Speeding up the 'Puzzle' Benchmark a 'Bit'

Henry G. Baker
Nimble Computer Corporation, 16231 Meadow Ridge Way, Encino, CA 91436
(818) 501-4956 (818) 986-1360 (FAX)

Abstract

We show how Baskett's "Puzzle" benchmark can be speeded up at least an order of magnitude by utilizing bit-vectors. Unlike many optimization techniques, the use of bit-vectors enhances the readability and understandability of the code. Since bit-vectors already utilize word-wide parallelism, it is unlikely that parallel processors will be able to solve the problem much faster.

A. INTRODUCTION

Baskett's "Puzzle" benchmark has been used for almost a decade for the evaluation of hardware architectures, and was included in the "Gabriel" suite of Lisp benchmarks [Gabriel85]. "Puzzle" solves a 3-dimensional packing problem by attempting to pack pieces of 4 different types into a $5 \times 5 \times 5$ cube. The class of such packing problems is closely related to the "bin-packing" and "knapsack" problems of complexity theory, which are known to be NP-complete [Baase78]. Thus, while it is unlikely that clever programming will allow us to escape the asymptotic exponential behavior of these problems, it can gain us some very real performance improvements.
It is worth studying packing problems because of their ubiquity in the real world. In addition to the obvious examples from business-e.g., freight loading-there are similarities with real problems in biochemical bonding.
The standard version of Puzzle found in the Gabriel benchmark suite is an embarrassment for the Lisp language because its implementation prefers hacking Fortran-like arrays instead of exploiting Common Lisp's rich set of datatypes and functions [Steele90] to solve the problem in a natural and efficient manner. In particular, the standard Gabriel Puzzle does not take advantage of Common Lisp's excellent bit-vector capabilities [Baker90].
We show how the use of bit-vectors in Common Lisp can speed up "Puzzle" by at least an order of magnitude, and these techniques allow us to achieve on a workstation (80860 -based OKIstation ${ }^{\text {TM }}$) a speed of 7.7 times the Cray-1 on the old benchmark.

B. THE STANDARD PUZZLE BENCHMARK

The standard Gabriel code for Puzzle solves the problem by "pre-rotating" all of the different puzzle pieces, so that these rotations do not have to be performed during the actual combinatorial search. Thus, each piece "class" has a number of different piece "types" which result from different rotations of the pieces. For example, the $4 \times 2 \times 1$ piece has 6 distinct rotations, while the $2 \times 2 \times 2$ piece has only 1 . The $5 \times 5 \times 5$ puzzle cube itself is represented as a section of an $8 x 8 x 8$ cube of Boolean values, while the various piece types (rotations) are represented as a vector of Boolean values which is in correspondence with the representation of the puzzle itself. By embedding a $5 \times 5 \times 5$ cube within an $8 \times 8 x 8$ cube, a "border" is created which makes sure that the pieces stay within the $5 \times 5 \times 5$ boundaries.
After initialization, the standard Puzzle code linearly searches the puzzle representation for the smallest-numbered empty location. It then tries all of the remaining pieces to see if they can be fit into the puzzle in such a way that this empty location will be filled. If a piece can be fitted, then the code performs a depth-first search for the next empty location and the next piece to be fitted. In many instances, the code will find that it has pieces which cannot be fitted, and initiates a backtrack to remove previously fitted pieces.
The standard code investigates 2,005 placements of the 18 pieces. The speed of the standard code is highly dependent upon the ordering of the pieces, which affects the ordering of the search; a different ordering investigated 10 times as many placements, for example. Interestingly enough, of the 2,005 partially-completed puzzles investigated, 1,565 of them are distinct, meaning that there is little hope of speedup from the "memoization" techniques which have been found effective for other puzzles and games [Bird80] [Baker92]. (The standard implementation of Puzzle investigates surprisingly few configurations, making the ordering of the puzzle pieces appear to have been tampered with to produce shorter searches.)
The standard Gabriel code for Puzzle does not have any errors, but it does show evidence of a hasty conversion from a non-Lisp language. It cannot decide, for example, whether to consistently use 0 -origin or 1 -origin indexing. The standard code prefers to use the more complex do instead of the simpler dot imes, and does not utilize macros like incf and decf. None of these stylistic issues should affect performance, however.
The one obvious stylistic change which could significantly improve performance occurs at the end of the place routine where the puzzle is searched for the smallest-numbered empty location. The Common Lisp position
"sequence" function could be used for this purpose, and it could conceivably improve performance due to its presumably high level of optimization.

