
Readings In Scheme

Ozan S. Yigit

SIS Project
York University

oz@nexus.yorku.ca

Recent additions to the Scheme Bibliography

[Bon92] Anders Bondorf, Improving Binding Times without Explicit CPS-Conversion,
Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,
San Francisco, USA, June 1992, 1-10.

[Cli91a] William Clinger, Hygenic Macros Through Explicit Renaming, Lisp Pointers IV, 4
(October-December 1991), 17-23, ACM.

[Cli91b] William Clinger, Macros In Scheme, Lisp Pointers IV, 4 (October-December 1991),
25-28, ACM.

[DaL92] Olivier Danvy and Julia L. Lawall, Back to Direct Style II: First-Class
Continuations, Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, San Francisco, USA, June 1992, 299-310.

Abstract: We continue to investigate the direct-style transformation by extending it to programs
requiring call-with-current-continuation (a.k.a. call/cc). The direct style
(DS) and the continuation-passing style (CPS) transformations form a Galois connection. This
pair of functions has a place in the programmer's toolbox -- yet we are not aware of the
existence of any other DS transformer.

Starting from our DS transformer towards pure, call-by-value functional terms (Scheme), we
extend it with a counting analysis to detect non-canonical occurrences of a continuation. The
declaration of such a continuation is translated into a c a l l / c c and its application into the
application of the corresponding first-class continuation.

We also present staged versions of the DS and of the CPS transformations, where administrative
reductions are separated from the actual translation, and where the actual translations are carried
out by local, structure-preserving rewriting rules. These staged transformations are used to
prove the Galois connection.

Together, the CPS and the DS transformations enlarge the class of programs that can be
manipulated on a semantic basis. We illustrate this point with partial evaluation, by specializing
a Scheme program with respect to a static part of its input. The program uses coroutines. This
illustration achieves a first: a static coroutine is executed statically and its computational content
is inlined in the residual program.

[Dby92] Kent Dbyvig, Writing Hygenic Macros in Scheme with Syntax-Case, Computer
Science Department Technical Report #356, Indiana University, Bloomington,
Indiana, June 1992.

[Dic92] Ken Dickey, The Scheme Programming Language, Computer Language, June 1992.

[FrF92] Eric T. Freeman and Daniel P. Friedman, Characterizing the paralation model using
dynamic assignment, Computer Science Department Technical Report #348,

LP5-3.4 7

Indiana University, Bloomington, Indiana, March 1992.

[Han91] Chris Hanson, A Syntactic Closures Macro Facility, Lisp Pointers IV, 4 (Oct-Dec
1991), 9-16, ACM.

[Hen92] Fritz Henglein, Global Tagging Optimization by Type Inference, Proceedings of the
1992 ACM Conference on Lisp and Functional Programming, San Francisco, USA,
June 1992, 205-215.

[HDB92] Robert Hieb, Kent Dybvig and Carl Bruggeman, Syntactic Abstraction in Scheme,
Computer Science Department Technical Report #355, Indiana University,
Bloomington, Indiana, June 1992.

Abstract: Naive program transformations can have surprising effects due to the interaction
between introduced identifier references and previously existing identifier bindings, or between
introduced bindings and previously existing references. These interactions can result in the
inadvertent binding, or capturing of identifiers. A further complication results from the fact that
the transformed program may have little resemblance to the original program, making
correlation of source and object code difficult. We address both the capturing problem and the
problem of source-object code correlation. Previous approaches to the capturing problem have
been both inadequate or overly restrictive, and the problem of source-object code correlation has
been largely unaddressed. Our approach is based on a new algorithm for implementing syntactic
transformations along with a new representation for syntactic expressions. It allows the
programmer to define program transformations using an unrestricted, general-purpose language,
while at the same time it helps the programmer avoid capturing problems and maintains a
correlation between the original code and the transformed code.

