
Macroexpand-All : An Example of a Simple Lisp Code Walker

Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway; Cambridge MA 02139

Dick@MERL.COM

If you like to write Lisp macros, or even just
use the macros other people write, you have
no doubt felt the desire to see what particular
macro calls expand into. The standard Com-
mon Lisp function macroexpand is very useful
in this regard; however, since it only expands
the topmost form in an expression, it does not
necessarily show you the full result of a macro
expansion.

For example, suppose that you wrote (or
have available to you) the following implemen-
tat ion of the standard Lisp m a c r o cond. 1

(defmacro cond (~rest clauses)
(when clauses

'(if ,(caar clauses)
(progn ,@(cdar clauses))
(cond , e (c d r c l a u s e s)))))

If you evaluate

(macroexpand '(toad (a b) (c d)))

you obtain the result

(i f a (progn b) (cond (c d)))

which is not as informative as you might wish,
because it does not show you the complete re-
sult that will be obtained when the nested in-
stance of coati that is created by the macro is
eventually expanded.

As shown below, it is trivial to write a pro-
gram that applies macroexpand to every sublist
in a Lisp expression.

1This is an ugly implementation of cond, because it
produces a lot of excess code. Worse, it is an erroneous
implementation of cond, because it assumes that every
clause contains at least two elements. However, it is a
convenient example for the purposes of this discussion.

(d e f u n m a c r o e x p a n d - t r e e (t r e e)
(s e t q t r e e (macroexpand t r e e))
(if (atom tree)

tree
(mapcar #'macroexpand-tree tree)))

This can be used to show you the complete
macroexpansion of a form in many situations.
For instance,

(macroexpand-~ree ' (c o n d (a b) (c d)))

yields

(i f a (p rogn b) (i f c (p rogn d) n i l))

Unfortunately, macroexpand-tree is severely
flawed, because it does not operate in the same
manner as the Common Lisp compiler and eval-
uator. In particular, while macroexpand-tree
macroexpands every sublist in a Lisp expres-
sion, the evaluator and compiler only macroex-
pand sublists that are in positions where they
can be evaluated.

For example, when it encounters the form

(mapcar $* (lambda (cond) (c a r cond)) l i s t)

the compiler does not do any macroexpansion.
However, applying m a c r o e x p a n d - t r e e produces

(mapcar #~(lambda n i l (c a r cond)) l i s t)

since (macroexpand ' (cond)) is nil.
To macroexpand everything that should be

expanded in a Lisp expression, and nothing else,
you have to write a function that understands
which parts of which Lisp forms are evaluated
and which parts are not. A function called
macroexpand-all that does this is presented in
the next section.

25

Taken by itself, m a c r o e x p a n d - a l l is useful,
but not all that interesting. However, the way
that macroexpand-all is writ ten is quite inter-
esting, because it is an example of an important
class of programs known as code walkers.

One of the beauties of Lisp is that every-
thing that any programming tool has to know
about the syntax of Lisp can be stated in a
couple of short paragraphs. Further, this in-
formation is built into the Lisp reader so that
nobody has to expend much effort dealing with
Lisp syntax.

In comparison to many other programming
languages, the semantics of Lisp is also very
simple, because almost everything is a mere
function call or a macro that expands into func-
tion calls. However, there is a residue of some
25 special forms each of which has its own spe-
cial semantics. 2

Unfortunately, 25 is a pret ty large number
when you consider that each tool that manipu-
lates programs in non-trivial ways has to have
embedded knowledge of all 25 special forms.
The way this typically comes about is that the
tool has to traverse a Lisp expression and ei-
ther change parts of it (e.g., macroexpanding
subforms or renaming variables) or collecting
information (e.g., about free variables or bound
variables). This kind of process is generally re-
ferred to as code walking.

People have a t tempted to implement gen-
eral code walkers that encode everything any
tool .has to know about Lisp semantics (see for
example, the PCL code walker described in [1]).
However, none of the resulting code walkers
have been generally accepted as really contain-
ing everything anyone would need. As a re-
sult, the writers of Lisp programming tools and
complex macros are typically required to write
there own code walkers. The implementat ion
of macroexpand-all is a valuable tutorial intro-
duction to how this can be done.

2Due primarily to the urgings of Kent Pitman [2], a
key advance of Common Lisp over its predecessors (e.g.,
MacLisp) was reducing the number of special forms to
only 25 and preventing users from defining new ones.
A significant attraction of Scheme is that it goes even
farther in the direction of semantic simplification.