C. SPEEDING UP PUZZLE A "BIT"

Since Puzzle operates on arrays whose elements are always Boolean values of t or nil, Puzzle cries out for a bitvector implementation. The puzzle vector itself is an excellent candidate, as are the rows of the p array used in fit. In fact, fit itself is essentially a verbose version of the Common Lisp logtest function which operates on bit-vectors represented by large integers. Furthermore, the search for an empty bit location at the end of place is analogous to the search in the Common Lisp integer-length function for the highest numbered bit.
The decision to use bit-vectors in Common Lisp is complicated by the fact that there are at least 3 different bit-vector models-bit-vectors represented by bit-arrays, bit-vectors represented by bit "sequences", and bit-vectors represented by large binary integers. Bit-vectors represented as large binary integers are functional, in that such a bit-vector cannot have a single bit changed, but the whole bit-vector must be copied. Bit-vectors represented as bit-arrays can be manipulated in a destructive (imperative) manner, and may therefore have an advantage in reducing garbage collector overhead, but have some less obvious defects. Bit-vectors represented by binary integers are only as large as they need to be to represent the highest-numbered bit, while bit-vectors represented by bit-arrays always occupy their full allocated length; this difference in sizes can result in higher performance for binary integers if the integers are often much smaller than the maximum size.
We here discuss only a binary integer version of Puzzle. We suspect that a bit-array version of Puzzle can be more efficient than one utilizing binary integer bit-vectors, but the lack of a quick intersection test (e.g., logtest for binary integers) may scuttle this hope.
Our representation of the puzzle itself is a single binary integer, while the puzzle piece types are also binary integers. A straight-forward translation would convert the puzzle global vector into a global variable holding a large binary integer, and convert the global 2 -dimensional p array into a global vector of large binary integers. Such a translation would also place and remove pieces from the puzzle at a high rate; a better solution is to remember the previous state of the puzzle, which is trivially done by making puzzle into a parameter of the trial function. The function fit disappears entirely, to be replaced by logtest, while place is accomplished by logxor. If we move the empty location search from the non-existent place function to the top of the recursively called trial function, then we no longer have to pass the address of this empty location as a parameter to trial. This search can be accomplished by the following code, but we will rearrange things so that a less complex solution can be obtained.

```
(defun find-lowest-0-bit (bv)
    (declare (type (integer 0 *) bv))
    (1- (integer-length (logandc2 (1+ bv) bv))))
```

The problem with this solution is that we must construct 2 temporary binary integers before using integerlength to do the search, instead of simply searching the bit-vector directly. If we simply reversed puzzle end-forend, then we could search from the end of the bit-vector for an empty position instead of searching from the beginning. The Common Lisp function integer-length can be used to search for the highest " 0 " bit, so long as the integer is negative. We can thus use the following code:

```
(defun find-highest-0-bit (bv)
    (declare (type (integer * (0)) bv))
    (1- (integer-length bv)))
```

It turns out that we don't have to actually reverse the puzzle end-for-end, since the original choice to search for the lowest-numbered empty position instead of the highest-numbered was arbitrary, and the same combinatorial search is performed either way. The advantage of the new ordering is that the number of integer constructions is reduced.

