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A b s t r a c t  

In the informal description of Scheme, the order of  
evaluating the operands and the opera tor  of  each ap- 
plication is unspecified. This  paper  presents an op- 
erat ional  semantics  for Scheme which faithfully re- 
flects this fact.  Furthermore,  when the semantics is 
restricted so as to assume there is one unspecified 
order used throughout  a program,  the semantics is 
shown to be sound with respect to the denotat ional  
semantics of  Scheme. 

1 I n t r o d u c t i o n  

In the IEEE Standard  [2], the formal  semantics of  
the Scheme p rogramming  language is given in a de- 
nota t ional  style [6, 5], i.e., as a m a p  f rom a p rogram 
to its meaning.  1 A denotat ional  semantics can make 
certain proofs easier, such as proofs of  propert ies of  
programs involving fixed points. 

There  are propert ies  of  programs tha t  are not eas- 
ily proved with a denotat ional  semantics,  but  which 
are easily proved with an operat ional  semantics.  Fur- 
thermore,  an operat ional  semantics can describe some 
aspects of  the language more smoothly  than  the de- 
nota t ional  semantics.  For example,  in Scheme, the 
order of  evaluat ing the operands and the opera tor  
of  each applicat ion is unspecified, yet the formal  se- 
mant ics  suggests there is one unspecified order used 
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Figure 1: Types  

throughout  a program.  

W h a t  follows is an operat ional  semantics for the 
Scheme p rogramming  language. Modulo a few cave- 
ats, each inference made  within the operat ional  se- 
mantics  has an analog in the denotat ional  semantics. 
For those who know little abou t  the L a m b d a  Cal- 
culus and Scott domains,  the operat ional  semantics 
provides an indirect way of  reasoning within the de- 
nota t ional  semantics.  

2 N o t a t i o n  

The  operat ional  semantics for Scheme is specified by 
rules given in the relational style of  na tura l  seman- 
tics [3]. The  types used in the natura l  semantics are 
in Figure 1. A type is a set of  finite terms. Some of 
the types are defined by the g r a m m a r  given in Fig- 
ure 2. The  one for expressed values v is incomplete. 

Stores, environments,  and permuta t ions  are finite 
m a p s - - p a r t i a l  functions with finite domains.  The 
te rm {z ~ y} is the finite m a p  which only maps  
z to y, i.e., its domain is the set {z}. The  finite 
m a p  g augment  f ,  wri t ten f + g, has a domain of 
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e ::= e I i l ( e  e*) I (Zambda (i*) e* e) 
I ( la=bda (i* . i) e* e) I ( Z ~ b a a  i e* e) 

I (i:~ e e e) I( i~  e e) I ( s e t ! i  e). 

v ::= symbols I characters I numbers I strings 

I pair(t , t )  I vector((t*))  I false I true 
I null I undefined I unspecified 
I dsr(g, (/*), (e*), e, u) I cnt(e, k) 
I nclsr(t, (i*), i, (e*), e, u) 

I cons I car I setcar I ~ c c  I and others. 

k ::= args((e*), u, k) I aug((v*),k) I perm(p,k) 

I app(k) l b ind ( ( i* ) , ( e* ) , e ,u , k )  

J rest((/*), (v*), k) I seq((e*), e, u, k) 

I switch(e, e, u, k) I test(e, u, k) 

I assign(t, k) I halt. 

Figure 2: Some terms 

dom(f )  U dom(g), and value 

g(z) z E d o m ( g )  
( f  + g)(z) = f ( z )  otherwise. 

A sequence is a finite map whose domain is the 
natural numbers less than the length of the sequence. 
(vovz . . .  v , - 1 )  is notation for 

{0 ~ vo} + {1 ~ vz} + - " +  { n -  1 ~ vn-z}, 
6 is a variable that  ranges over sequences, and § is 
the sequence concatenation operator. A permutation 
is a sequence which is a one-to-one mapping to its 
domain. Most other notation follows that  of the de- 
notational semantics for Scheme. 

3 R u l e s  

The semantics is defined in terms of two judgement 
forms, s ,u ,  k l -  e ~ a and 8,61- k ~ a. They are 
patterned after the forms used to specify first-class 
continuations in ML [1]. Intuitively, the first one as- 
serts that  given store s, environment u, and contin- 
uation k, expression e evaluates to answer a. The 

• second one asserts that  given store s and a sequence 
of values 6, continuation k computes answer a. 

Every rule has the following form. The conclusion 
...is a judgement,  and the premise contains one judge- 

ment and any number of conditions. A condition is a 
formula which is not a judgement.  Conditions convey 
a restriction on the applicability of a rule. The form 
of the rules imply derivations are linear. 

Logical variables tha t  are only in the premise of a 
rule were introduced solely to make the rule intelli- 
gible. The r ighbhand side of the equation defining 
one of those variables could be substituted in place 
of each occurrence of the variable it defines. 

