each subset Y of L will also have a greatest lower

bound; it is customary to write 11 il 12 for the

greatest lower bound of the set {11, 12}. We shall

writ e

llE12forll~ 12A 11#~2

and we shall say that a chain

zOCz~E...Czk

has length k (rather than k + 1). It is convenient

to write
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C(L) for the cardinalzty of L

H(L) for the height of L (i.e. the length

of the longest chain)

Writing L x L’ for the cartesian product and

Ln for the n-fold product (n > 1) we have

C(L X L’) = C(L) . C(L’), C(U’) = C(L)m,

H(L x L’) = H(L) + H(L’) and H(L”) =

n. H(L). Writing

1

1

2=

o

we have C(2) = 2 and H(2) = 1.

A function ~ : L -+ L’ from a finite complete

lattice L = (L, ~) to a finite complete lattice L’ =

(L’, Q) is monotone if

11 Q 12 + f(l~) ~ f(l~)

and is strict if

f(l) = 1

and is additive if

f(l, u 1,) = f(l,) u f(l,)

Fact 1: A monotone function f between finite

complete lattices is continuous, i.e.

f(u{L I n 2 0})= U{f(zn) I n 20}

whenever Vn : Jn C Jn+l. ❑

It is well known that

FIX f = U{ fn(l) I n > O}

denotes the least jixed point of f whenever f is

continuous; it thus follows that if L is a finite

complete lattice and f : L + L is monotone then

FIX f is the least fixed point off.

Fact 2: A strict and additive fimction ~ between

finite complete lattices is completely additive, i.e.

f(Lly) = U{f(o I zE y}

for all subsets Y. ❑

We shall write L +t L’, L +m L’ and L --i~a L’

for the sets of total, monotone, and strict and

additive fimctions from L to L’, respectively. The

partial order is defined componentwise, i.e.

f ~ f’ if and only if VJ : f(l) ~ f’(l)

and all of L -+t L’, L +~ L’ and L +=. L’ will

be finite complete lattices if L and L’ are. In all

cases

(U.F) = Al. U{f(l) I f E F}

is the formula for least upper bounds.

Finally, a finite complete lattice L is distributive

[4] if

11 n (12u 13)= (11n 12)u (11n 13)

for all 11,12,13 E L. An alternative charact eriza-

tion was given in [9, Lemma 17].

Fact 3: If L and L’ are distributive so are L x L’,

L“, L +t L’, L -im L’ and L +8. L’. ❑

3

Let

Finiteness conditions on

funct ionals

L and B be arbitrary finite complete lattices

and consider cent inuous (i.e. monotone) function-

al

G, H:(A+WB)+(A+PB)

where ~ is any one oft, m or sa. Throughout this

paper we shall assume that

Hh=gou(Gh)

but in this section we shall not make any assump-

tions about the form of G. We are interested in

determining the least fixed point, FIX H, of ~

but before doing so we need a few definitions from

classical flow analysis (as surveyed in [5]).

As usual G;(h) denotes the i-fold iteration of G

so that Go(h) = h and Gi+l(h) = G(Gi(h)) =

G’(G(h)). It is convenient to write Id for the

fictional defined by Id(h) = h. We then define

Gtil(h) = ~{G~(h) / O S j < i}
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This is well-defined given the assumptions on A

and B and the results of Section 2. Concerning

Gii+ll one may calculate that

(#+l](h) = h u . . . u G;(h)

so that G[i+ll = 10! u (G[;l o G). We also have

Fact 4: If G is strict and additive then G[i+ll =

IdU (Go G[il). ❑

Fact 5: If G ~ Id then G[i+ll = G; ~ Id; it

follows that also G[i+21 = Id u (G o Gfi+ll). ❑

Clearly G E G u Id so that also G[il c (G u Id)[;l

for all i. For equality we note

Fact 6: G[il = (G1..Md) [;] if G is strict and additive

(or if G ~ Id). ❑

The interest in G[il can now be motivated by:

Lemma 7: FIX H = U{(G u Id)[il(go) ] i 2 0}

Corollary 8: If G is strict and additive we have

FIX H = U{ G[il(gO) I i ~ O}

(This also holds if G z Id.) ❑

Following [5] we shall say that G is k-bounded if

V/t E A +V B : G[k+’l(h) = G(kl(h)

There is a related concept called k-semi-

boundedness but for strict (and additive) fimc-

tionals it is equivalent to k-boundedness and so

will not be of interest in this paper. The special

case of 2-boundedness is known as fastness; in [5]

this is motivated by the observation that for a ~ast

problem only one iteration around the loop body

will be needed.