[JaP92a] Suresh Jagannathan and Jim Philbin, A Customizable Substrate for Concurrent
Languages, Proceedings of the Sigplan 92 Conference on Programming Language
Design and Implementation, San Francisco, CA, July 1992.

Abstract: We describe an approach to implementing a wide-range of concurrency paradigms in
high-level (symbolic) programming languages. The focus of our discussion is STING, a dialect
of Scheme, that supports lightweight threads of control and virtual processors as first-class
objects. Given the significant degree to which the behavior of these objects may be customized,
we can easily express a variety of concurrency paradigms and linguistic structures within a
common framework without loss of efficiency.

Unlike parallel systems that rely on operating system services for managing concurrency,
STING implements concurrency management entirely in terms of Scheme objects and
procedures. It, therefore, permits users to optimize the runtime behavior of their applications
without requiring knowledge of the underlying runtime system.

This paper concentrates on (a) the implications of the design for building asynchronous
concurrency structures, (b) organizing large-scale concurrent computations, and (c)
implementing robust programming environments for symbolic computing.

[JaP92b] Suresh Jagannathan and Jim Philbin, A Foundation for an Efficient Multi-Threaded
Scheme System, Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, San Francisco, USA, June 1992, 345-357.

Abstract: We have built a parallel dialect of Scheme called STING that differs from its
contemporaries in a number of important respects. STING is intended to be used as an operating
system substrate for modern parallel programming languages.

LP5-3.48

The basic concurrency management objects in STING are first-class lightweight threads of
control and virtual processors (VPs). Unlike high-level concurrency structures, STING threads
and VPs are not encumbered by complex asynchronization protocols. Threads and VPs are
manipulated in the same way as any other Scheme structure.

STING separates thread policy decisions from thread implementation ones. Implementations of
different parallel languages built on top of STING can define their own scheduling and migration
policies without requiring modification to the runtime system or the provided interface. Process
migration and scheduling can be customized by applications on a per-VP basis.

The semantics and implementation of threads minimizes the cost of thread creation, and puts a
premium on storage locality. The storage management policies in STING lead to better cache
and page utilization, and allows users to experiment with a variety of different execution regimes
- from fully delayed to completely eager evaluation.

[LaF92] Julia L. Lawall and Daniel P. Friedman, Toward leakage containment, Computer
Science Department Technical Report #346, Indiana University, Bloomington,
Indiana, February 1992.

Abstract: Functional programs are organized into procedures, each encapsulating a specific
task. A procedure should not cause its callers to repeat its work. This forced repetition of work
we call leakage. In this paper we describe several common instances of leakage, and show how
they can be eliminated using an extension of continuation-passing style.

[LFe92] Shinn-Der Lee, Daniel P. Friedman and First-class extents, , Computer Science
Department Technical Report #350, Indiana University, Bloomington, Indiana,
March 1992.

Abstract: Adding environments as first-class values to a language can greatly enhance its
expressiveness. But, first-class environments introduce a variant of dynamically scoped
identifiers. By distinguishing variables from identifiers, and subsequently, extents from
environments, we present an alternative: first-class extents. First-Class extents are defined on
variables rather than identifiers and are therefore immune to name capturing problems that
plague dynamic scope. Then by distinguishing variables from locations, and subsequently,
extents from stores, our first-class extents can coexist with imperative features and still allow
tail-recursion to be properly implemented as iteration.

To test our claims, we extend Scheme with a collection of features that are essential for first-
class extents, give a denotational semantics for the extension, and demonstrate that it can be
fully interpreted by Scheme via an embedding. Then, we show how first-class extents lead a
way of extending Scheme with object-oriented features.

[Ram92] John D. Ramsdell, An Operational Semantics for Scheme, Lisp Pointers V, 2
(April-June 1992), ACM.

[RED92] Jonathan Rees and Bruce Donald, Program Mobile Robots in Scheme, Proceedings
of the 1992 IEEE International Conference on Robotics and Automation, Nice,
France, May 1992, 2681-2688.