The storage allocator new must obey the axiom 
new(s) ¢ dom(s). It is a partial function if storage is 
finite. 

3.1  C o n s t a n t  
s, (const(c)) I- k ~ a (1) 

s ,u ,  k h  e=~a  

The definition of const has been deliberately omitted. 

3 .2  V a r i a b l e  r e f e r e n c e  
8(.(/)) # undefined 
s, (s(u(i))) I- k ~ a 

8, u, k k  i=c.a 
(2) 

3 . 3  A p p l i c a t i o n  

An inference using Rule 3 requires the selection of a 
permutation of the appropriate length. 

# p  = #(ee*)  k' = perm(p, app(k)) 
8, 0 h args(permute(p -1, (ee*)), it, k') ~ a 

(3) 
s, u, k ~- (e e*) ~ a 

permute(p, e~ = (~(p(O)) ~(p(1)) . . .  e~p(#p - 1))) 

8, 61- k =:.~. a (4) 
s, 6 I- args(O , u, k) ~ a 

s, u, aug(6, args(~, u, k)) I- e ~ a 
(5) 8, 6 F args((e) § ~,., k) m .  

s, 6§ (v) l- k ~ a (6) 8, (~) t- aug(6, k) ~ .  
s, unpermute(p,  v~ h k ~ a (7) 

s, ~ I- perm(p, k) :::¢, a 

unperrnute(p, ~ = (6(p(O)) 6(p(1)) . - .  6 (p (#p  - 1))) 

# 6  = # r  s, 6 F- bind(i, ~', e, u, k) ~ a (s) 8, (ctsr(e, r, ¢, e, =)) § 6 F app(k) m a 

#6_> # r  
k' = bind(r§ (i), ~, e, u, k) 

8, (null) t- rest(r, 6, k') m .  (9) 
s, (nclsr(t, ~, i, ~', e, u)) § ~ I- app(k) =¢, a 

s, 6 h  k=.~a 

s, (cnt(£, k)) § ~' I- app(k') ~ a 

s, 61- seq(g, e, u, k) ~ a 
8, 0 F bind(O, r, e, ~,, k) ~ .  

(10) 

(11) 

V-2.7 



3.4 

3.5 

3.6 

t = n e w ( s )  s l = s + { t ~ v }  
s',~F bind(i~ ~',e,u + {i ~ t},k) ~ a 
s, (v) ~ ~ I- bind((i ) § ~, E', e, u, k) ~ a 

# ~  = # r  a, iv) ~- aug(a, k) m a 
s, i v) I" rest(i~ ~, }) ~ a 

#~_> #r  
s, (cons, v, C) I- app(rest(~, ~, k)) ~ a 

a, i C) I- rest(T, '~ § iv), k) ~ a 

a , u , k  ~- e :=~ a 

a,~- seq(i), e, u, k) $ a 

s, u, seq(~', e I, u, k) I- e ~ a 

a , ~ -  seq(/e) ; v, el, u, k) m a 

A b s t r a c t i o n  

t = new(s) 8' = 8 + { t  ~-* unspecified } 
s l, (clsr(t, ( i * ) ,  (e*), e, u)) I- k $ a 
s, u, k I- (lambda (i*) e* e) ~ a 

£ = new(s) a' = a + { t  ~-~ unspecified} 
at,/nclsr( t , / i * ) ,  i, (e*), e, u)) I-- k ~ a 
a, u, k I- (lambda (i* . i) e* e) :=~ a 

s, u, k I- (lambda (. i) e* e) ~ a 
8, u, k h (lambda i e* e) ~ a 

Condit ional  
s, u, switch(d, e l', u, k) I- e ~ a 

a, u, k I- ( i f  e e' e") ~ a 

v g ~ f a l s e  a , u ,  k l - e ~ a  
s, i v) h switch(e, e', u, k) ~ a 

a, u, k I- e I ::¢, a 

a, (false) I- switch(e, d ,  u, k) ~ a 

a, u, tes t (d ,  u, k) I- e ~ a 
a, u, k I- ( i f  e e l) ~ a 

v ~ f a l s e  s , u ,  k l - e ~ a  
a, i v) ~- test(e, u, k) ~ a 

s,  (unspecified) h k ::¢, a 

s,/false) I- test(e, u, k) =¢, a 

A s s i g n m e n t  

a, u, assign(u(i), k) ~ e ~ a 
a, u,/c I- (set! i e) ~ a 

s + {t ~ v}, (unspecified) k- k ~ a 
a, (v) I- assign(t ,  k) ~ a 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