Macroexpand-Al l

Except as noted below, macroexpand-all is
addressed solely to Common Lisp as defined
in Common Lisp the Language, first edition
(CLtL1) [3], rather than the proposed standard
version described in Common Lisp the Lan-
guage, second edition (CLtL2) [4]. The deci-
sion to stick to CLtL1 was motivated by two is-
sues. First, except where noted below, moving
to CLtL2 would make m a c r o e x p a n d - a l l a bit
more complex, because there are a few more
special forms, but it would not make it any
more interesting. In addition, like many peo-
ple, I still have to work in CLtL1 and so this is
the version of macroexpand-all I am using.

The main body of the code for macroexpand-
a l l is shown in Figure 1. M a c r o e x p a n d - a l l (at
the top left of the f igure)takes two arguments:
a form and an optional macro environment (i.e.,
the same kind of environment that macroexpand
takes). M a c r o e x p a n d - a l l copies the form to be
expanded to protect the code that contains the
form from being destructively modified during
macro expansion, and then calls mexp to do the
real work. (Some implementations of Common
Lisp implement copy-t ree recursively. If this is
the case in the Lisp you use, you will have to
write an iterative implementat ion of copy-tree
to use in macroexpand-all or risk stack overflow
occurring.)

Hexp is the central control point of the code
walking process. It calls macroexpand-1 repeat-
edly until the form has been converted into a
use of a special form whose semantics is under-
stood by mexp or reduced to an ordinary func-
tion call or other vanilla object. Mexp then re-
curses by calling an appropriate handler as dis-
cussed shortly. (Hexp checks for special forms
each t ime before calling macroexpand- 1, because
some implementations of Common Lisp imple-
ment some special forms as macros.)

It should be noted that while mexp is a very
simple code walker, every code walker has to
have essentially the same structure. A code
walker has to expand every macro call, because
the only way for it to understand the semantics
of a macro call is to determine what it expands

26

(in-package :mexp)
(export '(macroexpand-all))

(defun macroexpand-all (f koptional env)
(mexp (copy-tree f) env))

(defun mexp (f env kaux (fla E t) m)
(loop

(cond ((atom f)
(re tu rn f))

((not (symbolp (car f)))
(return (all-mexp f env)))

((setq m (get (car f) 'mexp))
(return (funcall m f env)))

((not flag)
(return (funcall-mexp f env))))

(multiple-value-setq (f fla E)
(macroexpand-I f env))))

(defun all-mexp (list env)
(do ((f l i s t (cdr f))

(r () (cons (mexp (car f) env) r)))
((atom f) (nreconc r f))))

(defun funcall-mexp (f env)
'(,(car f) ,@(all-mexp (cdr f) env)))

(defun quote-mexp (f env)
(declare (ignore env))
f)

(defun block-mexp (f env)
' (, (car f)

, (cadr f)
,~(all-mexp (cddr f) env)))

(defun let-mexp (f env)
' (, (car f)

,(mapcar #'(larabda (p)
(bind-mexp p env))

(cadr f))
,~(all-mexp (cddr f) env)))

(defun bind-mexp (p env)
(if (and (consp p) (consp (cdr p)))

(list (car p) (mexp (cadr p) env))
p))

(defun lambda-mexp (f env)
' (, (car f)

,(mapcar # '(lambda (p)
(arg-mexp p env))

(c a d r f))
,Q(all-mexp (cddr f) env)))

(defun arg-mexp (ar E env)
(i f (and (consp arE) (consp (cdr arE)))

' (, (car arE)
,(mexp (cadr arE) env)
,®(cddr arE))

arE))
(defun Eet-var (b)

(i t (consp b) (car b) b))

(defun get-val (b)
(eval (if (consp b) (cadr b) nil)))

(defun compiler-let-mexp (f env)
(progv (mapcar #'Eet-var (cadr f))

(mapcar #'Eet-val (cadr f))
(mexp

(if (null (cdddr f))
(caddr f)
' (l e t n i l ,e(cddr f)))

env)))

(defun macrolet-mexp (f env)
(with-env env '(macrolet ,(cadr f))

#'mexp
(i f (nu l l (cdddr f))

(caddr f)
' (l e t nil ,~(cddr f)))))

(defun flet-mexp (f env)
'(flet

,(all-lambda-mexp (cadr f) env)
,@(with-env env '(flet ,(cadr f))

