
The Scheme of Things: 

Implementing Lexically Scoped Macros 

Jonathan Rees 
Massachusetts Institute of Technology 

j ar~ai, mit. edu 

I have been hearing some complaints that  Scheme's new iexically scoped 
macro facility is difficult to implement. There are two components to the pro- 
posal: the pat tern language and lexical scoping. The two pose independent 
problems. I agree that the ellipsis-enriched pattern language can be tricky to 
implement; implementations that  I have seen take anywhere from 250 to 1400 
lines of Scheme code. However, I believe that it is conceptually straightforward, 
and several implementations have been around for many years (see [9]). On the 
other hand, many people are unnecessarily getting tripped up on lexical scoping, 
which, unlike the pattern matcher, is very simple to implement. 

(The Scheme report authors have not agreed on any low-level macro defining 
facility. The appendix to the Revised 4 Report [4] describes a sample low-level 
facility, but even that facility's own authors have repudiated it. There are three 
other proposals for low-level facilities on the table [7, 3, 6], and debate and 
experimentation continue.) 

When the interpreter or compiler comes across a macro application, it in- 
vokes a lranscriptwn function that computes a form that replaces the macro 
application. For macros defined using s y n t a x - r u l e s ,  the transcription func- 
tion is responsible for matching the macro application against the available 
patterns, and building a replacement according to the appropriate template. 
For example: 

(define-syntax test 
(syntax-rules ( ) 

((test ?thing ?proc ?else) 
(let ((temp ?thing)) 

(if temp (?proc temp) ?else))))) 

(The use of question marks is just a naming convention for meta-variables, not 
part of their syntax.) Lexical scoping requires this macro to work even when i:f 
or l e t  is lambda-bound or when temp occurs in the ?proc  or ? e l s e  expressions. 
(With the Revised 4 Report 's  macro facility, there are no reserved words, so 
one may now bind any identifier, including those such as i:f that are initially 
syntactic keywords.) Consider the following somewhat contrived expression: 

(test (read if) 
(lambda (form) 

(write (list form temp) of)) 
(newline of) ) 

The variable i f  presumably holds an input file port, and temp might be the cur- 
rent temperature.  A naive transcription function would rewrite this expression 
a s  
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(let ((temp (read if))) 
(if temp 

((lambda (form) (write (list form temp) of)) 
temp) 
(newline of))). 

The naive transcription suffers from both kinds of capture problems: the macro's 
temp collides with the macro user's romp, and the macro's i f  collides with the 
macro user's i f .  In order to implement lexical scoping, constant pieces of the 
output  that  come from the macro template must be distinguished from parts 
that  come from the input form. We have at least two choices here: 

Represent the input form using ordinary Scheme symbols and pairs, and 
have the transcription function use some different data types in order 
to distinguish the text that it adds. Then, arrange for the system that  
processes the result to interpret the special types appropriately. 

. 

. Represent the input form in some non-standard way, with symbols or 
pairs replaced by some different data types, and allow the transcription 
function to embed the unusual structure in new text that is represented 
using ordinary symbols and pairs. Then, have the system that delivers 
the input to the transcription function make sure that the input has the 
proper non-standard representation. 

Nothing says that  we even have to use symbols and pairs in the interpreter 
at all, so there is also the third option of combining the first two options. 

Option 1, using ordinary pairs but "unusual" identifiers for added text,  cor- 
responds to the algorithm described in [5]. Option 2, with ordinary pairs and 
unusual identifiers, corresponds to Kohlbecker's algorithm [8]. Option 2 also 
more or less encompasses syntactic closures [1], which use ordinary symbols but 
wraps them inside unusual surrounding structure. 

The implementation I will describe is a version of option 1. It is basically a 
transcription into Scheme of the algorithm presented in [5]. 

A transcription function accepts and returns S-expressions in the usual way. 
However, instead of inserting symbols into the output,  as a naive transcription 
function (one that  does not respect lexical scoping) would have done, it inserts 
generated names, which I will write using brackets, e.g. [temp 13]. The number 
is a unique tag that  distinguishes the generated names introduced by this macro 
expansion from those introduced by other macro expansions. There is no reason 
that  the tag has to be a number, as long as it is unique to one particular 
expansion. Also, we could use a distinct tag for each name, but it suffices to 
use the same tag for all names generated for a single macro expansion. 

For the above example, the transcription function might return 

( [let 13] 
( [if 13] 

( ( [ t emp  13] (read i f ) ) )  
[temp 13] 
((lambda (form) (.rite (list form romp) of)) 
[temp 13]) 

(newline of))) 

Now the crucial step: We interpret (or compile) the output  in a special 
kind of lexical environment. Suppose that  tag is the unique tag generated for an 
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expansion. The new lexical environment has the property that  a generated name 
of the form [name tag] has the same binding that  the name name does in the 
environment in which the macro was defined. All other names are interpreted 
just as they are in the environment where the macro application occurs. In 
the example, t e s t  was defined at top level, so [ l e t  13] and [ i f  13] get the 
top-level environment's bindings of l e t  and i f ,  not the bindings of l e t  and i f  
in the environment in which the ( t e s t  . . . )  form occurs. The name [temp 
13] is initially bound to whatever temp is bound to at top level, or perhaps it 
is unbound. [temp 13] is not used free in the expansion, however, but only 
occurs in the l e t  body, where it is bound to the variable that  gets the result of 
(read if). 

