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1 I n t r o d u c t i o n  
Advanced supervised/autonomous robotic sys- 
tems may be characterized as large and long 
lived software environments, distributed over 
a large number of mechanical and computer 
subsystems. Appropriate hierarchical repre- 
sentations of such robotic systems are desir- 
able, to facilitate system specification, imple- 
mentation, and evolution. In the end product, 
this includes planning and programming of 
robotic tasks and recovery procedures, when 
tasks fail. 

Strictly hierarchical designs of robotic sys- 
tems, which rigidly enforce simple inheritance, 

have been notoriously unsuccessful in the past. 
Since the operation of such a system may be 
viewed from so many differing perspectives, 
simple inheritance is much too restrictive a 
representation tool. In this paper, we start 
by contrasting the traditional class hierarchies 
with the requirements of robot task planning 
and execution. A novel object-oriented design 
methodology is formulated, which satisfies the 
requirements of designing and implementing 
complex robotic systems. A short example of 
the results of this methodology is presented, 
followed by suggestions for future work. 

2 T h e  M e t h o d  H i e r a r c h i e s  
Traditionally, software objects are used to 
model physical entities, where slot values rep- 
resent states or properties of objects. Meth- 
ods are then applied to one or more objects 

to change states and properties. Is it possible 
and sensible, on the other hand, to represent 
processes as objects? Imagine a machine shop, 
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and a production engineer who wants to orga- 
nize and schedule the production of several, 
different, series of parts. There are common 
operations, such as cutting, drilling, debur- 
ring, and measuring, which are independent 
of the shape and purpose of the manufactured 
part. During production line planning and de- 
sign, the actual steps and methods required 
to accomplish the common operations are less 
important than the prerequisites and results 
of the operations. More relevant are the raw 
materials, a smooth flow of operations, and 
the final product. The machinists can worry 
about manipulating the individual parts. 

Using this model, the first task is not to 
model and represent the physical objects by 
C L O S  objects, but rather to represent the 
operations as objects! Operations can have 
states and characteristics stored in slots. Cut- 
ting, for instance, requires a detailed drawing. 
Measurements must be done under supervi- 
sion of the QA engineer. Machining may re- 
quire special skills and tools for harder mate- 
rials or better  precision 1. Again, to the peo- 
ple planning the operations, allocation of re- 
sources and flow of operations is more impor- 
tant than the actual low-level manipulations. 

2.1 Reasoning about Methods:  Planning 

From this point of view, planning is seen as 
reasoning about processes, or methods. Fur- 
ther, error recovery can be thought of as local 
planning. In other words, to prepare a task 
or recover from execution errors requires some 
amount of reasoning about the actions that  
compose the task or the plan. It soon becomes 
imperative to organize the actions to be able 
to find common points between some actions, 
as one of the ways to reduce the resources re- 
quired to describe those actions. 

Some criteria must  also be chosen to char- 
acterize the actions; to provide parameters to 
compare and "commonize" the actions and to 
provide "substance" for the planner and er- 
ror recovery. Once common points have been 

identified, actions can be placed in a hierar- 
chy in which complex actions, for instance, 
inherit characteristics from simpler, low-level, 
actions. The actions can thus be characterized 
and classified with respect to several parame- 
ters. This sort of characterization is essential 
in order to work out generalized planning and 
recovery strategies. 

Among these characteristics are precondi- 
tions and post-conditions, which describe the 
state of the world prior and after execution of 
an action, but also the complexity of the ac- 
tion, how the action was defined, under what 
type of control, etc. All these parameters are 
intended to be used at planning time to help 
generating and validating a plan and at ex- 

XWhile the skills and tools can be modeled as characteristics of the object, greater precision is largely due to 
the process. 
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ecution time to assist the operator, by pro- 
viding explanation of the intent of the plan 
and preventing conceptual errors during inter- 
active use of actions (e.g. when the operator 
has manual control over the system). Further, 
these parameters can be used to reason about 
actions and infer more preconditions and fail- 
ure modes. Some useful parameters are: 

• Types of actions: 
Initialization, Decision, Sensing, Motion, 
Organizational Change. 

• Complexity Levels: 
Atomic, Low, Medium, High, Plan. 

• Confidence Level: 
Simple, Routine, Frequent, Verified, Com- 
plex, New, Gamble. 

• Source: 
Predefined, Run-time, Random. 

• Control: 
Autonomous, Shared, Filtered-operator, 
Direct-operator, Physics. 

• Actors: 
Manipulator, Tools, Sensors, Operator. 

• Objects: 
Insulators, Crossarms, Nuts and bolts. 

2.2 Representing Actions in CLOS 

Using frames to describe actions at planning 
and recovery time, the above parameters be- 
come slot names in the action frames, allowing 

the corresponding slot values. Described as a 
CLOS class, the actions take this form: 

(defclass plannable-action-mixin 
() 

;; These slots hold everything required to use an action in a plan. 
;; Note that some slots are "advertised" as read-only; 
;; the corresponding slot-values are set at compile time. 

