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We show how to speed up the Gabriel 'Triangle' Benchmark by more than two orders of magnitude (206 X faster than 
the Cray-1) on a Common Lisp system running on the 80860-based OKIstation, by using better prograrnrning 
techniques. The resulting program fits nicely within next generation on-chip caches and kills almost all potential 
parallelism, thus becoming worthless as a general-purpose Lisp benchmark. 

A. INTRODUCTION 

The "Triangle" benchmark is typically the longest of the Gabriel Lisp benchmarks, taking between 14.44 seconds on 
the Cray-1 and 1510 seconds on the Xerox Dolphin [Gabriel85]. 1 Triangle performs a classical AI task, in that it 
solves a puzzle game using a combinatorial search. Unfortunately, the standard implementation of the Triangle 
benchmark is an embarrassment to the AI and Lisp communities, because it does not utilize the best algorithm, and 
therefore continues to perpetuate the myth that "Lisp is slow". 

We show how to speed up Triangle through a combination of memoizing [Bird80] and bit-vector techniques 
[Baker90], to yield a t imeof  0.07 seconds on a modem RISC workstation (the 80860-based OKIstationrU), which is 
206 times faster than the Cray-1 speed in [Gabriel85]. Our techniques eliminate redundancy from the computation, 
which has the effect of eliminating potential parallelism, as well. 

B. THE STANDARD TRIANGLE BENCHMARK 
The code for Triangle given in [Gabriel85] has a glaring error: it attempts to map the q u o t e  special form over a 
sequence! We suggest using ( c o e r c e  * s e q u e n c e *  ' l i s t ) ,  instead. The standard Triangle code is otherwise 
COrrect. 

There are some straight-forward improvements in programming style that would be welcome in a Common Lisp 
version of Triangle. The most obvious is to use zero-origin addressing for the elements of the * b o a r d *  vector 
instead of one-origin addressing; this change has the effect of renumbering the holes in the puzzle board to one smaller 
than the numbers shown in the text [Gabne185,p.218]. The second is to realize that the last "move" ("6 5 4") in the 
arrays has been duplicated; i.e., there are only 36 distinct possible moves. A third change in the name of "structured 
programming" would utilize a single 36-element vector of "moves", each of which would be a 3-element sequence. 

A truly "structured programming" form of this program would hide the representation of the board, the set of possible 
moves, and the moves themselves. Such a form would allow for quick changes of representation to find the best one. 

C. SPEEDING UP TRIANGLE A "BIT" 
Since the vector representing the Triangle "board" consists of exactly 15 locations, each of which contains either zero 
or one, one should immediately consider representing this "board" using a 15-bit bit-vector. Since a length-15 bit- 
vector is quite short, we should consider the use of a f i x n u r a  integer, so that the entire vector can be manipulated in 
parallel by a single machine instruction (word-parallelism is about the only parallelism that can be effectively utilized 
in Triangle). Once the "board" can be so succinctly represented, it can be more efficiently passed as a parameter to 
t r y ,  rather than remaining a global variable. Passing the "board" as an argument in this way has the additional 
advantage that the board does not have to be explicitly restored to its previous configuration, because such restoration 
is already an integral part of the normal calling sequence for Lisp. 

Once the "board" is a bit-vector, then references to the board must be made with l d b  or l o g b i g p  instead of a r e f .  
However, a little thought will show that the representation of the "moves" is sub-optimal, since we must shift a 1-bit 
each time a board position is to be queried. A better solution is to perform the shifts once during initialization, by 
changing * a*, *b*, and * c* into vectors of bit-masks, rather than vectors of bit-positions. Further inspection of 
the t r y  function reveals the fact that * a * and *b* are always used together, so a single vector of masks containing 
both the "a" and "b" bits will suffice. 

1Modern RISC architecture performance numbers are closing in on the Cray-1, and better Cray-1 numbers are 
available [Anderson87], but these do not invalidate our conclusions. 
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With these changes, try now looks like this: 

(defun try (board i depth) 
(if (= depth 14) (progn (pushnew (i- (integer-length board)) *final*) 

(push (cdr (coerce *sequence* 'list)) *answer*) 
t) 

(let* ((ab (aref *ab* i)) (c (aref *c* i))) 
(if (and (= (logand board ab) ab) (zerop (logand board c))) 

(progn (setf (aref *sequence* depth) i) 
(do ((j 0 (i+ j)) 

(nboard (logxor board ab c)) 
(ndepth (i+ depth))) 

((or (= j 36) (try nboard j ndepth)) nil))))))) 

D. MEMOIZING TRIANGLE 
The use of bit-twiddling instead of array-hacking can produce an order of magnitude improvement in the Triangle 
benchmark, but it doesn't attack the real problem of Triangle--its redundancy. Like most combinatorial searching 
programs, Triangle spends an inordinate amount of time re-investigating the same board positions. This can easily be 
seen if one compares the number of calls to t r y  in the standard benchmark (5,802,572) with the total number of 
possible board positions (215 = 32,768). The key to eliminating this redundancy is to keep a table of board positions 
already considered. The size of this table is bounded by the number of possible board positions (32,768), so we can 
utilize either a hash table or a simple vector indexed by the "board" itself. 