D. PRECOMPUTING SHIFTS

The standard code for Puzzle precomputes rotations for the pieces, but not shifts. This is probably because there is little cost to a shift using the standard algorithm. When utilizing bit-vectors, however, the cost of shifting can easily exceed any savings from parallel operations on multiple bits. We therefore extended definepiece to precompute shifts as well as rotations; this change has the additional benefit that the "border" is no longer needed, so we can represent puzzle with length-125 instead of length- 512 bit-vectors. However, there are far more shifts than rotations; a single rotation of a $4 \times 2 \times 1$ piece can be shifted into $2 \times 4 \times 5=40$ different positions, and there are 240 different shifts for all rotations of the $4 \times 2 \times 1$ piece "class". The number of piece "types" must therefore be increased from 13 to 769.
With so many different piece "types" to consider, our algorithm should run far more slowly than the standard code. (Indeed, a preliminary version of this kind had to be cut off before it finished.) However, since we are trying to fill
the highest-numbered empty position, it is obvious that we should index these different piece "types" by their largest bit-position, so that trial will consider only the piece types that can actually fill the empty position. Our index is thus a vector of lists of piece types, which vector is indexed by the 125 positions in the puzzle; the elements in its last list, for example, give the piece types which can be used to fill the last puzzle position. It so happens that the maximum number of elements in any of these lists is 13 , so we could have arranged this information as a 125×13 array. But we are programming in Lisp! Hence, we will keep the vector-of-lists representation for our index. At the cost of one additional vector location, we can use a 1 -origin for our index and thereby eliminate the decrement which would otherwise surround every call to integer-length.

```
(defun trial (puzzle)
    (incf *kount*)
    (if (eq puzzle -1) t
        (let* ((j (integer-length puzzle)))
            (dolist (i (aref index j) nil)
            (let* ((classi (aref class i)) (ocnt (aref piececount classi)))
                (unless (zerop ocnt)
                    (let* ((pi (aref p i)))
                        (setf (aref piececount classi) (1- ocnt))
                        (unless (logtest puzzle pi)
                            (when (trial (logxor puzzle pi))
                                (format t "Piece ~4D." i) (return-from trial t)))
                        (setf (aref piececount classi) ocnt))))))))
```

Given the large increase in types from 13 to 769 , it is not obvious whether the 769 piece types and their index can be built fast enough. If we use code similar to that in the standard definepiece, our approach would founder on the large amount of large integer construction ("bignum consing") required, because the standard code builds up the bitvectors one bit at a time.
The proper way to build the bit-vector patterns is to build them up recursively on their 3 dimensions. Since Puzzle utilizes Fortran-like indexing (fastest-varying-first), we first build the patterns along the i dimension, then the j dimension, and finally the k dimension. Once they are built, they can then be shifted into position in toto.

```
(defun definepiece (iclass ii jj kk) ;uses 0-origin indexing.
    (let* ((iimask (1- (ash 1 ii))) (jjmask 0) (kkmask 0))
        (dotimes (j jj) (setf (ldb (byte 5 (* 5 j)) jjmask) iimask))
        (dotimes (k kk) (setf (ldb (byte 25 (* 25 k)) kkmask) jjmask))
        (dotimes (ioff (- 6 ii))
            (dotimes (joff (- 6 jj))
                (dotimes (koff (- 6 kk))
                    (let* ((mask (ash kkmask (+ (* (+ (* koff 5) joff) 5) ioff))))
                        (push *iii* (aref index (integer-length mask)))
                        (setf (aref p *iii*) mask)
                        (setf (aref class *iii*) iclass)
                        (incf *iii*)))))))
```