Abstract: We have implemented a software environment that permits a small mobile robot to be
programmed using the Scheme programming language. The environment supports incremental
modifications to running programs and interactive debugging using a distributed read-eval-print
loop. To ensure that the programming environment consumes a minimum of the robot's scarce
on-board resources, it separates the essential on-board run-time system from the development

LP5-3.49

environment, which runs on a separate workstation. The development environment takes
advantage of the workstation's large address space and user environment. It is fully detachable,
so that the robot can operate autonomously if desired, and can be reattached for retrospective
analysis of the robot's behavior.

To make concurrent applications easier to write, the run-time library provides multitasking and
synchronization primitives. Tasks are light-weight and all tasks run in the same address space.
Although the programming environment was designed with one particular mobile robot
architecture in mind, it is in principle applicable to any other embedded system.

[RoM92] John H. Rose and Hans Muller, Integrating the Scheme and C Languages,
Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,
San Francisco, USA, June 1992, 247-259.

[Roz92] Guillermo Rozas, Taming the Y Operator, Proceedings of the 1992 ACM
Conference on Lisp and Functional Programming, San Francisco, USA, June 1992,
226-234.

Abstract: In this paper I present a set of conceptually simple but involved techniques used by
LIAR, the MIT Scheme compiler, to generate good code when recursive procedures are
specified in terms of suitable versions of the Y operator. The techniques presented here are
general-purpose analysis and optimization tools, similar to well-known techniques used in the
analysis and optimization of applicative languages, that combine synergistically to enable LIAR
to generate identical machine code for ordinary recursive definitions written using l e t r e c and
those written using suitable forms of Y.

[SaF92] Amr Sabry and Matthias Felleisen, Reasoning about Programs in Continuation-
Passing Style, Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, San Francisco, USA, June 1992, 288-298.

[Tun92a] Sho-Huan Simon Tung, Merging interactive, modular and object-oriented
programming, Computer Science Department Technical Report #349, Indiana
University, Bloomington, Indiana, March 1992.

[Tun92b] Sho-Huan Simon Tung, Interactive Modular Programming in Scheme, Proceedings
of the 1992 ACM Conference on Lisp and Functional Programming, San Francisco,
USA, June 1992, 86-95.

Abstract: This paper presents a module system and a programming environment designed to
support interactive program development in Scheme. The module system extends lexical
scoping while maintaining its flavor and benefits and supports mutually recursive modules. The
programming environment supports dynamic linking, separate compilation, production code
compilation, and a window-based user interface with multiple read-eval-print contexts.

Availability

The complete Scheme bibliography may be obtained in machine-readable bib [refer] or
(automagically-generated) BibTeX format via e-mail from oz@nexus.yorku.ca. Both formats are
ftp-able from the Scheme Repository (currently located at nexus.yorku.ca [130.63.9.66]), under
pub/scheme/bib. [Happy scheming, oz]

LP5-3.50

SIGPLAN PROCEEDINGS
EASY TO ORDERJ

POPL - 19Tn ANNUAL SYMPOSIUM ON PRINCIPLES OF

PROGRAMMMING LANGUAGES

Albuquerque, NM, January 19 - 22, 1992. Sponsored by ACM
SIGACT and SIGPLAN. 376 pages, ISBN: 0-89791-453-8 *
Order No. 549920, Nonmembers: $53.00, ACM Members:
$26.00

POPL - ANNUAL SYMPOSIUM ON PRINCIPLES OF

PROGRAMMMING LANGUAGES

Orlando, FL, January 21-23, 1991. Sponsored by ACM SIGACT
and SIGPLAN. 366 pages, ISBN: 0-89791-419-8
• Order No. 549910, Nonmembers: $27.00,ACM Members:
$22.00