Here we see both functions of generated names. They can act as reliable 
references to top-level variables, or they can act as "gensyms" or nonconflicting 
names for temporary quantities. 

Figure 1 is the relevant portion of a simple Scheme compiler that  implements 
this mechanism. The figure includes all the code necessary to support lexically 
scoped macros, except for details such as data structure definitions. The output  
of this compiler might be machine code, byte codes, some kind of tree-structured 
intermediate code ("S-code"), or even Scheme. 

Figure 1 assumes that  macros are represented as (transcribe, environment I 
pairs, Following [3], transcribe is a procedure of three arguments: the expression 
to be expanded, a name generation procedure that  maps symbols to generated 
names, and a comparison procedure for recognizing auxiliary keywords (such 
as e l s e  in cond). The environment is the environment in which the macro 
was defined; for macros defined with d e f i n e - s y n t a x ,  this will be the top-level 
environment. Environments map names (symbols or generated names) to "de- 
notations," where a denotation is either a token designating one of the special 
operators (lambda, quote ,  etc.), a macro, or a compile-time representation of a 
bound or top-level variable. 

A final detail: In order to support macros that  introduce fixed quoted sym- 
bols into their expansions, the compilation routine for quote  must replace gen- 
erated names with their underlying symbols. An example of a macro for which 
this matters  is 

(define-syntax cell 
(syntax-rules () 

((cell ?x) 
(list ~ cell 

(lambda () ?x) 
(lambda (new) (set! ?x new)))))) 

The output  of the transcription function will be something like 

( [ l i s t  17] ([quote 17] [cel l  17]) . . . )  

and we need to make sure that  the expression ( [quote  17] [ c e l l  17] ) delivers 
the symbol c e l l ,  not a generated name. 

¢$ :,It :~ 

In the particular case where the compiler's output is Scheme, the "compiler" 
is a Scheme-to-Scheme macro expander of the sort found in several papers on 
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(define (compile exp env) 
(cond ((name? exp) (compile-variable exp env)) 

( (pa i r?  exp) 
( i f  (name? (car exp)) 

( le t  ((den (binding env (car exp))))  
(cond ( ( spec ia l?  den) 

(compile-special-form den exp env)) 
((macro? den) 

(compile-macro-application den exp env)) 
(else 

(compile-applicat ion exp env))))  
(compile-appl icat ion exp env))) 

( ( l i t e r a l ?  exp) (compile-constant exp)) 
(else (syntax-er ror  " inval id  expression" exp))))  

(define (compile-macro-application mac exp env-of-use) 
( le t*  ((uid (generate-unique-id))  

(new-exp ( t ranscr ibe  mac exp env-of-use u id)) )  
(compile new-exp (b ind-a l iases  uid mac env-of-use)) ) )  

(define ( t ranscr ibe  mac exp env-of-use uid) 
( le t*  ((env-for-expansion (bind-al iases  uid mac env-of-use))  

(rename (lambda (name) 
(generate name uid)) )  

(compare (comparison-procedure env-for-expansion)))  
( (macro- t ranscr ibeer  mac) exp rename compare))) 

; Create an environment suitable for processing a macro expansion. 

(define (b ind-a l iases  uid mac env-of-use) 
( l e t  ( ( env -o f -de f in i t i en  (macro-env-of-def ini t ion mac))) 

(lambda (name) 
( i f  (and (generated? name) 

(eqv? (generated-uid name) uid)) 
( env-of -de f in i t ion  (generated-name name)) 
(env-of-use name))))) 

; Environments are procedures that map names to denotations. 

(define (binding env name) 
(env name)) 

(define (generate-unique-id)  
( l e t  ((uid *unique-id*)) 

(set! *unique-id* (+ *unique-id* I)) 
uid))  

(define *unique-id* O) 

(define (name? x) 
(or (symbol? x) (generated? x))) 

Figure 1: Expanding macros 
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the subject. That macro expansion algorithms are often presented as recursive 
source-to-source preprocessors has obscured the fact that it is not necessary to 
fully expand the entire program applications before compilation or interpreta- 
tion can proceed. Macro expansion can be easily performed concurrently with 
compilation or interpretation, even when macros respect lexical scoping. 

Three implementations of lexically scoped macros and the syn t ax - ru l e s  
pattern language are available on the Internet in directory pub~scheme/doe~ 
on nexus, yorku, ca: 

• s i m p l e - m a c r o s . t a r . Z -  the implementation from which Figure 1 was 
extracted. 

• syn tax-case ,  t a r .  Z -  Kent Dybvig's system, as described in [6]. 

• s y n c l o . t a x .  Z -  Chris Hanson's implementation based on syntactic clo- 
sures, as described in [7]. 

Thanks to Brian Reistad for comments and corrections. 
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