Fact 9: If G is k-bounded then G[il(h) = G[kl(h)

foralli ~kandfor allh EA--+PB. •1

Turning to the consequences for the least fixed

point, FIX H, of H we then have:

Fact 10: If G is strict and additive then Hil =

G[il(go). ❑

Lemma 11: If G is strict and additive and G is

k-bounded then

FIX H = G[kl(go) = Hk(l)

The k-boundedness of G may be weakened to

❑G[k+ll(go) = G[kl(go).

For the applicability of the results of the present

paper, in particular Lemma 11, it is important

that the functional G is

● k-bounded, and

● strict and additive

We will develop formulae for determining the con-

stant k in Sections 4, 5 and 6.

Here we will conclude with a few examples of

how to manufacture strict and additive fmc-

tionals. Consider the definitions of functional

G : (A +9 B) + (A +9 B) shown in Figure

1. Then G is strict and additive in all cases, We

shall use the first and the two last observations in

Sections 4, 5 and 6 respectively.

4 Iterative forms

We now study a functional G : (A +9 B) +

(A +9 I?) defined by

Gh=hogl

for gl 6 A +W B. Clearly G is continuous (i.e.

monotone), strict and additive; this means that

for H defined by H h = go u (G h) we will have

l’lX H = G[kl(go) = Ilk(l) whenever G is k-

bounded. In this section we shall define three

measures on functions (denoted &, 1~ and 4,. )

and we shall show that G will be -&(gl )-bounded.

This will be illustrated on an accumulator version

of the factorial program.

The first case is where v is t.Here we define

W, x) =
min{k I ~k(z) E {x, . . ..~l(z)}. },

k>O}

and note
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Gh =

Gh =

G=

G=

Gh =

Gh =

hogl

goh where g is strict and additive

GI O G2 where G1 and G2 are strict and additive

GI u G2 where G1 and G2 are strict and additive

gnh where A --+9 B is distributive

tuple(G1 h, G2 h) = M. < G1h 1, G2 h 1>

where G1 and G2 are strict and additive

gohogl where g is strict and additive

g o tuple(ho gl,gz)

where g is strict and additive in its left

argument, i.e. g(~, /) = 1 and

g(l~ u 12,2)= g(l~,1)u g(zz,1)

Figure 1: Typical forms of strict and additive G

Fact 12: 1 < lt(f, z)< -&(f) S C(A) when

f: A~, Aandz EA. ❑

We then have

Lemma 13: The functional G : (A +t B) +

(A --+, 1?) defined by G h = h o gl is &(gl)-

bounded. ❑

Proof: Setting k = t~(gl ) we must prove that

G[~+ll = G[kl and for this it sufFices to prove Gk c

G[kl. So let h E A --+~ B and w E A be given and

note that

G~ h W = h(g!(w))

and that

G[kl h W = U{h(w), . . . . h(g;-l(w))}

(where we used k > O). From the definition of k

there exists i such that O S i < k and g;(w) =

g:(w). Hence

G~ h W == h(g;(w))

where i < k – 1 and the result is immediate. ❑

Example 14: An accumulator version of the fac-

t orial program may be written as follows

fac(n, a) = ifn=O thena

else fac(n-l, n*a)

where the initial call is f ac (n, 1). We shall not

go into the details of how to perform a strictness

analysis for this program but simply postulate (or

see the Appendix) that it may be obtained as fol-

lows:

A= 2x2

B=2

90(n#,a#) = n# n ~#

91(n#,a#) = (n#,n# n a#)

where ng n a# denotes the greatest lower bound

of {n#, a#}, i.e.

n#fla#=

{

1 ifn#=l=a#

O otherwise

Thus Gh=hogl and Hh=gol_l(G h) andwe

must determine k such that FIX I+ = G[kl (go) =

Hkl.

The results of [9, Section 3] are applicable and

ensure that one may take

k= H(A~~l?) =C(A). H(B)= 4.1=4

Using Lemmas 13 and 11 we may improve this by

taking

k =lk(gl) =2

That & (gl ) = 2 follows easily from the idempo-

tence of gl, i.e. gl o gl = gl.
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This result is not optimal, however. Tabulat-

ing Itil w for i E {0,1,2} and w G A =

{(O, O), (O, 1), (1, O), (1, 1)} one gets

w (0,0) (0,1) (1,0) (1,1)

HOl W o () (j (J

H1l W o 0 0 1

and this shows that it is possible to use k = 1 in

this example. ❑

The second case is where q is m. Here we first

need to define the set LC(Y) of elements less than

(or equal to) some element of Y, i.e.