POPL - 17Tn ANNUAL SYMPOSIUM ON PRINCIPLES OF

PROGRAMMMING LANGUAGES

San Francisco, CA, January 17 - 19, 1990.
Sponsored by ACM SIGACT and SIGPLAN. 402 pages,
ISBN: 0-89791-343-4 ° Order No. 549900
Nonmembers: $36.00, ACM Members: $24.00

POPL - 16Tll ANNUAL SYMPOSIUM ON PRINCIPLES OF

PROGRAMMMING LANGUAGES

Austin, 'IX, January 11 - 13, 1989. Sponsored by ACM
SIGACT and SIGPLAN. 352 pages, ISBN: 0-89791-294-2
• Order No. 549890, Nonmembers: $27.00, ACM Members
$21.00
l l l l l l l l l I I l l l l l l l l l l l l l l l l l

O O P S L A '91
Phoenix, AZ, October 6- 11, 1991. Sponsored by ACM
SIGPLAN. 384 pages, ISBN: 0-201-55417-8 ° Order No.
548911, Nonmembers: $35.50", ACM Members: $20.00

O O P S L A / E u r o p e a n Conference on OOP '90
Ottawa, Ontario, October 21- 25, 1990. Sponsored by ACM
SIGPLAN. 336pages, ISBN: 0-201-52430-X • Order No.
548901, Nonmembers: $35.50*, ACM Members: $20.00

O O P S L A '89
New Orleans, LA, October 1- 6, 1989. Sponsored by ACM
SIGPLAN. 528 pages, ISBN: 0-201-52249-7 • Order No.
548893, Nonmembers: $35.50", ACM Members: $28.00

O O P S L A '88
Sponsored by ACM SIGPLAN. Order No. 548881
Nonmembers: $38.00, ACM Members: $26.00

O O P S L A '87
Sponsored by ACM SIGPLAN. Order No. 548871
Nonmembers: $48.00, ACM Members: $33.00

P P O P P '91 -3RD A C M S I G P L A N SYMPOSIUM ON
PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMMING

Williamsburg, Virginia, April 21- 24, 1991. Sponsored by ACM
SIGPLAN. ISBN: 0-89791-390-6 • Order No. 551910,
Nonmembers: $18.00, ACM Members: $13.00

P P O P P '90 - 2NO A C M S I G P L A N SYMPOSIUM ON
PRINCIPLES AND PRACTICE OF PARALLEL PROGRAMMMING

Seattle, Washington, March 14- 16, 1990. Sponsored by ACM
SIGPLAN. 206 pages. ISBN: 0-89791-350-7 • Order No. 551900,
Nonmembers: $25.00, ACM Members: $19.00
n m n m m m u m m l m m m m m m m mm m m m n m n minim

A S P L O S - I V 4TII INTERNATIONAL CONFERENCE ON

ARCIIITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES

AND OPERATING SYSTEMS

Santa Clara, CA, April 8- 11, 1991. Sponsored by ACM
SIGPLAN, SIGARCH and SIGOPS. • Order No. 556910,
Nonmembers: $25.00, ACM Members: $20.00

A S P L O S - I I I 3 RD INTERNATIONAL CONFERENCE ON

ARCIIITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES

AND OPERATING SYSTEMS
Boston, MA, April 3- 6, 1989. Sponsored by ACM SIGPLAN,
SIGARCH and SIGOPS. 303 pages, ISBN : 0-89791-300-0
• Order, NO 556890, Nonmembers: $29.00, ACM Members:
$20.00
mE mn m m u g i i m e i i u i EN m e e l i m MR Nlmlll

S I G P L A N '91- 4 Tn CONFERENCE ON PROGRAMMING
LANGUAGEs DESIGN AND IMPLEMENTATION

Sponsored by ACM SIGPLAN. • Order No. 548910,
Nonmembers: $27.00, ACM Members: $20.00

