
Lisp and Portability:

The Process Modeling System

H. W. Egdorf
Los Alamos National Laboratory

A primary mission of the Technology Modeling and Assessment group (A-7) of the Anal-
ysis Division of Los Alamos National Laboratory is to support the Department of Energy
in performing analysis of both existing and future facilities that comprise the Nuclear
Weapons Complex. Many of the questions to be addressed in relation to this mission
involve an examination of the flow of material through a processing facility and the trans-
formations of the material as it moves through the facility by the use of a discrete-event
simulation tool.

In support of these analysis tasks, a simulation tool kit has been developed that allows
examination of issues related to the movement and transformation of material as it moves
through a processing facility. This tool kit, The Process Modeling System, is currently the
primary modeling tool used for examination of current and future DOE facilities. The flex-
ibility of the system has led to its use in performing similar analysis on a number of non-
DOE facilities under Technology Transfer initiatives.

The Process Modeling System is written in Common Lisp. The purpose of this paper is to
describe the structure of the modeling tool kit and discuss the advantages of Common Lisp
as its implementation language.

1.0 Structure of the Process Modeling System

The Process Modeling System is the implementation target of an object-oriented software
engineering methodology that has been developed over the last eight years for support of
development of discrete-event simulations. This methodology provides a structure by
which an analyst progresses from a set of customer questions to a simulation tool to be
used in answering those questions. Prior to use of the simulation tool kit, this methodology
provides a design in terms of a set of objects, each object's attributes, and each object's
capabilities. In addition, it will have been determined that the problem domain permits an
analysis solution by use of a simulation tool examining constraints on material transport
and transformation of material through a material processing facility.

It is the intent of the Process Modeling System that the set of objects identified by the soft-
ware engineering methodology be implementable within the tool kit, or with simple exten-

Lisp and Portability:

49

sions to the tool kit when the problem domain is within the class of analysis problem
described above.

1.1 Initial Structure - Control, World, and Artifactual Objects

The purpose of this section is to describe the types of objects (classes) that comprise the
tool kit.

The discussion of the structure of the Process Modeling System will focus on those classes
of objects that are visible to an analyst using the tool kit to construct an analysis tool.
There exists one additional class of objects, Simulation Control Objects, whose function is
to provide structure to the analysis tool. These Simulation Control Objects are not directly
visible or accessible to the user of the tool kit. They may be accessed directly by program-
mers extending the tool kit, or indirectly as a side effect of interaction with other objects.

The primary example of a Simulation Control Object is the controller for the queue of
events that comprise the discrete-event simulation structure. This event queue is not
directly visible to the analyst constructing a simulation tool. This means that the event
queue is not an explicit object with which the user can directly interact. Rather, the user
(or a programmer extending the system) can make an opaque object called an event, and
the action implied by the event will be performed automatically at the proper time in the
simulation. Being a discrete-event simulation tool, these events are the agents that provide
all of the activity in the system. However, the implementation of the discrete-event struc-
ture is not directly accessible to the user of the tool.

The set of objects visible to a user (either an analyst using the tool kit, or a programmer
extending the tool kit) of the Process Modeling System provides an initial distinction
between those objects that represent entities in the real-world situation being modeled and
those objects that are artifacts of the fact that the system is a part of a computer analysis
tool.

Those objects that represent entities in the real-world system under examination are called
World Simu,tation Objects. Those that exist as artifacts of the computer simulation are
Artifactual Simulation Objects.

Artifactual Simulation Objects in the tool kit include a class of extensible random deviates
that provide for sequences of generated random variables and a class of displays that
allows attachment of graphical interfaces written with different graphic interface systems
but with a common protocol to the simulation model.

1.2 Primary Tool Kit - World Simulation Objects

The set of classes that comprise the largest part of the Process Modeling System are the
World Simulation Objects. These objects represent those aspects of a real-world system
that are commonly examined by a simulation tool in the Process Modeli~,ag System's prob-
lem domain of constraints on material transport and transformation of the form of the
material during processing.

50

1.2.1 Materia l Representa t ion - Conta iners

The Process Modeling System simulates rnatenal-processing activities within a process-
ing facility. Several types of material containers are modeled. The proper type for a spe-
cific situation is chosen mainly by the level of detail of the model.

Material is implemented as a set of material-name/amount pairs. The materials themselves
do not exist as objects in the model. The purpose of the various material containers is to
contain these material-name/amount pair sets and provide various capabilities for their
movement and handling.

Parts are the most detailed material container. Parts are both the container of material in
preparation for a processing step (a material transformation) and also for transport from
place to place in the model. A part contains a set of material-name/amount pairs and a
workorder that describes where the part will move and what processing will occur at each
step. Parts are used in the model when pure discrete processing of individual pieces of
material is desired. Even when material is processed as a volume in a batch-wise manner,
parts are used where the level of detail recognizes individual containers for the batches.