#'all-mexp
(odd f))))

(defun labels-mexp (f env)
(with-env env '(labels ,(cadr f))

#'labels-mexp-2 f))

(defun labels-mexp-2 (f env)
'(labels

,(all-lambda-mexp (cadr f) env)
,e(all-mexp (cddr f) env)))

(defun all-lambda-mexp (list env)
(mapcar #'(lambda (f)

(lambda-mexp f env))
list))

(mapc #'(lambda (x)
(serf (get (car x) 'mexp)

(eval (cadr x))))
' ((block #'block-mexp)

(cat ch # ' funcall-mexp)
(compiler-let #' compiler-let-mexp)
(declare # ' quot e-mexp)
(eval-.hen # ' block-mexp)
(flet # ' flet-mexp)
(funct ion # ~ funcall-mexp)
(E o #' quot e-mexp)
(i f # ' funcall-mexp)
(labels # ' label s-mexp)
(lambda # ' lambda-mexp)
(let # ' i et-mexp)
(let* # ' i et-mexp)
(macrolet #' macrolet-mexp)
(multiple-value-call #' funcall-mexp)
(multiple-value-progl #'funcall-mexp)
(proEn # ' funcall-mexp)
(progv # ' funcall-mexp)
(quote # ' quot e-mexp)
(return-from #' block-mexp)
(s etq # ' funcall-mexp)
(t agbody # ' funcall-mexp)
(the #' block-mexp)
(throw # ~ funcall-mexp)
(unwind-prot ect # ' funcall-mexp)))

Figure 1: The main body of the code for macroexpand-all.

27

into. When confronted by a form that is not a
macro call, any code walker has to have special-
purpose handlers for each kind of form since the
various special forms are totally idiosyncratic.

As summarized in Table 5-1 on page 57 of
[3], CLtL1 has 24 special forms. However, from
the perspective of tools that operate on pro-
grams lambda should be added to this list, since
it can appear in code and certainly has special
semantics. Hexp maintains an index between
special forms and their handlers by storing the
handler functions as properties of the special
form symbols. This is set up by the expression
in the lower right of Figure 1. The remainder
of the figure shows the handlers themselves.

Since mexp primarily only cares about what
parts of a special form macroexpansion should
be applied to and what parts it should not be
applied to, most of the handlers are very sim-
ple, and many of the special forms are treated
in the same way. For example, the handler
:funcall-mexp specifies that everything except
the first element in a form should be macroex-
panded. For the purposes of mexp this is appro-
priate for handling ordinary function calls and
11 of the 25 special forms.

A code walker that is more complex than
mexp will require more complex handlers that
keep track of additional information such as
what variables are bound. However, the han-
dlers will be basically upward compatible from
the ones shown here.

There are only three classes of mexp's han-
dlers that are at all complex. The handlers
for forms that bind variables (i.e., let{*} and
lambda) are a bit complex due to the somewhat
complex syntax that is used to specify variables
and values for them.

The handler for compiler- le t is complex
because it must cause a change in the vari-
able bindings that are in effect while macro
expansion proceeds. Conveniently, only spe-
cial variables are involved, so the change can
be straightforwardly made by using progv to
change the evaluation environment before re-
cursing into the body of the compiler- let .

The handlers for :flet, labels , and macr01et
are by far the most interesting. They are tom-

plicate'd because they potentially change the
environment that controls the way macros ex-
pand. Flet and labels can shadow a macro
definition with a function definition. M a c r o l e t

can introduce a new macro definition.
For example, consider the form

(f l e t ((tend (x) (cond (x (1+ x)))))
(tend (car y)))

Assuming the definition of cond used above, this
should macroexpand into

(f l e t ((tend (x)
(i f x (progn (1+ x)) n i l)))

(tend (car y)))

The use of tend in the body of the local func-
tion definition is an instance of the macro cond
defined above, but the instance of t e n d in the
body of the :~let is an instance of the locally
defined function instead.

A similar situation arises with macrolet .

(macrolet ((tend (x) (tend (x '(1+ ,x)))))
(tend (car y)))

macroexpands into

(1+ (car y))

The macrolet form itself does not need to be re-
tained once macro expansion has occurred. The
information it specifies is only relevant to the
expansion of macro calls syntactically nested
witMn it and these calls have all been elimi-
nated by expanding them.