We then define

We then have

Lemma 16: The functional G : (A ~m ~) ~

(A +n l?) defined by G h = h o gl is l~(gl)-

bounded. ❑

Proof: Setting k = -&(gl ) we must prove that

Gik+ll = G[kl and for this it is sufficient to prove

GkPGIkl. Soleth EA-+n Band w< Abe

given and not e that

Gk h W = h(gf(w))

and that

G[kl h W = U{h(w), . . . . h(g:-l(w))}

(where we used k > O). From the definition of k

there exists i such that O < i < k and g;(w) ~

gj (w). Hence

where i < k – 1 and the result is immediate. ❑

Example 17: Continuing the previous example

we now may take

k = lm(gl) = 1

which is the optimal res~t. TO see that /?m(gl ) =

1 simply note that gl is reductive, i.e. gl ~ id. ❑

The third case is where p is sa. Here we define

and note

Fact 18: 1 < l!$~(f, z) < l,=(f) < H(A) and

~S~(J? < fn(~) whenever t c A +.. A and z E

A; here we assume that H(A) >0 is indeed the

case. ❑

We then have

Lemma 19: The functional G : (A +~a B) +

(A +~a B) defined by G h = h o gl is l..(gl)-

bounded. ❑

Proof: Setting k = f~a(gl ) we must prove that

G[k+ll = Glkl and for this it is sufficient to prove

Gk~GIkl.Soleth~A~~aBad w~Abe

given and note that

Gkh W = h(g~(w))

and that

G[klh W = U{h(w), . . . . h(g$-l(w))}

= h(u{w, . . .,g:-l(w)})

where we have used that k > 0 and that h is

completely additive. From the definition of k we

have

9!(4 L u{%...,9: -1(W)}

and (by monotonicity of h) the result follows. ❑
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From Fact 18 and Lemmas 19 and 11 it follows

that

FIX H = Hk-l- for k = H(A)

in the strict and additive case. It is interesting to

note that this is the (tight) upper bound estab-

lished in [9, Section 4] for functional in iterative

form.

Example 20: Continuing the previous example

we note that

1=.(91) = 1 = Ln(91);

however, gl is not additive so the above lemma is

not applicable. ❑

Example 21: In certain cases the bound ob-

tained from Lemma 19 will indeedl be better than

that obtained from Lemma 16. To illustrate this

we shall consider a detection of signs analysis

which is a typical example of an analysis in the

strict and additive framework. The analysis will

be based on the lattice S of signs depicted below:

o-

Here + describes the positive natural numbers, O

the natural number O, +0 the non-negative natu-

ral numbers etc.

Now consider the fimction

fx= if sq x > 100

else f(sq(succ

then x

X)--3 *(SUCC x))

The analysis off will give rise tc~ a functional

H : (s+s) + (s+s)

in iterative form, i.e.

lfh=gfJuhog~

Using the “obvious “ interpretation of the prim-

itives sq, >, succ, - and * we may obtain the

following definitions of go and gl:

x -L+ O-+0+-O-T

go(x) 1 +1-+0+-O-T

91(X) lTTO+TTTT

We have

qg~) = lm(g~) = 3

so Lemma 16 gives that 3 iterations will suffice

for computing the fixed point. However

1s.(91) = 2

so Lemma 19 shows than an even better bound

can be obtained. ❑

Sometimes simple “algebraic” properties of func-

tions, like idempotency, may be used to obtain

bounds on lP. Figure 2 summarizes some such

results; whenever

●fEA+q A

● f satisfies the condition in the left column

the corresponding table entry gives

● an upper bound on ./?W(f)

5 Linear forms

We now increase our level of ambition

a functional

G:(A+WB)+(A+W 13)

and study
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~ = ~ (worst-case)

~ = id (trivial case)

t = ~ o f (idempotence)

f ~ id (extensive)

f G id (reductive)

f o ~ ~ ~ (weak idempotence)

~o~~~uid(fast)

fk=~fori<k

fk~fifori<k

fh ~ f[M

p=t p.m ~=sa

C(A) C(A) H(A)

1 1 1

2 2 2

H(A) + 1 H(A)+ 1 H(A)

H(A) + 1 1 1

C(A) 2 2

C(A) C(A) 2

Figure 2: Example measures on functions

define

et(f, ~) =
max{i

and note that

1

k k k

C(A) k k

C(A) C(A) k

defined by

Gh=gohogl

for g E 1? +9 B and gl c A +P A. This func-

tional is continuous (i.e. monotone) if g is mono-

tone.

