
The Scheme of Things:

Implementing Lexically Scoped Macros

Jonathan Rees
Massachusetts Institute of Technology

j ar~ai, mit. edu

I have been hearing some complaints that Scheme's new iexically scoped
macro facility is difficult to implement. There are two components to the pro-
posal: the pat tern language and lexical scoping. The two pose independent
problems. I agree that the ellipsis-enriched pattern language can be tricky to
implement; implementations that I have seen take anywhere from 250 to 1400
lines of Scheme code. However, I believe that it is conceptually straightforward,
and several implementations have been around for many years (see [9]). On the
other hand, many people are unnecessarily getting tripped up on lexical scoping,
which, unlike the pattern matcher, is very simple to implement.

(The Scheme report authors have not agreed on any low-level macro defining
facility. The appendix to the Revised 4 Report [4] describes a sample low-level
facility, but even that facility's own authors have repudiated it. There are three
other proposals for low-level facilities on the table [7, 3, 6], and debate and
experimentation continue.)

When the interpreter or compiler comes across a macro application, it in-
vokes a lranscriptwn function that computes a form that replaces the macro
application. For macros defined using s y n t a x - r u l e s , the transcription func-
tion is responsible for matching the macro application against the available
patterns, and building a replacement according to the appropriate template.
For example:

(define-syntax test
(syntax-rules ()

((test ?thing ?proc ?else)
(let ((temp ?thing))

(if temp (?proc temp) ?else)))))

(The use of question marks is just a naming convention for meta-variables, not
part of their syntax.) Lexical scoping requires this macro to work even when i:f
or l e t is lambda-bound or when temp occurs in the ?proc or ? e l s e expressions.
(With the Revised 4 Report 's macro facility, there are no reserved words, so
one may now bind any identifier, including those such as i:f that are initially
syntactic keywords.) Consider the following somewhat contrived expression:

(test (read if)
(lambda (form)

(write (list form temp) of))
(newline of))

The variable i f presumably holds an input file port, and temp might be the cur-
rent temperature. A naive transcription function would rewrite this expression
a s

3B

(let ((temp (read if)))
(if temp

((lambda (form) (write (list form temp) of))
temp)
(newline of))).

The naive transcription suffers from both kinds of capture problems: the macro's
temp collides with the macro user's romp, and the macro's i f collides with the
macro user's i f . In order to implement lexical scoping, constant pieces of the
output that come from the macro template must be distinguished from parts
that come from the input form. We have at least two choices here:

Represent the input form using ordinary Scheme symbols and pairs, and
have the transcription function use some different data types in order
to distinguish the text that it adds. Then, arrange for the system that
processes the result to interpret the special types appropriately.

.

. Represent the input form in some non-standard way, with symbols or
pairs replaced by some different data types, and allow the transcription
function to embed the unusual structure in new text that is represented
using ordinary symbols and pairs. Then, have the system that delivers
the input to the transcription function make sure that the input has the
proper non-standard representation.

Nothing says that we even have to use symbols and pairs in the interpreter
at all, so there is also the third option of combining the first two options.

Option 1, using ordinary pairs but "unusual" identifiers for added text, cor-
responds to the algorithm described in [5]. Option 2, with ordinary pairs and
unusual identifiers, corresponds to Kohlbecker's algorithm [8]. Option 2 also
more or less encompasses syntactic closures [1], which use ordinary symbols but
wraps them inside unusual surrounding structure.

The implementation I will describe is a version of option 1. It is basically a
transcription into Scheme of the algorithm presented in [5].

A transcription function accepts and returns S-expressions in the usual way.
However, instead of inserting symbols into the output, as a naive transcription
function (one that does not respect lexical scoping) would have done, it inserts
generated names, which I will write using brackets, e.g. [temp 13]. The number
is a unique tag that distinguishes the generated names introduced by this macro
expansion from those introduced by other macro expansions. There is no reason
that the tag has to be a number, as long as it is unique to one particular
expansion. Also, we could use a distinct tag for each name, but it suffices to
use the same tag for all names generated for a single macro expansion.

For the above example, the transcription function might return

([let 13]
([if 13]

(([t emp 13] (read i f)))
[temp 13]
((lambda (form) (.rite (list form romp) of))
[temp 13])

(newline of)))

Now the crucial step: We interpret (or compile) the output in a special
kind of lexical environment. Suppose that tag is the unique tag generated for an

34

expansion. The new lexical environment has the property that a generated name
of the form [name tag] has the same binding that the name name does in the
environment in which the macro was defined. All other names are interpreted
just as they are in the environment where the macro application occurs. In
the example, t e s t was defined at top level, so [l e t 13] and [i f 13] get the
top-level environment's bindings of l e t and i f , not the bindings of l e t and i f
in the environment in which the (t e s t . . .) form occurs. The name [temp
13] is initially bound to whatever temp is bound to at top level, or perhaps it
is unbound. [temp 13] is not used free in the expansion, however, but only
occurs in the l e t body, where it is bound to the variable that gets the result of
(read if).

Here we see both functions of generated names. They can act as reliable
references to top-level variables, or they can act as "gensyms" or nonconflicting
names for temporary quantities.

Figure 1 is the relevant portion of a simple Scheme compiler that implements
this mechanism. The figure includes all the code necessary to support lexically
scoped macros, except for details such as data structure definitions. The output
of this compiler might be machine code, byte codes, some kind of tree-structured
intermediate code ("S-code"), or even Scheme.