The handlers for f l e t , l a b e l s , and macrolet
are each implemented using a function called
with-env, which takes four arguments, a macro
environment, a form that potentially modifies
this environment, a function fn, and an argu-
ment x to apply the function to. With-shy up-
dates the macro environment as specified by the
form and then applies f n to x and the modified
environment. With-env returns whatever fn re-
turns.

For example, flet-mexp uses al l - lambda-
mexp, which calls lambda-mexp, to macroexpand
the local function definitions. It then uses with-
env to create the altered macro environment

28

that corresponds to the flet and u s e s all-mexp
to macroexpand the body of the flet in this
new environment. Labels-mexp operates the
same way as f le t -mexp except tha t it uses the
altered environment when macroexpanding the
local function definitions.

Before discussing how w i t h - e n v works, it is
useful to note that all the code in Figure 1 is
portable Common lisp. Unfortunately, this is
not true for with-env.

Evaluat ion and Macro Env ironments

Lisp evaluation is controlled by an evalu-
ation environment that specifies the values of
variables and what functions and macros sym-
bols refer to. In order not to over constrain im-
plementors, Common Lisp documentat ion says
almost nothing about this environment. CLtL1
merely describes a couple of situations where
evaluation environments appear. In particu-
lar, if an *evalhook* function is specified, then
whenever an a t t empt is made to evaluate some-
thing, the *evalhook* function will be called
and passed the form to evaluate and an appro-
priate evaluation environment. Just about the
only thing that this environment can be used
for is as an argument to the function evalhook,
which can be used to resume evaluation of the
form passed to the *evalhook* function. (Step-
ping and tracing tools can be implemented us-
ing *Evalhook* functions and evalhook.)

The expansion of macros is controlled by a
macro environment that specifies which sym-
bols refer to macros and which do not. As
above, Common Lisp documentat ion says al-
most nothing about this environment. CLtL1
merely describes two situations where macro
environments appear. When a macro function
(a function that implements a macro) is called,
it is passed the macro environment that is ap-
propriate for the place in the source program
where the macro call appeared. The function
macroexpand c a n be passed a macro environ-
ment that specifies the context tha t should be
used when expanding the specified form. This
is needed so that a macro (e.g., s e r f) can call
macroexpand o n par t of its argument and get the
results tha t are appropria te for the place where

the original macro call appeared.
With-env has to modify the macro environ-

ment given to it to reflect the changes implied
by the specified form. This is difficult to do,
because CLtL1 does not provide any functions
for creating or inspecting either evaluation or
macro environments. All tha t it provides is a
few obscure functions that are not intended to
be at all relevant to our task.

Solving the P u z z l e

For those that delight in gett ing Lisp to do
things that the builders of the language never
dreamed that you would want to do, success-
fully extending a macro environment is a puz-
zle much too interesting to pass up. The key to
solving the puzzle is realizing that whatever a
macro environment is, the Lisp ewlua to r suc-
ceeds in extending it appropriately whenever it
encounters a n flet, labels, or macrolet. We
can get the evaluator to make the modification
we want, by simply passing it the form we have.

Unfortunately, there is a problem with this
simple idea. The evaluator descends into an
expression creating appropriate evaluation and
macro environments, b u t while you can specify
an initial execution environment with evalhook,
there is no way to specify an initial macro en-
vironment. In contrast , you can specify an
initial macro environment to macroexpand, but
macroexpand does not descend into an expres-
sion and therefore does not lead to the con-
struction of an extended macro environment.
As a result, while it is easy to get t he evaluator
to extend an evaluation environment, it is not
clear how to get it to extend a macro environ-

ment for us.
The function evalhook can be used to both

prime the evaluator with an initial evaluation
environment and to access an extended evalu-
ation environment. For example, suppose you
have an evaluation environment E.

(evalhook '(macrolet ((h (a)
#'(lambda (x env)

(print env)
(eval x))

nil
E)

'(1+ ,a))) t)

29

(defmacro grab-shy (fn x
kenvironment env)

" , (f u n c a l l fn x env))

(defun aug-env (snv form fn x)
(evalhook '(,Q form (grab-env ,fn ,x))

nil nil snv))

Figure 2: Manipulating execution and macro environments.