((type 

(complexity 

(confidence 

(source 

(control 

: reader ac t ion- type  
: i n i t a r g  : type) ;computation/energy t r a n s f e r  
:accessor  act ion-complexi ty 
:initarg :complexity) ;atomic/plan 
:accessor action-confidence-level 

:initarg :confidence-level) ;routine/unverified 
:accessor action-source 
:initarg :source) ;predefined/random 
:accessor action-control 
:initarg :control) ;autonomous/human control 

(preconds :accessor  precondi t ions  
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(postconds 

:initarg :preconditions 
:initform ()) 
:accessor postconditions 
:initarg :postconditions 
:initform ()) 

The slots in this class have a one to one cor- 
respondence with the action parameters de- 
scribed earlier, except for the Actor and Ob- 
jects parameters which are best determined 
at run time, when the action is actually per- 

formed.  

A trivial example, defining the move class 
of actions, its generic function and a spe- 
cialized method, can roughly be expressed in 
C L O S  code as follows: 

(defclass move 
(motion) ;MOTION itself inherits from 

; standard-methodand plannable-action-mixin 

() 

(:default-initargs 
:complexity 
:confidence-level 
:source 

:control 
) 

'low 

'frequent 
'run-time 
'autonomous) 

(defgener ic  move (objec t  d e s t i n a t i o n )  
( :method-c lass  'move)) 

(defmethod move ( (ob jec t  heavy-object )  
d e s t i n a t i o n )  

( . . . ) )  ; take spec ia l  p recaut ions  when moving a heavy objec t  

(let ((method *)) 
(serf (action-complexity method) 
(serf (action-control method) 

'medium) 
' shared) ) 
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3 C o m b i n i n g  the  Two  Hierarchies  

There are a multiplicity of software design 
methodologies which have been developed 
over the years. They are typified by focusing 
on one or another aspect of the overall soft- 
ware design problem. Hence, such methodolo- 
gies are only effective in situations where other 
aspects of the design problem are so trivial 
that they can be handled in an ad hoc man- 
ner [San89]. 

The standard methodology for object- 
oriented design is to identify the relevant phys- 
ical objects and map them into object classes, 
and then to specify the details of each ob- 
ject, including the methods associated with 
it. However, this methodology does not ad- 
dress the asynchronous, distributed, concur- 
rent, nature of the problem. 

In contrast, conventional "structured de- 
velopment", based on a top-down philosophy, 
maps physical operations to communicating 
concurrent computational processes. This de- 
composition is useful for coping with distri- 
bution and concurrency, but does not have 
the power of the object-oriented approach in 
terms of software modularity and reconfigura- 
bility. 

Hence a fusion of the two approaches seems 
appropriate [Ja189]: to our knowledge, no such 
methodology has been postulated elsewhere. 
A standard hierarchical object-oriented design 
(or HOOD) design methodology, as applied to 
complex robotic systems, was developed pre- 
viously at McGill [HDFB88] [HDF+90]. The 
HOOD paradigm supports a taxonomy of ob- 
jects, but not does not cater for a taxonomy of 

the operations which act upon those objects. 
If we extend the HOOD paradigm by specify- 
ing that: 

• operations on objects have an associated 
data type 

• operation types inherit attributes from op- 
eration supertypes 

we arrive at the Dual-Hierarchical Object- 
Oriented Design (DHOOD) paradigm. The 
DHOOD methodology utilizes the two tax- 
onomies in the following manner: 

1. Identify Physical Objects and Attributes 
2. Map physical Objects to software object 

classes 
3. Identify Physical Processes/Operations on 

Objects 
4. Map Physical Processes to software pro- 

cesses 
5. Associate software processes with software 

objects 
6. Establish interface to objects 
7. Implement operations (methods) on ob- 

jects 
8. Refine objects if they are too complex to 

implement, and repeat procedure starting 
from step 3; else terminate refinement. 

Relating this approach to the design prob- 
lem at hand, the following design methodology 
results: 

i Formulate execution taxonomy: physical 
objects and their relations 
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ii Define methods for objects in execution 
taxonomy: correspond to physical opera- 
tions 

iii Formulate planning taxonomy: classifica- 
tion of methods in execution taxonomy 

iv Define methods for objects in planning tax- 
onomy: correspond to recovery plans for 

relevant methods 
v Refine objects in execution taxonomy, if 

necessary, and repeat from step ii. 

This methodology also resolves the problem 
of relating the two taxonomies in a consistent 
manner, provided that  the above design pro- 
cedure is followed. 

3.1 Overloading M e t h o d s  to Descr ibe  and Speci fy  Act ions  

C L O S  has been said to be self-contained; 
only a few basic classes and objects are cre- 
ated beforehand and the rest of C L O S  is de- 
fined in terms of these basic elements. One 
of the benefits of this is the fact that  meth- 
ods are also objects (instances of the class 
s tandard-method)  and hence can be manip- 
ulated within the C L O S  framework. Thus, 
the same paradigm and tools can be used to 
perform run-time execution and off-line plan- 

ning and reasoning. Further, COMMON LISP  
supports facets [CW85]; a single symbol can 
refer to multiple concepts and, in this partic- 
ular case, to both an executable function and 
to a class of such functions. In practice, one 
can use the same "name" to execute  a piece of 
code and to reason about this code. Accord- 
ingly, the action parameters turn out to be 
slots in method objects, as stated previously. 

