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We show how Baskett's "Puzzle" benchmark can be speeded up at least an order of magnitude by utilizing bit-vectors. 
Unlike many optimization techniques, the use of bit-vectors enhances the readability and understandability of the code. 
Since bit-vectors already utilize word-wide parallelism, it is unlikely that parallel processors will be able to solve the 
problem much faster. 

A. INTRODUCTION 
Baskett's "Puzzle" benchmark has been used for almost a decade for the evaluation of hardware architectures, and was 
included in the "Gabriel" suite of Lisp benchmarks [Gabriel85]. "Puzzle" solves a 3-dimensional packing problem by 
attempting to pack pieces of 4 different types into a 5x5x5 cube. The class of such packing problems is closely 
related to the "bin-packing" and "knapsack" problems of complexity theory, which are known to be NP-complete 
[Baase78]. Thus, while it is unlikely that clever programming will allow us to escape the asymptotic exponential 
behavior of these problems, it can gain us some very real performance improvements. 

It is worth studying packing problems because of their ubiquity in the real world. In addition to the obvious 
examples from business--e.g., freight loading--there are similarities with real problems in biochemical bonding. 
The standard version of Puzzle found in the Gabriel benchmark suite is an embarrassment for the Lisp language 
because its implementation prefers hacking Fortran-like arrays instead of exploiting Common Lisp's rich set of 
datatypes and functions [Steele90] to solve the problem in a natural and efficient manner. In particular, the standard 
Gabriel Puzzle does not take advantage of Common Lisp's excellent bit-vector capabilities [Baker90]. 

We show how the use of bit-vectors in Common Lisp can speed up "Puzzle" by at least an order of magnitude, and 
these techniques allow us to achieve on a workstation (80860-based OKIstation TM) a speed of 7.7 times the Cray-1 on 
the old benchmark. 

B. THE STANDARD PUZZLE BENCHMARK 
The standard Gabriel code for Puzzle solves the problem by "pre-rotating" all of the different puzzle pieces, so that 
these rotations do not have to be performed during the actual combinatorial search. Thus, each piece "class" has a 
number of different piece "types" which result from different rotations of the pieces. For example, the 4x2xl piece 
has 6 distinct rotations, while the 2x2x2 piece has only 1. The 5x5x5 puzzle cube itself is represented as a section of 
an 8x8x8 cube of Boolean values, while the various piece types (rotations) are represented as a vector of Boolean 
values which is in correspondence with the representation of the puzzle itself. By embedding a 5x5x5 cube within an 
8x8x8 cube, a "border" is created which makes sure that the pieces stay within the 5x5x5 boundaries. 

After initialization, the standard Puzzle code linearly searches the puzzle representation for the smallest-numbered 
empty location. It then tries all of the remaining pieces to see if they can be fit into the puzzle in such a way that 
this empty location will be filled. If a piece can be fitted, then the code performs a depth-first search for the next 
empty location and the next piece to be fitted. In many instances, the code will find that it has pieces which cannot 
be fitted, and initiates a backtrack to remove previously fitted pieces. 

The standard code investigates 2,005 placements of the 18 pieces. The speed of the standard code is highly dependent 
upon the ordering of the pieces, which affects the ordering of the search; a different ordering investigated 10 times as 
many placements, for example. Interestingly enough, of the 2,005 partially-completed puzzles investigated, 1,565 of 
them are distinct, meaning that there is little hope of speedup from the "memoization" techniques which have been 
found effective for other puzzles and games [Bird80] [Baker92]. (The standard implementation of Puzzle investigates 
surprisingly few configurations, making the ordering of the puzzle pieces appear to have been tampered with to 
produce shorter searches.) 

The standard Gabriel code for Puzzle does not have any errors, but it does show evidence of a hasty conversion from a 
non-Lisp language. It cannot decide, for example, whether to consistently use 0-origin or 1-origin indexing. The 
standard code prefers to use the more complex do instead of the simpler do t i r ae s ,  and does not utilize macros like 
i n c f  and d e c f .  None of these stylistic issues should affect performance, however. 

The one obvious stylistic change which could significantly improve performance occurs at the end of the p 1 a c e 
routine where the puzzle is searched for the smallest-numbered empty location. The Common Lisp p o s i t i o n  
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"sequence" function could be used for this purpose, and it could conceivably improve performance due to its 
presumably high level of optimization. 