S I G P L A N '90 - 3RD CONFERENCE ON PROGRAMMING
LANGUAGEs DESIGN AND IMPLEMENTATION

White Plains, NY, June 20-22, 1990. Sponsored by ACM
SIGPLAN. 358 pages. ISBN: 0-89791-364-7 • Order No.
548900, Nonmembers: $31.00, ACM Members: $22.00

S I G P L A N '89 - 2 NO CONFERENCE ON PROGRAMMING
LANGUAGE~ DESIGN AND IMPLEMENTATION

Portland, OR, June21-23,1989. SponsoredbyACM SIGPLAN.
355 pages. ISBN: 0-89791-306-X • Order No. 548892, Non-
members: $32.00, ACM Members: $22.00

S I G P L A N '88 - 1ST CONFERENCE ON PROGRAMMING
LANGUAGEs DESIGN AND IMPLEMENTATION

Sponsored by ACM SIGPLAN. • Order No. 548880,
Nonmembers: $35.00, ACM Members: $24.00

F P C A '89 - PROCEEDINGS OF FUNCTIONAL PROGRAMMING

LANGUAGES, AND COMPUTER ARCIIITECTURE

London, UK, September 11-13, 1989. Sponsored by ACM
SIGPLAN and IFIP. 396 pages. ISBN: 0-201-51389-7. Order
No. 407890, Nonmembers : $35.50*, A C M Members: $28.00
a n n a a m m m u m n u n n u t n u n u m m u m m u m h u n t a m

1988 SYMPOSIUM ON L I S P AND FUNCTIONAL

PROGRAMMING

Snowbird, UT, July 25-27, 1988. Sponsored by ACM SIGPLAN,
SIGACTand SIGART. 364 pages. ISBN: 0-89791-273-X,
• Order NO 552880, Nonmembers : $36.00, ACM Members:
$24.00

PROCEEDINGS OF THE 3RD SOFTWARE ENGINEERING

SYMPOSIUM ON PRACTICAL SovrWARE DEVELOPMENT

ENVIRONMENTS
Boston, MA, November 28-30, 1988. Sponsored by ACM
SIGPLAN and SIGSOFT. 268 pages. ISBN: 0-89791-290-X,
• Order No 594880, Nonmembers : $28.00, ACM Members:
$20.00
1 ml ml m i 1 m m l II m m m m m m m u II II ml m m m I I I 1 m m

WORKSIIOP ON OBJECT-BASED CONCURRENT PROGRAMMING

San Diego, CA, September 26-27, 1989. Sponsored by ACM
SIGPLAN. ISBN: 0-89791-304-3, • Order No 548891,
Nonmembers : $22.00, ACM Members: $15.00
m m iii l l m m l l mlm m m ml m m n m m m m u m m m m n II u

P P E A L S ' 88 - A C M S I G P L A N SYMPOSIUM ON

PARALLEL PROGRAMMING EXPERIENCE WITIt APPLICATIONS,

LANGUAGES, AND SYSTEMS

New Haven, CT, Jtfly 19-21, 1988. Sponsored by ACM SIGPLAN.
246 pages. ISBN: 0-89791-276-4, Order No. 551880,
Nonmembers : $26.00, ACM Members: $19.00
m m m I I I n u II m m In IN l l ml HI ml l l l l n In m nl m l In m

E A S Y T O O R D E R

Telephone O r d e r s (Cred i t C a r d s Only)

I CALL TOLL FREE 1-800-342-6626
For Customer Service Call: 301-528-4261 m

In AK, MD, and Outside USA: 301-528-4261 l
Please Have your Credit Card Number Handy)

Proceed ings may be o r d e r e d p r e p a i d f rom
A C M O r d e r D e p a r t m e n t

P.O. Box 64145, Bal t imore , M D 21264

'" $:;.:: Speci:ai brdering"nbt6:::::: INonrnembers iri([;t :~rder i
:iii.Addison-.Wesley Publishing CO::; Order Depti;:Jacob Way,.:: ::i i