Where the level of detail of the analysis does not require explicit individual identity of
Parts, a batch-processed aggregate container is provided. These Bulk Containers are simi-
lar to parts in that they contain a set of material-name/amount pairs. Bulk Containers are
different in that they do not move from place to place and there is thus no associated
workorder, and in that they allow the contained material to be processed in batches rather
than as discrete whole quantities. A separate transport mechanism, streams, is used as the
transport mechanism for these batches of material. These streams also provide a continu-
ous processing capability where such is appropriate. Streams are provided associated with
processing equipment described farther on.

For simple material representation where it is no longer necessary to view even aggregate
containers, Material Resources can be used to provide a source of material that comes
from a common inventory of similar materials. A conceptual model for these resources is
a chemical stockroom or supply house that can provide amounts of various materials to be
added to the system at a processing step. These materials can be limited in amount and
thus constrain processing in the model, and they can be resupplied by processing in the
model.

1.2.2 Mater ia l T r a n s f o r m a t i o n - Workcenters

The Process Modeling System simulates the processing of material as a transformation
from one type to another. This transformation is provided by a class of equipment called
Workcenters.

Workcenters are described by a set of process step descriptions. Each process step descrip-
tion specifies either a set of input parts, a set of bulk containers, or a single continuous
stream. Each process step description then describes sets of material and other resources
necessary for processing that can also constrain production. Finally, each process step

51

description describes the outputs to be produced. The processing described takes the form
of a material balance where aB material,in the inputs is distributed to the outputs in such a
way that all material added is,accounted for in the output.

Each piece of equipment represented by an instance of class Workcenters can have several
different behaviors depending on the types of input. Each Workcenter can also have sto-
chastic failure and breakdown modes of operation.

1.2.3 Material Transport . Locations

The Process Modeling System simulates the transport of material from place to place in a
processing facility. The class of objects that provides for constraints on this movement are
Locations.

Each Location in the model can contain a set of parts, a set of bulk containers, and a set of
workcenters. Subclasses of locations provide constraints on the movement of material into
their instances. Existing constraints in the tool kit include limitations on the number of
parts that may be in a location at any one time, area constraints limiting the floor space of
the parts in a location, and material constraints limiting the amount of various materials in
the location at any one time. A simple protocol allows for the creation of additional con-
straints as needed.

The operation of the model revolves around locations moving parts from place to place,
and workcenters choosing material from parts, bulk containers, and streams, and produc-
ing outputs in the form of parts, material added to bulk containers, streams to other loca-
tions, and resource resupply.

1.2.4 Decision Making - Foremen

Each simulation tool constructed with the Process Modeling System generally requires
some custom decision-making capability. These decision makers are modeled with the
class Foremen. The result of a foremen decision is usually either the attachment of a
workorder to a part, directing it through a set of processing steps, or the change of state of
a workcenter (in effect, turning the equipment on or off.)

1.2.5 Data Examination - Auditors and Accountants

The Process Modeling System can provide large amounts of data while running. However,
if nothing looks at those data, it is of little value. The conceptual model used for data
examination was developed from the idea that the simulation tool is nothing more or less
than a replacement for an experiment in the actual system under analysis where the cost of
an actual experiment would be prohibitive. In an actual experiment, two sources of data
gatherers, Accountants and Auditors, would exist.

Accountants are those procedures or individuals in the system that watch and record some
behavior of an object in that system. Examples include parts entering or leaving a location,
and a workcenter beginning or ending a processing step.

52

Periodically, an Auditor will arrive and balance the books of the accountant. The Auditor
provides a time-stamped record of the model's operation at some periodic interval. It is
these auditor records that generally provide the information with which the original analy-
sis questions are addressed.

2.0 Why Lisp?

The Process Modeling System is, first and foremost, a specification of a software system.
This system can be implemented in any reasonably object-orientated language. It is impor-
tant not to lose sight of the fact that the choice of a language is relatively unimportant in a
software engineering effort compared with the proper use of an object-oriented design and
analysis methodology.

Given that the choice of language is not the major factor in the success of a project, it is
still important to choose the best tools available for implementing a design. Thus, it is
appropriate to examine the requirements of the design of the Process Modeling System
that lead to the choice of Common Lisp as the implementation language of choice.

Wlaile several reasons can be given for the use of Common Lisp, including rich develop-
ment environments and language features such as garbage collection, three factors are
dominant in the choice of Common Lisp for the implementation of this system.

2.1 Object-Oriented Capabilities

The software engineering methodology used for construction of these simulation tools
leads to an object-oriented design. The language chosen for implementation should sup-
port the object-oriented paradigm presented by the methodology in order to facilitate vali-
dation, verification, maintenance, and extension of the completed tool.

The Common Lisp Object System (CLOS) provides one of the most complete and mature
object-oriented programming systems available. It fits the structure presented by the
design quite well.

2.2 Decision Modeling

The software engineering methodology used for construction of these simulation tools
makes an early distinction between those activities that are physical and those activities
that are cognitive. While it is possible to model many of the cognitive activities with nor-
mal program code, Common Lisp provides a strong base for the construction of tools that
make representation of these cognitive activities much easier than simply expressing the
rules as program code fragments embedded in the rest of the model structure. Examples of
such systems include forward and backward chaining rule systems, and neural network
systems.