C. SPEEDING UP PUZZLE A "BIT" 
Since Puzzle operates on arrays whose elements are always Boolean values of t or n i l ,  Puzzle cries out for a bit- 
vector implementation. The p u z  z l e  vector itself is an excellent candidate, as are the rows of the p array used in 
f i t .  In fact, f i t  itself is essentially a verbose version of the Common Lisp l o g g e s t  function which operates on 
bit-vectors represented by large integers. Furthermore, the search for an empty bit location at the end of p l a c e  is 
analogous to the search in the Common Lisp i n t e g e r - l e n g t h  function for the highest numbered bit. 

The decision to use bit-vectors in Common Lisp is complicated by the fact that there are at least 3 different bit-vector 
models--bit-vectors represented by bit-arrays, bit-vectors represented by bit "sequences", and bit-vectors represented by 
large binary integers. Bit-vectors represented as large binary integers are functional,  in that such a bit-vector cannot 
have a single bit changed, but the whole bit-vector must be copied. Bit-vectors represented as bit-arrays can be 
manipulated in a destructive (imperative) manner, and may therefore have an advantage in reducing garbage collector 
overhead, but have some less obvious defects. Bit-vectors represented by binary integers are only as large as they need 
to be to represent the highest-numbered bit, while bit-vectors represented by bit-arrays always occupy their full 
allocated length; this difference in sizes can result in higher performance for binary integers if the integers are often 
much smaller than the maximum size. 
We here discuss only a binary integer version of Puzzle. We suspect that a bit-array version of Puzzle can be more 
efficient than one utilizing binary integer bit-vectors, but the lack of a quick intersection test (e.g., l o g t e s t  for 
binary integers) may scuttle this hope. 
Our representation of the puzzle itself is a single binary integer, while the puzzle piece types are also binary integers. 
A straight-forward translation would convert the p u z  z l e  global vector into a global variable holding a large binary 
integer, and convert the global 2-dimensional p array into a global vector of large binary integers. Such a translation 
would also place and remove pieces from the puzzle at a high rate; a better solution is to remember the previous state 
of the puzzle, which is trivially done by making p u z z l e  into a parameter of the t r i a l  function. The function 
f i t  disappears entirely, to be replaced by l o g t e s t ,  while p l a c e  is accomplished by l o g x o r .  If we move the 
empty location search from the non-existent p l a c e  function to the top of the recursively called t r i a l  function, 
then we no longer have to pass the address of this empty location as a parameter to t r i a l .  This search can be 
accomplished by the following code, but we will rearrange things so that a less complex solution can be obtained. 

(defun find-lowest-O-bit (bv) 
(declare (type (integer 0 *) bv)) 
(I- (integer-length (logandc2 (i+ bv) bv)))) 

The problem with this solution is that we must construct 2 temporary binary integers before using i n t e g e r -  
l e n g t h  to do the search, instead of simply searching the bit-vector directly. If we simply reversed pu  z z l e  end-for- 
end, then we could search from the end of the bit-vector for an empty position instead of searching from the 
beginning. The Common Lisp function i n t e g e r - l e n g t h  can be used to search for the highest "0" bit, so long 
as the integer is negative. We can thus use the following code: 

(defun find-highest-O-bit (bv) 
(declare (type (integer * (0)) bv)) 
(i- (integer-length bv))) 

It turns out that we don't have to actually reverse the puzzle end-for-end, since the original choice to search for the 
lowest-numbered empty position instead of the highest-numbered was arbitrary, and the same combinatorial search is 
performed either way. The advantage of the new ordering is that the number of integer constructions is reduced. 