For the results of Section 3 to be applicable we

need G not only to be continuous but also strict

and additive and this holds when ,g is strict and

additive; then the function H defined by H h =

go u (G h) will have FIX H = G[kl(go) = Hk(l)

whenever G is k-bounded. However, in this sec-

tion we shall not formally assume that g is strict

and additive as the results on k-boundedness of

G do not depend on this.

The first case is where ~ is t.Using the measure

& of the previous section we have

Lemma 22: The functional G : (A +, B) +

(A+, B) defined by G h = gohogl is &(g).l,(gl)-

bounded. El

The proof makes use of an auxiliary notion. For

a function ~ E A -+t B and an element x c A

Fact 23: If k z lt(f,z) then fk(z) =

fk-e’w+ ❑

Fact 24: If k – n . et(f, z) ~ lt(f,z) – et(f, z)
and n ~ O then fk(z) = fk–n”Qt(~~o)(z). •1

We refer to [10] for a proof of Lemma 22.

The second case is where p is m. Using the mea-

sure in of the previous section we get

Lemma 25: The functional G : (A +~ 1?) --i

(A~~B)defined by Gh=gohogl(forg E

B -+~ B and gl E A -+~ A) is t~(g) . /!~(gl)-

bounded. ❑

Again we shall need som auxiliary results. Define

em(f, ~) =
max{i I fk(2) GLC{z, f(z), . . ..

fk-~(z)}, k = lm(f, ~)}

and observe that

1< Qm(f,z) < L(f! z)

Fact 26: If k 2 l~(f, z) then fk(z) L
fk-em(f’z)(~). ❑

Fact 27: Ifk-n. Q~(f, z) ~ lm(f, z)– em(f, z)
and n ~ O then ~k(z) ~ fk–n”emf~’z)(z). ❑

We refer to [10] for a proof of Lemma 25.

103



One can prove that that Lemma 22 can be

strengthened to show that if G : (A -+t B) +

(A--+ tB)isdefined by Gh=gohogl for

g E A +~ B then G is l~(g) “ lt(gl)-bounded.

Knowledge of gl c A +~ B cannot be used be-

cause the argument to G need not be monotone.

Example 28: Consider once again the detection

of signs analysis of Example 21. The function

fx= if sq x > 100 then x

else sq(f(x-3))

gives rise to a functional

H : (s+s) -+ (s+s)

in linear form, i.e.

lrh=g~ugohog~

The functions go, g and gl maybe defined by

x 1 +()-+()+-()-T

go(x) _L+~-+o +-o-T-
g(z) 1+0+ +0+ +0+0

91(X) lT - - T T --T

Note that g is strict and additive so that Lemma

11 applies. We get

so that both Lemmas 22 and 25 yield a bound of

4 on the number of iterations needed. This is sub-

stantially better than the results of [9] where we

obtain a bound of 9 (when using that the detec-

tion of signs analysis is in the strict and additive

framework). ❑

The third case is where p is sa. Here we would

like to show that G is l,=(g). l,a(gl)-bounded but

so far we have been unable to do so. Also we

would like to strengthen Lemmas 22 and 25 to

~sa(g) “L(gl) and ~.a(g). Lt(gl), respectively, pro-
vided that g c B -+,. B.

6 Primitive recursive forms

We now study a functional G : (A +9 1?) -+

(A +9 1?) defined by

G h = g o tuple(h o gl, gz)

where g~Bx.B--iv B,gl cA~W Aand

gz E A +9 B. As already noted in Section 3, G

is strict and additive if g is strict and additive in

its left argument.

Rather than embarking on a detailed study of the

iterands of

H = M,go u (G h)

we shall transform H into another functional HI,

by using the well-known program transformation

technique of “introducing an accumulator” [2,

Section 6]. The functional H’ : (A x I? +P B) +

(A x B -+W 1?) will be in iterative form and is

defined by

H’ h’ = gj u (G’ h’)

G’h ’=h ’og{

whereg~ ~ AxB -+P Bandg[ c AxB +9 AxB

are defined by

g: = g o tuple(go o jst, snd)

g[ = tuple(gl o fst, g o tuple(gz o fst, red))

The formal relationship between H and H~ is ex-

pressed by

Fact 29: Assume that g E B x B +W B satisfies

● g is associative, i.e. g(w~, g(wz, ws)) =

9(g(wl~ w2), w3), and

● g is strict and additive in its left argument.