The ability to explicitly model decision-making activities as well as physical activities
depends on more than just the language used to model the decisions. The knowledge and

53

view of the world in which the activity is embedded is also a part of this modeling. The
result of a physical activity depends upon the actual state of the world. A cognitive acfiw-
ity, such as a decision process, depends upon the perceptions of the entity making the deci-
sion. Common Lisp provides a particularly rich environment for capturing and
representing this knowledge about the environment in which these activities take place,
and for differentiating between the physical state of the simulation world and the percep-
tions of this world by decision makers in the model.

2.3 Portability

Simulation tools constructed using the Process Modeling System must run in a variety of
environments. Small desktop machines are used to construct and test the scenario files that
describe the physical system being modeled to the simulation tool. Large workstations are
a common choice for larger production runs that might take several minutes to several
hours. For the largest problems, mainframe and super-computer class machines are
desired.

While the technical issues of knowledge representation and object-oriented implementa-
tion provide strong reasons for the choice of Common Lisp for the implementation of the
Process Modeling System, it is the issue of portability that provides the strongest argu-
ment for the language's use. The ability to provide an analysis tool on a desktop commod-
ity computer such as a low-end PC or a Macintosh is, in actuality, not a wise thing to do.
The problems which require a tool of this type are large enough to require a machine the
size of a very high-end personal computer in order to have reasonable run times. The
advantage of being able to run on the machines typically found on a desktop is one of mar-
keting. If the customer can run (however slowly) on their familiar personal machine, they
are usually amenable to use of a more appropriate type of machine for actual production
use. The slow runs provide an initial familiarity that allows the initial acceptance of the
product.

Workstation-class machines have proven to perform acceptably for analysts currently
using the system. Even on a workstation, typical problems can take several hours to run,
and a mainframe-class machine is desirable. This run-time is not a Lisp-specific problem.
While there are theoretical advantages in run-time to simpler languages like C or Ada, this
disparity is not a significant issue for this class of problem.

Lisp provides the greatest application portability available today. The development of the
Common Lisp standard by ANSI X3J13 has allowed all vendors to produce a very porta-
ble base language. This sort of portability is not so different from the portability of lan-
guages like C or FORTRAN. However, following the common aphorism that anyone
wishing to implement a Lisp-like application in another language must first implement
much of Lisp in that language, the place where portability usually breaks down is in the
support libraries that provide commonly needed functionality. While languages such as C,
Ada, and FORTRAN have made great strides in the extension of language standardization
to library standardization, the definition of Common Lisp itself already contains most of
those things regarded as libraries in other language environments.

54

A significant advantage to Lisp's portability is the existence of the Common Lisp Interface
Manager (CLIM). CLIMprovides~essentialty the same user interface across a very wide
range of architectures. It provides this portability by addressing interface design at a some-
what different level than other systems, many of which are specific to one operating sys-
tem or windowing system.

The Process Modeling System includes an architecture that allows the attachment of a
user interface written for any available graphic user interface. For example, a simple Lisp-
view interface is available on a Sun workstation running Lucid Common Lisp and X11. A
CLIM interface is attached to the system using the same protocols, as can be an interface
for the Macintosh toolbox or for Microsoft Windows in Lisp systems that support those
graphic user interfaces. Currently, only CLIM is available across the range of platforms on
which the Process Modeling System runs.

2.3.1 Problems with Portability

No system provides everything desired, and Common Lisp is no exception. Several small
items cause problems moving from one system to another. It should be emphasized that
these problems seem minor to those experienced in similar exercises in other languages.

• Pathnames are different among different systems. It is difficult to provide a really seam-
less interface to the host operating system without exposing these differences. Lisp log-
ical pathnames provide one solution, but this is still in conflict with users of some
specific system who wish to use native pathnames.

• Many systems (but not all) provide a command-line interface to applications where
command-line parameters are available to the application. The bit of the interface that
collects these command-line arguments into a canonical form is system dependent.

• The ANSI specification is still a moving target, albeit a slowly moving one at this time.
Each vendor provides a somewhat different snapshot of the specification as it existed at
the time that vendor shipped its Lisp system. As the Process Modeling System makes
little use of features that are still evolving, the only real problem with this has been a
need to take some care in the choice of what packages to import in order to use the
proper system definitions. This is easily handled in the initial load file.

It is also important to note what has not been a problem.

• Representations of numbers, either integer or floating point, need not be parametedzed
by system. For example, the random number objects in the model depend on knowing
the characteristics of floating point numbers. Lisp provides sufficient information about
arithmetic in a portable form that parameterization by system type is not needed.

• Parameterization by system type is not required to sort out the plethora of library rou-
tines that vary between different versions of UNIX, or between UNIX and MS-DOS.

55

3.0 Conclusions

For a simulation model specified and designed with an object-oriented methodology that
includes specific information about decision making and that requires a high degree of
portability, Common Lisp is the best choice of an implementation language. No other lan-
guage provides the range of implementations, mature object-oriented features, ease of
portability of the model, and ease of portability of interface.

56