4 A Sample Implementat ion 
This section outlines the VICTORIA DAY 
P C L  source code modifications that  were re- 
quired to implement the connection between 
run-time code and planning strategies. These 
modifications are in no way complete and cer- 
tainly not efficient, but rather, as we say, a 

Note that  the current method ob- 

ject can also be obtained by a call to 
( compu te - app l i c ab l e -me thods  g e n e r i c - f u n c t i o n  
a r g l i s t )  but this form has the significant 
drawback that  it is slow; it recomputes the 
method from scratch, which seems unfortu- 
nate. 

Rather, the concept is to create a special 
variable, * th i s -me thod* ,  and bind this vari- 

2hack: 1. n. Originally a quick job that produces what is needed, but not well. The Jargon File, (~)Eric S. 
Raymond 
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able to the method object as it is being exe- 
cuted. This requires changes to the method 
function constructor to declare the variable 
as s p e c i a l  (which makes it dynamic [Ste84, 
p. 157]), and simply bind it to the "current" 
method. In essence, the executable code re- 
tains a pointer to its definition. The way 
it is done makes the variable *this-method* 
available in every method in the world with- 
out having to declare the method combination 
type or the class of the generic function (this 
is good since these capabilities were not avail- 
able in VICTORIA DAY PCL).  As far as we 
could determine, the variable is correct under 
these conditions: 

1. Using standard method combination 
2. Not using :be fo re ,  : a f t e r ,  or :around 

methods 

Two functions need to be modi- 
fied: make-effect ive-method-funct ion and 
add- lexical-funct ions-t o-method-I ambda. 
Both functions must extract and store the cur- 
rent method from the argument list. Addi- 
tionally, the former must be modified so that  
the body of the method function holds (in 

*next-methods*) the list of the applicable 
methods, instead of a list of applicable method 
functions. That is, the following calls: 

( l e t  ( (nex t -me thod- func t ions  
(mapcar #'method-funct ion 

(caddr fo rm) ) ) )  

(let ((*next-methods* 
next-method-functions)) 

are replaced by: 

(let ((*next-methods* 
(caddr  form)) 

And then, in add-lexical-functions- 
to-method-lambda, this call: 

(apply .next-method. cnta-args) 

is replaced by: 

( l e t  ( (*this-method* 
• next-method• ) ) 

(apply (method-function 
• next-method. ) 

cnm-args ) 

5 A T e s t  C a s e :  T e l e r o b o t i c s  
Consider a system consisting of a robot, an op- 
erator, and the various interfaces to allow the 
operator to control the manipulator directly 
or issue complex commands from a certain dis- 
tance from the work area. In particular, this 
system is to be used to maintain live electric 

distribution equipment, as described in [Gir88] 
and [BDHF91]. 

The hierarchies of objects and actions for 
this task are depicted in figures 1 and 2. 

This work has also been taken further in 
[PBDgl] to include, for instance, trajectory 
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Figure 1: The Objects  Hierarchy 

control. Another test case is described in [HDFB88]. 

6 C o n c l u s i o n  
We have shown how processes can be modeled 
as CLOS objects, with slots holding proper- 
ties, such as preconditions, essential for plan- 
ning systems. Physical objects, on the other 
hand, have always been represented as CLOS 
objects, as is traditional is object-oriented pro- 
gramming languages. 

We have also shown that it is relatively 
simple to implement an extension to CLOS 

to give access to the definition of a method 
from its executable component 3. Indeed, cer- 
tain implementations of COMMON LISP al- 
ready provide such an extension, albeit not 
documented and not complete 4. Further, we 
stated which properties of the LISP language 
are useful or even essential to the integration 
of the two hierarchies that are formed by the 
objects and the actions in a task. 

3Strictly speaking, the executable part is in the generic function. 
4LUCID's wizard, doc file, in the 4.0 release, hints that apply-method could be used. 
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A c t i o n s  
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Figure 2: The Actions Hierarchy 

Obviously, there are other ways to con- 
nect the two hierarchies (such as a separate 
set of objects for the representation of ac- 
tions), but an integration of both, in the 
same programming environment, has tremen- 
dous advantages in terms of programmer pro- 
ductivity and self-documentation. If, then, 
C L O S  is to be used as a basis for an inte- 
grated planning/execution system (an integra- 

tion required for on-line error detection and 
recovery), there m u s t  be a relatively stan- 
dard and painless way to access a method 
description from the executable code. In 
clear, we need a stable, documented, and sim- 
ple implementation of * th i s -me thod* ,  where 
* t h i s - m e t h o d *  is defined, in the body of a 
method function, as the method itself. 
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