D. PRECOMPUTING SHIFTS 
The standard code for Puzzle precomputes rotations for the pieces, but not shifts. This is probably because there is 
little cost to a shift using the standard algorithm. When utilizing bit-vectors, however, the cost of shifting can easily 
exceed any savings from parallel operations on multiple bits. We therefore extended de  f i n e p i e  c e to precompute 
shifts as well as rotations; this change has the additional benefit that the "border" is no longer needed, so we can 
represent pu  z z l e  with length-125 instead of length-512 bit-vectors. However, there are far more shifts than 
rotations; a single rotation of a 4x2xl  piece can be shifted into 2x4x5=40 different positions, and there are 240 
different shifts for all rotations of the 4x2xl piece "class". The number of piece "types" must therefore be increased 
from 13 to 769. 
With so many different piece "types" to consider, our algorithm should run far more slowly than the standard code. 
(Indeed, a preliminary version of this kind had to be cut off before it finished.) However, since we are trying to fill 
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the highest-numbered empty position, it is obvious that we should index these different piece "types" by their largest 
bit-position, so that t r i a l  will consider only the piece types that can actually fill the empty position. Our index is 
thus a vector of lists of piece types, which vector is indexed by the 125 positions in the puzzle; the elements in its 
last list, for example, give the piece types which can be used to fill the last puzzle position. It so happens that the 
maximum number of elements in any of these lists is 13, so we could have arranged this information as a 125x13 
array. But we are programming in Lisp! Hence, we will keep the vector-of-lists representation for our index. At the 
cost of one additional vector location, we can use a 1-origin for our index and thereby eliminate the decrement which 
would otherwise surround every call to integer-length. 

(defun trial (puzzle) 
(incf *kount*) 
(if (eq puzzle-i) t 

(let* ((j (integer-length puzzle))) 
(dolist (i (aref index j) nil) 

(let* ((classi (aref class i)) (ocnt (aref piececount classi))) 
(unless (zerop ocnt) 

(let* ((pi (aref p i))) 
(setf (aref piececount classi) (I- ocnt)) 
(unless (logtest puzzle pi) 

(when (trial (logxor puzzle pi)) 
(format t "Piece ~4D." i) (return-from trial t))) 

(setf (aref piececount classi) ocnt)))))))) 

Given the large increase in types from 13 to 769, it is not obvious whether the 769 piece types and their index can be 
built fast enough. If we use code similar to that in the standard d e f i n e p i e c e ,  our approach would founder on the 
large amount of large integer construction Cbignum consing") required, because the standard code builds up the bit- 
vectors one bit at a time. 

The proper way to build the bit-vector pattems is to build them up recursively on theft 3 dimensions. Since Puzzle 
utilizes Fortran-like indexing (fastest-varying-first), we first build the patterns along the i dimension, then the j 
dimension, and finally the k dimension. Once they are built, they can then be shifted into position in toto. 

(defun definepiece (iclass ii jj kk) ;uses 0-origin indexing. 
(let* ((iimask (i- (ash 1 ii))) (jjmask 0) (kkmask 0)) 

(dotimes (j jj) (setf (idb (byte 5 (* 5 j)) jjmask) iimask)) 
(dotimes (k kk) (setf (idb (byte 25 (* 25 k)) kkmask) jjmask)) 
(dotimes (ioff (- 6 ii)) 

(dotimes (joff (- 6 j j)) 
(dotimes (koff (-6 kk)) 

(let* ((mask (ash kkmask (+ (* (+ (* koff 5) joff) 5) ioff)))) 
(push *iii* (aref index (integer-length mask))) 
(setf (aref p *iii*) mask) 
(setf (aref class *iii*) iclass) 
(incf *iii*))))))) 

E. RESULTS 
Our changes have improved the performance of Puzzle by more than an order of magnitude. On a 40MHz 80860- 
based OKIstation, we achieve a Puzzle time of 0.13 second, 1 which is 7.7 X faster than the Cray-1 on the old 
benchmark. In fact, the new Puzzle runs on our Apple Mac+ w/68020 accelerator only 2.5 X slower than the Cray-1 
on the original benchmark, and shows our Mac+ to be 200 X faster than the 750 NIL implementation [Gabriel85]! 
Yet the new Puzzle performs exactly the same number of placements as the original Puzzle, thus demonstrating that 
it explores the search space in the same way. 

The new Puzzle can almost certainly be speeded up with better implementations of Common Lisp bit-vector 
operations on binary integers. In particular, mask construction using l d b  and d p b  must be highly optimized, and 
therefore our version should run well on machines like the Symbolics Ivory. 

There are two types of  potential parallelism in Puzzle--bit-parallelism during 1 o g t  e s t and l o g x o  r ,  and 
parallelism due to multiple searches in parallel. We believe that all of the bit-parallelism has already been tapped by 

1There are some additional minor optimizations, including additional declarations, in this version. 
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using bit-vectors, and it is not clear how multiple searches can be efficiently organized and still be faster than 0.13 
second. 

We have shown that efficiency and elegance in algorithms are not unrelated. 
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