#+(or :SYMBOLICS :AKCL :CORAL :FRANZ-INC)
(dsfun with-snv (env form fn x)

(aug-env (convert-env env) form fn x))

#+(or :SYMBOLICS :AKCL)
(defun convert-env (env)

env)

#+:CORAL
(defun convert-env (snv)

(l i s t n i l snv n i l n i l n i l n i l))

#+:FRANZ-INC
(defun convert-env (env)

(l i s t n i l env n i l n i l))

Figure 3: Extending macro environments that are similar to execution environments.

shows you the result of extending E with the
information in the macrolet. Exactly what this
environment is like differs radically from one
Common Lisp implementation to another. (If
you want to type the expression above at top
level, you can use the value n i l for E, which
stands for the top-level environment.)

What we need is some way to convert eval-
uation environments into macro environments
and vice versa. The first of these conversions
can be done straightforwardly with a macro, by
utilizing an ~environment argument. In partic-
ular, the macro grab-env in Figure 2 applies a
function to an argument x and the macro envi-
ronment corresponding to the evaluation envi-
ronment in effect at the place where the macro
call appears. It then returns whatever the func-
tion returns. For example, the expression

(grab-env #,# ' (lambda (x env) (p r in t env))
n i l)

will show you the macro environment corre-
sponding to the place where the expression ap-
pears. If you type this at top level you will see
the top-level macro environment, ff you type it
nested in a form you will see a more complex
macro environment.

You can use evalhook and grab-env together
to access the macro environment that corre-
sponds to extending an evaluation environment.

(evalhook '(macrolet ((h (a) '(1+ , a)))
(grab-env #,# ' (lambda (x snv)

(p r in t env))
n i l))

n i l n i l E)

shows you the macro environment that results
from extending E with the information in the
macrolst . Exactly what this is like differs rad-
ically from one Common Lisp implementation
to another. Further, while it is possible that
this macro environment will be the same as the
extended evaluation environment, there is no
guarantee that they will be anything like each
other.

The function aug-env in Figure 2 embod-
ies the trick shown above. It applies a func-
tion to an argument and the macro environment
that results from extending an initial evalua-
tion environment as specified by the given form.
Aug-Shy then returns whatever the function re-
turns. For example,

(aug-env E
'(macrolet ((h Ca) '(1+ , a))))

'(lambda (x env) (p r in t snv))
n i l)

is identical to the last example, in that it con-
structs exactly the same form and evaluates it
in the same environment.

It does not appear that there is any imple-
mentation independent way in CLtL1 to con-
vert a macro environment into an evaluation
environment. However, in a given implementa-
tion it is usually easy to do. In particular, I used
the expressions shown above to inspect macro
and execution environments in various imple-
mentations of Common Lisp, and determined
that in most of them, execution and macro en-
vironments are very similar. When this is the
case, the function with-snv needed in Figure 1

30

#+:LUCID
(defun with-env (env form fn x)

(aug-env n i l
form
#'with-appended-env
(list env fn x)))

#+:LUCID
(defun with-appended-env (z delta)

(l e t ((env (car z))
(fn (cadr z))
(x (caddr z)))

(f unca l l fn x (append d e l t a env))))

Figure 4: Extending macro environments that are stacks implemented as lists.

(defun with-env (env form bind fn body)
(f unca l l fn body

(if (eq form 'macrolet)
(augment-env env :macro

(mapcar #'parse bind))
(auEment-env env :function

(mapcar #Scar bind)))))

(defun parse (b)
(list (car b)

(parse-macro (car b)
(Cadr b)
(cddr b)
env)))

Figure 5: Extending macro environments in CLtL2.

can be directly implemented using aug-env as
shown in Figure 3.

In particular, in two of the Common Lisps
I looked at, execution and macro environments
are identical. In the other two, an execution
environment is a list, one of whose components
is a macro environment. Therefore in all four
cases, converting a macro environment into an
equivalent execution environment is trivial.

In the fifth Common Lisp I looked at, the re-
lationship between execution environments and
macro environments is obscured by the use of
implementation-specific da ta structures. How-
ever, I noticed that in this implementat ion a
macro environment is a stack implemented as
a list. This opens up an al ternate approach to
modifying a macro environment.

Rather than converting a macro environ-
ment to an execution environment and then let-
ting the evaluator extend it, one can determine
what extension should be applied and do the
extension yourself. This depends on knowing
how extension can be done.

If a macro environment is a stack imple-
mented as a list, then a macro environment can
be extended using append. Further, if the top-
level macro environment is the empty stack n i l ,
than the change introduced by a form can be
determined by determining what macro envi-
ronment is created by evaluating the form at
top level. These observations lead to the im-
plementat ion of with-env shown in Figure 4.