Figure 1 assumes that macros are represented as (transcribe, environment I
pairs, Following [3], transcribe is a procedure of three arguments: the expression
to be expanded, a name generation procedure that maps symbols to generated
names, and a comparison procedure for recognizing auxiliary keywords (such
as e l s e in cond). The environment is the environment in which the macro
was defined; for macros defined with d e f i n e - s y n t a x , this will be the top-level
environment. Environments map names (symbols or generated names) to "de-
notations," where a denotation is either a token designating one of the special
operators (lambda, quote , etc.), a macro, or a compile-time representation of a
bound or top-level variable.

A final detail: In order to support macros that introduce fixed quoted sym-
bols into their expansions, the compilation routine for quote must replace gen-
erated names with their underlying symbols. An example of a macro for which
this matters is

(define-syntax cell
(syntax-rules ()

((cell ?x)
(list ~ cell

(lambda () ?x)
(lambda (new) (set! ?x new))))))

The output of the transcription function will be something like

([l i s t 17] ([quote 17] [cel l 17]) . . .)

and we need to make sure that the expression ([quote 17] [c e l l 17]) delivers
the symbol c e l l , not a generated name.

¢$:,It :~

In the particular case where the compiler's output is Scheme, the "compiler"
is a Scheme-to-Scheme macro expander of the sort found in several papers on

35

(define (compile exp env)
(cond ((name? exp) (compile-variable exp env))

((pa i r? exp)
(i f (name? (car exp))

(le t ((den (binding env (car exp))))
(cond ((spec ia l? den)

(compile-special-form den exp env))
((macro? den)

(compile-macro-application den exp env))
(else

(compile-applicat ion exp env))))
(compile-appl icat ion exp env)))

((l i t e r a l ? exp) (compile-constant exp))
(else (syntax-er ror " inval id expression" exp))))

(define (compile-macro-application mac exp env-of-use)
(le t* ((uid (generate-unique-id))

(new-exp (t ranscr ibe mac exp env-of-use u id)))
(compile new-exp (b ind-a l iases uid mac env-of-use))))

(define (t ranscr ibe mac exp env-of-use uid)
(le t* ((env-for-expansion (bind-al iases uid mac env-of-use))

(rename (lambda (name)
(generate name uid)))

(compare (comparison-procedure env-for-expansion)))
((macro- t ranscr ibeer mac) exp rename compare)))

; Create an environment suitable for processing a macro expansion.

(define (b ind-a l iases uid mac env-of-use)
(l e t ((env -o f -de f in i t i en (macro-env-of-def ini t ion mac)))

(lambda (name)
(i f (and (generated? name)

(eqv? (generated-uid name) uid))
(env-of -de f in i t ion (generated-name name))
(env-of-use name)))))

; Environments are procedures that map names to denotations.

(define (binding env name)
(env name))

(define (generate-unique-id)
(l e t ((uid *unique-id*))

(set! *unique-id* (+ *unique-id* I))
uid))

(define *unique-id* O)

(define (name? x)
(or (symbol? x) (generated? x)))

Figure 1: Expanding macros

36

the subject. That macro expansion algorithms are often presented as recursive
source-to-source preprocessors has obscured the fact that it is not necessary to
fully expand the entire program applications before compilation or interpreta-
tion can proceed. Macro expansion can be easily performed concurrently with
compilation or interpretation, even when macros respect lexical scoping.

Three implementations of lexically scoped macros and the syn t ax - ru l e s
pattern language are available on the Internet in directory pub~scheme/doe~
on nexus, yorku, ca:

• s i m p l e - m a c r o s . t a r . Z - the implementation from which Figure 1 was
extracted.

• syn tax-case , t a r . Z - Kent Dybvig's system, as described in [6].

• s y n c l o . t a x . Z - Chris Hanson's implementation based on syntactic clo-
sures, as described in [7].

Thanks to Brian Reistad for comments and corrections.

R e f e r e n c e s

[1] Alan Bawden and Jonathan Rees. Syntactic closures. 1988 ACM Conference
on Lisp and Functional Programming, pages 86-95.

[2] William Clinger. Macros in Scheme. Lisp Pointers IV(4): 17-23, October-
December 1991.

[3] William Clinger. Hygienic macros through explicit renaming. Lisp Pointers
IV(4): 25-28, October-December 1991.

[4] William Clinger and Jonathan Rees (editors). The revised 4 report on the
algorithmic language Scheme. Lisp Pointers IV(3): 1-55, July-September
1991.

[5] William Clinger and Jonathan Rees. Macros that work. 1991 ACM Sympo-
sium on Principles of Programming Languages, pages 155-162.

[6] R. Kent Dybvig. Writing macros in Scheme with syntax-case. Indiana Uni-
versity Computer Science Department technical report #356, June 1992.

[7] Chris Hanson. A syntactic closures macro facility. Lisp Pointers IV(4): 9-16,
October-December 1991.

[8] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce
Duba. Hygienic macro expansion. 1986 ACM Conference on Lisp and Func-
tional Programming, pages 151-159.

[9] Eugene E. Kohlbecker and Mitchell Wand. Macro-by-example: Deriving syn-
tactic transformations and their specifications. 1987 ACM Symposium on
Principles of Programming Languages, pages 77-84.

37