PROCEEDINGS OF TIlE A C M WORKSItOP ON PARALLEL AND
DISTRIBUTED DEBUGGING

1991. Sponsored by ACM SIGPLAN and SIGOPS. • OrderNo
548912, Nonmembers : $19.00, A CM Members: $15.00

PROCEEDINGS OF TIIE A C M W ORKSIIOP ON PARALLEL AND

DISTRIBUTED DEBUGGING

Madison , WI, May 5-6, 1988. Sponsored by A CM SIGPLAN
and SIGOPS. 404 pages. ISBN: 0-89791-296-9, • Order No
548884, Nonmembers : $29.00, A CM Members: $20.00
m m mm mmm m mm mm m m mmm mmmmmmm mmmmmmm mm

COMMON LISP OBJECT SYSTEM SPECIFICATION: AMERICAN

NATIONAL STANDARDS INSTITUTE (A N S I) STANDARD

DOCUMENT FOR E DITORIAL R EVIEW

1988. Sponsored by ACM SIGPLAN. ISBN: 0-89791-289-6,
• Order No 548883, Nonmembers : $20.00, ACM Members:
$13.00
N B N N i N i B B N B N N I N N N i N N N N N I I N N N N

1990 SYMPOSIUM ON L I S P AND FUNCTIONAL

PROGRAMMING

Nice, France, June 25-29, 1990. Sponsored by ACM SIGPLAN,
SIGACTand SIGART. 348 pages. ISBN: 0-89791-368-X,
Order No 552880, Nonmembers : $31.00, ACM Members:
$24.00

EDITORIAL POLICY

All submissions to Lisp Pointers, with the exception of technical articles, should be made in camera-
ready text and sent to the appropriate department head. Technical articles may be submitted to the
Technical Articles Editor in either hard copy or in TEX source files by Arpanet link, tar format
cartridge tape, or tar format reel-to-reel. All submissions should be single-spaced with no page
numbers. Without a special waiver from the appropriate department head, submissions will be
limited to ten pages. This can be achieved by printing longer articles two-up. Camera-ready text is
defined to be no more than 7 1/2 x 10 inches or 19 x 25 centimeters, centered on an 8 1/2 x 11 inch
page. Articles that contain too much blank space will be rejected. It is the author's responsibility to
retain a working copy of the submission, as contributions will not be returned to authors. Authors
not fluent in writing English are requested to have their work reviewed and corrected for style and
syntax prior to submission.

Although Lisp Pointers is not refereed, acceptance is subject to the discretion of the appropriate
department head. The scope of topics for Lisp Pointers includes all dialects of Lisp and Scheme. We
encourage research articles, tutorials, and summarizations of discussions in other forums. Lisp
Pointers is not a forum for detailed discussions on proposed changes to the Common Lisp standard.

Lisp Pointers is a Special Interest Publication of the Special Interest Group on Programming
Languages (SIGPLAN). A subscription to LISP Pointers does not include membership in any group.

Note: ACM Members who expect to renew their membership within the next six months should send
no LISP Pointers subscription payment now as they will be billed on their renewal notice. Those
expecting to renew in seven or more months should send on half the annual LISP Pointers
subscription payment now.

Name (Please print or type)

Annual subscription rates are
$12 for ACM Members,
$7 for ACM Student Members,
$25 for Non-ACM Members.

Mailing Address

City State Zip

ACM MEMBER
ACM Member No.
(see note regarding dues payment)

.ACM STUDENT MEMBER
ACM Student Member No.
(see note regarding dues payment)

NON-ACM MEMBER
Enclosed is annual subscription
payment of $25

Please send information on ACM
Membership.

Signature

New address. Please change my ACM record.

Please make checks payable to ACM Inc. and mail to: ACM, Inc., P.O. Box 12115,
Church Street Station, New York, N.Y. 10249.