3 . 7  P r i m i t i v e s  

t ---- new(s) 8 t ---- 8 -'1- {t ~ v} 
l ' = n e w ( a ' )  a l ' = a  l + { ~ ' ~ v  l} 

s ll, (pair(t, t ' ))  b k =~ a 

s, (cons, v, v') I- app(k) ~ a 

a, is(0) F k m a 
s, (car, pair(t, e ) )  I- app(k) ~ a 

s + {t ~-~ v),  /unspecified) I- k ~ a 
a, (setcar, pair(t, •), v) F app(k) ~ a 

t = new(s )  s' = s + { t  ~-~ unspecified } 
a l, (v, cnt(t,  k)) I- app(k) ~ a 

(28) 

(29) 

(30) 

(31) s, (cwcc, v) I- app(k) =~ a 

4 P r o g r a m s  

If e* is a program in which all variables are defined 
before being referenced or assigned, s is an initial 
store, and u an initial environment,  then the program 
computes store a' and values ~ if one can show 

a l, ~ I- halt ~ a 

a, u, halt I- e ~ a, 

where e = ((lambda (i*) e'*) nndefined . . . ) ,  i* is the 
sequence of distinct variables defined in e*, d*  is the 
sequence of expressions obtained by replacing every 
definition in e* by an assignment, and nndefined is 
an expression that  evaluates to undefined. A program 
whose results depend on the selection of a particular 
set of permutat ions in Rule 3 is invalid. 

5 O p e r a t i o n a l  S e m a n t i c s  

An operational semantics uses an abstract  machine to 
define the semantics of a language. The  terms of this 
operationM semantics map identically from the natu- 
rM semantics, and the machine states are in one of two 
forms: e(e,u,  k, a) or k(k, ~,a). When the abstract 
machine is executing a program, there is the obvi- 
ous correspondence between the states of the abstract 
machine, and the steps of the program's  derivation. 
Allowed machine transitions correspond to inferences 
in the natural  semantics read backwards from conclu- 
sion to premise. 

The abstract  machine so defined is nondeterminis- 
tic. The  choice points occur at transitions that  cor- 
respond to an instance of Rule 3. 
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6 S o u n d n e s s  

The Scheme semantics as given is not sound with re- 
spect to the denotational definition. The  reason is the 
natural  semantics allows the evaluation order of dif- 
ferent applications to differ within the same program. 
In this section, assume that  for each natural  number, 
there is one permutat ion of that  length which is cho- 
sen when using Rule 3. This is the same assumption 
made in the denotational semantics. 

The natural  semantics of Scheme was designed to 
allow a translation of each rule into a rule valid in 
the denotational semantics. The  translation allows 
one to view the possible deductions in the natural  
semantics as a subset of the possible deductions in 
the denotational semantics. 

Semantic functions assign meanings to terms in the 
natural  semantics. The  signature of each semantic 
function used is given in Figure 3 along with a par- 
tial definition of some of the semantic functions. A 
logical variable is translated by replacing it with a 
variable from the domain corresponding to the logi- 
cal variable's type. 

For the purposes of the translation, it is convenient 
to consider a modified set of rules. Observe there are 
two kinds of conditions in the rules. Some define vari- 
ables by equations. These can be eliminated by sub- 
sti tution. The  remaining conditions are of the form 
# f f  = #~, # f f  _> #~, v ~ undefined, or v ~ false. Each 
rule has no more than one of these conditions. Let 
r be the condition if it exists, otherwise false = false. 
Let ~ => a be the judgement  in the conclusion after 
defined variables have been eliminated by substitu- 
tion, and ~ ~ a be the major  premise. All modified 
rules have a simple form. 

r E~ ::¢, a 
~ : : ~ a  

A modified rule is translated into a rule involving 
equations. 

n M  = true j [ ~ q  = A[a] 

The definition of f f  is given in Figure 3, the definition 
of 7~ is obvious, and the definition of ,4 is arbitrary. 
Each rule is justified by a valid equation. 

( ~ M  ~ f l i P ' l ,  _L) = ( n I r ]  ~ i f [ E l ,  .L) 

Since each inference must satisfy its rule's condition, 
a derivation is justified by a single closed equation. 

For example, the translation of the rule for con- 
stants (Rule 1) is justified by the following valid equa- 
tion. 

g expression e -~ U --~ K ~ C 
£ location £ --~ L 
V expressed value v ~ E 
V* value sequence v* -+ E* 
S store s -+ S 
U environment u ~ U 
/U continuation k --~ K 
.,4 answer a ~ A 

y [ s , . ,  k ~- el = cM(uM)(Jc ' [k ] ) ( s [d )  
y[s ,  <~*> ~- k] = tc '[kl(v*[~*])(sM) 
v*[ l = <> 
v* [vv*] = (Vlvl) ~ v* [~*l 
Vl¢lsr(£, (i*), (e*), e, u)] = (/:[g], a e*x . . . . )  in E 
V[cnt(t,  k)] = (£[t~, ~e*~./U'[kle*) in E 
VIeons] = (~, cons) in E 

where o~ is as given in the initial store. 
V[ . . . ]  = and o thers . . .  
IC'[a,gsC(e*), ~, k)] = 