Then

H’il (W, WI) = g(H;L W,W~)

holds foralli ~0, wEAandwl~B. •1

Fact 30: Assume that g c B x B +9 B is as-

sociative, strict and additive in its left argument

and that
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● g has a right-identity W. < B, i.e. g(wl, Wo) =

WI.

We then have

● l?~l w = H’il (w, Wo)

● FIX H W = FIX HI (W, Wo)

foralli~Oandw~A. ❑

Fact 30 relates the iixed points of the two func-

tional but we shall also be interested in determin-

ing the number of unfoldings needed to compute

the fixed points, We have

Lemma 31: Assume that g is associative, has a

right identity and is strict and additive in its left

argument. If k unfoldings suflice for H’ then also

k unfoldings suflice for H, i.e.

FIX H’ = H’kJ_ implies FIX H = Hkl

In particular, we have FIX H = Hkl if G’ is

k-bounded. ❑

A similar result holds for the bounds of the func-

tional G and G’.

Lemma 32: Assume that g is associative, has a

right identity and is strict and additive in its left

argument. Then G and G’ are strict and additive

and G’ is k-bounded implies G is k-bounded. ❑

Example 33: Consider the factorial function de-

fined by

facn=ifn=Othenl

else n * fac(n-1)

A strictness analysis (along the lines of the Ap-

pendix) will give rise to a functional

H:(2+m2)+(2~m2)

in primitive recursive form and with

go(n#) = 1

g1=g2=id

g(n#, m#) = n# m mx

To bound the number of it erations needed to com-

pute the fixed point of H it follows from Lemmas

31 and 16 that we only have to determine l~(g[).

We have

g~(ny, m#) = tuple(gl o ~st,

g o tuple(gz o fst,snd))(n#, m#)

= (n#, n# n rr2#)

Since g{ is reductive we have lm(g{ ) = 1.

This is clearly the optimal result. It is worth ob-

serving that it is also better than the bound of 2

obtainable from [9, Section 2]. Finally we should

point out that the functional H’ of the present ex-

ample corresponds rather closely to the functional

H of Examples 17 and 14. (Exact correspondence

fails because go is not strict.) ❑

7 Conclusion

We have considered the problem of bounding the

number of iterations needed to compute the fixed

point of a continuous functional

H:(A+B)+(A+B)

defined on finite complete lattices A and B. We

have considered three defining forms of H:

iterative forms: H h = go u (h o gl )

linear forms: H h = go u (go ho gl)

primitive recursive forms: H h = go u (g o

tuple(h o gl, gz))

three classes of fimctions from A to B:

total functions

monotone functions

strict and additive functions

A related study was conducted in [9]. However,

the main difference is that the bounds of [9] de-

pended on measures of A and B whereas the
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bounds established here depend on measures of

the functions gl etc. The results of the present

paper may therefore carry over to the situation

where neither A nor B are finite complete lat-

tices.

Figure 3 summarizes all the information that can

be obtained by combining the results established

here with those of [9]. In the formulae using min

we have arranged it so that the first argument

is the result of the present paper and the second

argument is the result from [9].

We should explain that RJ C (A) is the number

of non-hot t om join-irreducible elements of A; if

A is distributive we have RJC(A) = H(A) and

in general H(A) < RJC(A) < C(A). Finally we

should remark that the H(A) +H(B) entry in the

table follows from 1~.(g~) ~ H(A x 1?) where we

use the results already established for iterative

forms.

Thus for the iterative forms the bounds of the

present paper will always be at least as good as

those of [9] whereas this need not be the case for

linear forms and primitive recursive forms. How-

ever, the main point is that in the “average” case

we expect lt(gl) to be much less than C(A) etc.,

so that in the “average” case we are likely always

to get an improvement over [9]. This suggests

studying certain analyses, e.g. corresponding to

fast analyses, where this always can be guaran-

teed.
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Appendix

A+t B A-)~B A +,. B

iterative form l,(gl) < C(A) Ln(gl) S C(A) ~s.(gl) S H(A)
linear form min{l~(g) ol~(gl), min{lm(g) c& (gl ), RJC(A).H(B)