However, before we can utilize a table of board positions, we must decide what information should be stored into the 
table. We could store an entire set of  moves for each board position, but these sets are quite large themselves, so 
merely constructing them will dominate the computation. Since most of these sets will never be required, such 
constructions are a waste of effort. The minimum amount of information required for each board position is a single 
bit--whether the current board position can be extended into a "winning" position. An efficient algorithm can be 
constructed which is based on this implementation. We will use a slightly different representation, however. Our 
table will store for each board position the list offirst moves which lead to winning positions; this list will be empty 
if there are no winning moves at all. (Note that the number of first moves which lead to a winning position can be 
much smaller than the number of moves possible in the current board configuration.) This choice will lead to a 
slightly simpler algorithm for reconstructing the winning move sequences. 
We are thus led to a two-stage algorithm---determine the winning moves starting from the initial board position, and 
then reconstruct the winning sequences. By deferring the construction of the winning sequences until the second 
stage, we avoid constructing any but the winning sequences. 

(defun try (board depth &aux (entry (aref *table* board))) 
(if (not (empty entry)) entry ;emptiness is an arbitrary non-'list' value. 

(setf (aref *table* board) 
(if (= depth 14) (cons 

(mapcan 
#'(lambda (i) 

(let* ((ab (aref 
(when (and (= 

(= 

(defun 
(if 

nil nil) 

(list 
*moves*))))) 

*ab* i)) (c (aref *c* i))) 
(logand board ab) ab) 
(iogand board c) c) 

(try (logxor board ab c) (i+ depth))) 
i)))) 

construct (board depth movelst &aux (entry (aref *table* board))) 
(= depth 14) (progn (pushnew (i- (integer-length board)) *final*) 

(push movelst *answer*)) ;answers are reversed. 
(dolist (i entry nil) 

(construct (logxor board (aref *ab* i) (aref *c* i)) 
(i+ depth) 
" (,i ,@movelst))) ) 
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(defun gogogo (i) 
(let* ((*answer* ()) (*final* ()) 

(board (logxor (- 32767 16) (aref *ab* i) (aref *c* i)))) 
(try board 2) 
(gather board 2 nil) 
*answer*) ) 

In the above program, the same 775 solutions are still generated, but in a time of just 0.07 seconds--0.05 seconds for 
t r y  and 0.02 seconds for c o n s t r u c t .  After the search, * t a b l e *  has 1195 entries, of which only 121 are non- 
null. The non-null entries contain just 246 cons cells, for an average list length of about 2. c o n s t r u c t  uses just 
4827 cons cells for representing the winning lists of moves themselves, for an average of about 6 cons cells per list, 
even though each winning list prints as 12 cons cells, and 775 cons cells for the list of winning lists. Thus, we save 
about a factor of 2 in consing by sharing as much of the sequence lists as possible. 
We also ran Triangle without choosing the first move ("22"); this run produces 1550 solutions, half of them mirror 
images of the other half. However, this run took only 0.12=0.07+0.05 seconds--hess than twice as long as the 
normal run. The savings become clear when *table* is examined; after this run, *table* has 1651 entries, of 
which 190 are non-null, with an average list-length of about 2. The constructed winning lists use 9656 cons cells in 
addition to the 1550 cells required for the list of winning lists. Thus, we can generate all of the solutions to Triangle 
120 times faster than the Cray-1 produces only half of them using the old algorithm. 

E. RESULTS 
The bit-vector and memoizing optimizations improve Triangle by more than two orders of magnitude. With but a 
day's work on the 40MHz 80860-based OKIstation, we achieved a Triangle time of 0.07 second, which is 206 X faster 
than the Cray-1 on the old benchmark. Although our version of Triangle uses a memo table implemented as a simple 
vector, this table requires 128Kbytes and is only 4% full, so a smaller true hash table might actually be faster so long 
as the entire table fits in the cache. Unfortunately, our reductions in memory utilization have destroyed the usefulness 
of this benchmark, because the memoized Triangle benchmark will fit entirely within the on-chip cache of the next 
generation microprocessors. 
The success of memoization shows that almost all of the parallel processes in the parallel implementations of 
Triangle are performing identially the same computation, hence the Triangle benchmark is worthless for estimating 
parallelism in real (i.e., highly optimized) applications. In a sense, memoization is the most powerful of all parallel 
programming techniques, because one processor simulates the execution of many processes with a single execution! 
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