~,*. e* b*](u b,])(~e*. ~c'ik~(~* ~ ,'*)) 
/g'[aug((v*), k)] = single Ae. KY[k](V*iv*] §(e)) 
/C'[perm(p, k)] = Ae*. IC'[k](unpermute e*) 
/C'[app(k)] = 

Ae*. applicate(e* I 1)(6" t 1) (~ ' [k] )  
/C'[bind((i*), (e*), e, u, k)] = 

,~*. 
#e*  = # i *  --* 

tievals( Ao~ * . ( Ap. CIe *]p( g[e]p( IC'[ k ]) ) ) 
( extends(U[u])i* a *) ) 

wrong "wrong number of arguments" 
/C'[rest((i*), (v*), k)] = 

rest(#v* - # i* ) (V*  [v*])(/C'[k]) 
rest = Aw*x.  single )re. 

cons(a* 1 #~*,0  
(rest(~- 1)(take~rst(#~* - a)~*)~) 

KY[seq((e*), e, u, k)] = 
x+*. CIe *](U[~])( e[e]CUM)( XT[ k ]) ) 

/C'[switch(e, e', u, k)] = 
single Ae. e = false ---* g[e'](lU[u])(IC'[k]), 

eldCUM)C~'[kD 
/C'[test(e, u, k)] = 

s i n g l e , X + .  + = f a U e  ~ ~'[k](.nspeei+aed), 
e[elCU[.])(g'[+]) 

g'[assign(g, k)] = 
single Ae. assign( £[g D 

(~'[k](.nspecified)) 
/g'[halt] = the initial continuation. 

Figure 3: Semantic functions 
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The case of lambda expressions (Rule 17) shows 
how memory allocation is handled. 

£[(lambda (i*) e* e)]plc~r = 
?g 

<<new ~r, Ac*~....) in E) 
(update(new o" I L) unspecified o') 

The case of evaluating a sequence (Rule 16) is jus- 
tiffed by using the semantic function for both expres- 
sions and commands. 

C[e e *]p( C[e3pt¢ ) = C[e]p(Ae*. Cie *]p( Eielpt¢) ) 

A case in which the justification is not obvious 
is the case of evaluating a sequence of expressions 
in preparation for applying a function (Rules 4-6). 
Their justification requires the definition of an auxil- 
iary function. 

.~'[e*]e*p~ = £*[e*]p(Ad*. ~(e* § d*)) 

Occurrences of g* [e I can be replaced by 5[el0 in the 
denotational semantics. 

The justification for Rules 5-6 comes from the use 
of the following equation which has been derived from 
the definition of .T. 

Y b  e*le*P'~ = e[dp(sing le ~ .  y[e*](~* § (0)p~) 

The justification for Rule 4 is also derived from the 
definition of 5 .  

~'[ ]~*p~ = ~ *  

Another non-obvious case is the case of allocating 
a list for rest arguments (Rules 13-14). Their justifi- 
cations can be derived from the following three iden- 
tities. 

list(,* § e'*)~ = list d*(rest #e*e*~) 
rest #e*(d* § e*)l¢ = 

rest #c* c*(single he. ~(4" § (c))) 
tievalsrest ¢c*v = rest v,*( tievals ~b)(nuil) 

7 Conc lus ion  

An operational semantics of Scheme has been defined 
by describing an abstract machine. Its allowed transi- 
tion sequences are specified by the set of derivations 
in the natural semantics of Scheme. A translation 
establishes that each derivation in Scheme's natural 
semantics is justified by a valid equation in Scheme's 
denotational semantics, when the natural semantics 
is restricted so as to assume that throughout a pro- 
gram, there is one unspecified order used to evaluate 
applications. 

A c k n o w l e d g e m e n t :  Joshua Guttman, Leonard 
Monk, and Vipin Swarup made many useful sugges- 
tions. 
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Fundamental Rules of 
Writing, Editing, and Publishing 

I. Don't use no double negatives. 
2. Make each pronoun agree with their antecedent. 
3..loin clauses good, like a conjunction should. 
4. About them sentence fragments. 
5. When dangling, watch them participles. 
6. Verbs has to agree their subjects. 
7. Just between you and I, cease is important too. 
8. Don't write run-on sentences they are hard to 

read. 
9. Don't use commas, which aren't necessary. 
10. Try to not ever split infinitives. 
! 1. Its important to use your apostrophe's correctly. 
12. Proofread your writing to see if you any words 

left out. 
13. Correct spelling is absoluteley essential. 
14. Don't abbr. 
15. You've heard it a million times: avoid hyperbole. 
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