(g restricted) C(A). H(B)} C(A). H(B)}

prim. rec. form min{.t?~(g;), min{l~ (g;), min{l$~(g{),

(g restricted) C(A). H(B)} C(A). H(B)} RJC(A).H(B),

H(A)+H(B)}

no restriction C(A)OH(B) C(A)OH(B) RJC(A).H(B)

Figure3: %unrnaryofresults

In this Appendix we shall claim that the results of

the present paper are widely applicable because

the special forms allowed for the functional H

and G are likely to arise frequently. The general

idea is that the fictional H will be

in iterative form if the function being anal-

ysed is tail recumive (corresponding to an it-

erative loop),

in linear form if the function being analysed

cent ains only one recursive call in its defining

equation (somewhat analogous to the linear

forms of [3]),

in primitive recursive form if the function be-

ing analysed is primitive ~ecursive.

To be able to substantiate these claims we must

make several assumptions on how we analyse the

various primitives. To this end we shall assume

that

●

●

●

fimction composition is interpreted as fimc-

tion composition (so that only forward anal-

yses are considered),

tupling is interpreted as tupling meaning

that the abstraction of a pair is a pair of

abstractions,

the conditional given by

{

fl(~) ifp(v) = true

cond(p, fl, fz)v = f2(v) if p(v) = false

1 otherwise

3“No tensor pro ducts.”

is interpreted as

#where ptrue #
and ‘false

are filters defined

from p# so that typically

{

w ifp#w is an abstraction of b
pfw =

1 otherwise

Under these assumptions we can validate our

claims as illustrated below.

Example Al: A tail recursive function has the

general form

fx = if p x then fl x else f(fz x)

.— cond(p, fl, f o f2) x

The functional H obtained from the analysis will

then be

Hh = cond#(p#, f~, ho f:)

= (f: 0 p~rue) U h 0 (f; 0 p~azse)

which is in iterative form so that the results of

Section 4 apply. ❑

Example A2: For us a linear fimction has the

general form

f x = if p x then fl x else f2(f(f3 x))

—— cond(p, fl, fz o f o fs) x

The functional H obtained from the analysis is

then

Hh = cond#(p#, f~, f? o ho f$)

= (f? OP~~e) U (f~ 0 h 0 (f$ “P?azse))
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which is in linear form so that the results of Sec-

tion 5 apply. ❑

Example A3: A primitive recursive function has

the general form

f x = if p x then fl x else f2(f(f3 x), x)

—— cond(p, fl, f2 o tuple(f o f3, id)) x

The functional If obtained from the analysis is

then

Hh = cond#(p#, ~~, f~ o tuple(h o f~, id#))

= (ff Wju,) u (f: 0
tuple(h o (f~ o P}azJ, i~ o P~al~e))

which is in primitive recursive form so that the

results of Section 6 do apply. ❑

The more debatable restriction on the form of the

analyses is probably that for the conditional. One

may note that it holds in classical flow analysis [1]

as well as in many instances of abstract interpre-

tation [8]. For simple strictness analysis [6] over

the two point domain it is more common to have

cond’(h, hl, h2)w = h(w) 11 (hI(w) U h2(w))

Since the lattices of concern are distributive we

have

cond’(h, hl, hz)w = (h(w) nhl(w))U(h(W)flhz( W))

If hl and h2 are strict we can bring cond’ into the

desired form by setting

cond’(h, hl, h2)w = hl(htrue(w)) U hz(hfalse(w))

where

%Tue(w = ‘false (w) =

{

w if h(w) = 1

J_ otherwise

When hl and h2 are not strict one may change the

Finally we should like to stress that the require-

ments on the analyses and functions are suficient

but not necessary in order to apply the results.

Example A4: Consider strictness analysis of the

Fibonacci function

fibn=ifn

else

~ 1 then 1

fib(n-1) + fib(n-2)

Even though this fmction is not in “linear form”

the corresponding functional may be simplified to

one that is in iterative form. •1

Example A5: Also the restrictions on the anal-

yses can sometimes be lifted. In a backward anal-

ysis it is often natural to take

h10#h2 = h20h1

cond#(h, hl, h2)w = hi(w) u h2(w) u h(l)

tuplex(hl, h2)(w1, w2) = hl(wl) L-Ihz(wz)

If we apply this analysis to a primitive recursive

function we will obtain a functional in linear form.

An example of an analysis satisfying these condi-

tions is the Liveness analysis of [11]. •1

analysis to include a new “artificial” L-element in

which all fimctions are strict. This is similar to

the approach of projection based strictness anal-

ysis [12].
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