In the figure, aug-env is used to determine
the change in the macro environment that re-
sults from evaluating the specified form in isola-
tion. The function with-append-env then com-
bines this change with the original macro envi-
ronment, creating an extended macro environ-
ment, which is passed to the specified function.

I m p r o v e m e n t s In C L t L 2

The problem posed above can be solved in a
por table way in CLtL2, because CLtL2 specifies
a suite of functions that can extract information
from and add information to environments. As
a result, a macro environment can be directly
extended as shown in Figure 5.

The CLtL2 function augment-env is used to
add information into a n environment. In the
figure, it is used to add specifications for the
macro definitions in a macrolet or the function
definitions in an f l e t or l abe l s . The function
parse uses the CLtL2 function parse-macro to
convert the local macro definitions in a macrolet
into the form expected by augment-env.

C o n c l u s i o n

The function macroexpand-all is a tool that
can be useful for anyone who writes or uses
complex macros. The code for macroexpand-all
is primarily implementat ion independent. How-
ever, in order to use it, you have to supply a def-
inition of the critical function with-env. If you

31 /

are using one of the implementations of Com-
mon Lisp where macroexpand-all has already
been tested, this has been done for you. If not,
you have three choices.

First, by inspecting evaluation and macro
environments in the Common Lisp you use, you
should be able discover enough about the struc-
ture of these environments, in order to imple-
ment with-env in a way that is analogous to
Figure 3 or 4.

Second, you can include a vestigial defini-
tion of w i t h - e n v , such as

(defun with-env (env form fn x)
(declare (ignorre form))
(funcall fn x env))

and live with the fact that macroexpand-all will
occasionally produce incorrect results. This
might be a reasonable thing to do if you are
going to use macroexpand-all merely as a de-
bugging aid. However, it is not tolerable if you
intended to use macrroexpand-all as part of a
macro definition.

Third, you can wait until you have an im-
plementation of CLtL2 available and use the
implementation of wiZh-env shown in Figure 5.

In addition to being a useful tool in its own
right, Figure 1 can be viewed as the minimal
skeletal structure on which more complex code
walkers can be written. Everything shown in
the figure is necessary, because a code walker
must expand all the macro calls in an expression
in order to work. The code has to be extended
in order for the walker to keep track of informa-
tion about an expression such as what variables
are bound. In CLtL2, this is much easier than
in CLtL1, because the code walker can retrieve
information from the environments used by the
implementation, rather than keeping track of it
redundantly.

Obtaining Maeroexpand-All

The example above is written in Common
Lisp and has been tested in several different
Common Lisp implementations. The full source
is shown in Figures 1-5. In addition, the source
can be obtained over the INTERNET by using
FTP. Connect to HERL.C0M (INTERNET number

140.237.1.1). Login as "anonymous" and copy
the files shown below.

In the directory / p u b / l p t r s /

mexp-code, l i s p source code
mexp-test, lisp test suite
mexp-doc, txt brief documentation

The contents of Figures 1-5 and the files
above are copyright 1993 by Mitsubishi Elec-
tric Research Labs (MERL), Cambridge MA.
Permission to use, copy, modify, and distribute
this software for any purpose and without fee
is hereby granted, provided that this copyright
and permission notice appear in all copies and
supporting documentation, and that the names
of MERL and/or the author are not used in
advertising or publicity pertaining to distribu-
tion o f the software without specific, written
prior permission. MERL and the author make
no representations about the suitability o f this
software for any purpose. It is provided "as is"
without express or implied warranty.

Mitsubishi Electric Research Labs and the
author disclaim all warranties with regard to
this software, including all implied warranties
o f merchantability and fitness. In no event shall
MERL or the author be liable for any special,
indirect or consequential damages or any dam-
ages whatsoever resulting from loss o f use, data
or profits, whether in an action o f contract, neg-
ligence or other tortious action, arising out of
or in connection with the use or performance of
this software.

R e f e r e n c e s

[1] Curtis, P., "Algorithms", A C M Lisp
Pointers, 3(1):48-61, March 1990.

[2] Pitman, K.M., "Special Forms in Lisp",
in Proc. 1980 Lisp Conference, 179-187,
August 1980.

[3] Steele G.L.Jr., Common Lisp: the Lan-
guage, Digital Press, Maynard MA, 1984.

[4] Steele G.L.Jr., Common Lisp: the Lan-
guage, second edition, Digital Press,
Maynard MA, 1990.

32