E. RESULTS

Our changes have improved the performance of Puzzle by more than an order of magnitude. On a $40 \mathrm{MHz} 80860-$ based OKIstation, we achieve a Puzzle time of 0.13 second, ${ }^{1}$ which is 7.7 X faster than the Cray-1 on the old benchmark. In fact, the new Puzzle runs on our Apple Mac+w/68020 accelerator only 2.5 X slower than the Cray- 1 on the original benchmark, and shows our Mac+ to be 200 X faster than the 750 NIL implementation [Gabriel85]! Yet the new Puzzle performs exactly the same number of placements as the original Puzzle, thus demonstrating that it explores the search space in the same way.
The new Puzzle can almost certainly be speeded up with better implementations of Common Lisp bit-vector operations on binary integers. In particular, mask construction using ldb and dpb must be highly optimized, and therefore our version should run well on machines like the Symbolics Ivory.
There are two types of potential parallelism in Puzzle-bit-parallelism during logtest and logxor, and parallelism due to multiple searches in parallel. We believe that all of the bit-parallelism has already been tapped by

[^0]using bit-vectors, and it is not clear how multiple searches can be efficiently organized and still be faster than 0.13 second.
We have shown that efficiency and elegance in algorithms are not unrelated.

F. REFERENCES

Anderson, J.Wayne, et al. "Implementing and Optimizing Lisp for the Cray". IEEE Software (July 1987),74-83.
Baase, Sara. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley, 1978.
Baker, H.G. "Efficient Implementation of Bit-vector Operations in Common Lisp". ACM Lisp Pointers 3,2-3-4 (April-June 1990), 8-22.
Baker, H.G. "The Gabriel 'Triangle' Benchmark at Warp Speed". Subm. to ACM Lisp Pointers, April, 1992. Bird, R.S. "Tabulation Techniques for Recursive Programs". ACM Comp. Surv. 12,4 (Dec. 1980), 403-417. Gabriel, R.P. Performance and Evaluation of Lisp Systems. MIT Press, Camb., MA, 1985.
Steele, Guy L. Common Lisp, The Language; 2nd Ed. Digital Press, Bedford, MA, 1990,1029p.

Accredited Standards Committee*

X3, Information Processing Systems

Doc No.:	X3/92-1710-XS
Date:	July 23, 1992
Proj. No.:	574-D
Reply To:	Lynn Barra
	(202) 626-5738

NEWS RELEASE

X3 Announces the Public Review and Comment Period on X3.226-199x, Programming Language Common Lisp

Washington, D.C.-Accredited Standards Committee X3, Information Processing Systems announces the four-month public review and comment period on X3.226, 199x, Programming Language Common Lisp. The comment period extends from July 24, 1992 through November 23, 1992.
The specification set forth in this document is designed to promote the portability of Common Lisp programs among a variety of data processing systems. It is a language specification aimed at an audience of implementors and knowledgeable programmers. It is neither a tutorial nor an implementation guide.
The X3 Secretariat is investigating the possibility of making these files available in electronic format, on disk as well as on CompuServe. If you have a need for either or both, please contact Dan Arnold at (202) 626-5747 (email address from CompuServe " 75300,2354 " or if from Internet or another source: " $75300.2354 @ c o m p u s e r v e . c o m "$ ").
The comment period ends on November 23, 1992. Public review comments must be submitted (to this office and ANSI) in hard copy format. Please send all comments to: X3 Secretariat, Attn.: Lynn Barra, 1250 Eye Street NW, Suite 200, Washington, DC 20005-3922. Send a copy to: American National Standards Institute, Attn: BSR Center, 11 West 42nd St. 13th Floor, New York, NY 10036.
Purchase this standard in hard copy from:
Global Engineering Documents, Inc.
2805 McGaw Ave
Irvine, CA 92714
1-800-854-7179 (within USA)
714-261-1455 (outside USA)
Single Copy Price: $\quad \$ 80.00$
International Price: $\$ 104.00$
\# \# \# \# \#
*Operating under the procedures of the American National Standards Institute
X3 Secretariat, Computer and Business Equipment Manufacturer's Association (CBEMA) 1250 Eye Street NW Suite 200 Washington DC 20005-3922 Telephone: (202) 737-8888 (Press 1 twice) FAX: (202) 638-4922

[^0]: ${ }^{1}$ There are some additional minor optimizations, including additional declarations, in this version.

