
Connecting to a Relational Database
Application from Interleaf 5 Using Lisp

Charles Dale
Member of the Technical Staff, Interleaf, Inc.

The Interleaf 5 (I5) desktop publishing software provides a powerful customization
environment based on Lisp. A small development team, including the author, used
this environment to build a tightly integrated I5 user interface (UI) for Interleaf's
Relational Document Manager (RDM). This paper describes the part of this program
that implements the connection between I5 Lisp and the RDM Application Program
Interface (API).

RDM is a document management system that supports large documentation
projects by providing the following three major pieces of functionality:

1. Librarian services such as document storage and retrieval, and the
tracking of multiple drafts and revisions

2. Workflow management, including document object routing and a
message system that provides notifi&tion of incoming tasks

3. Dynamic access control based on the document's step in its
workflow

Users build a model within RDM of their documentation project, including the
structure of the various books being produced and the organizational structure of
the documentation group (writers, editors, reviewers, etc.). RDM objects are defined
to represent individual documents or document hierarchies (books). Each RDM
object is assigned an object type that spedfies its development cycle or routing. The
routing is a sequence of steps that an RDM object must pass through during its
development cycle. Each step of the routing is associated with one or more RDM
users. Users and groups are defined in RDM's organizational structure model. RDM
objects are stored in (usually protected) directories called vaults.

All of these entities - - objects, object types, users, groups, and vaults m are stored in
tables in a relational database. The main RDM application is a C program that
includes embedded SQL statements to access and modify the database tables. This
program has no UI, but provides an API that can be connected to UI front ends. We

o 1992 Int~r|ea.f, Lnc
All righ~ r~rved . 5

have implemented three front ends, one using a portable GUI toolkit called JAM that
runs under X and Windows, one using HyperCard, and one using the I5 desktop UI.

Figure I illustrates this architecture.

Relational [iii
Database [ilii

Tables :!ii ~:~:~i~i~i~ii:i:i:i:i:!:~:~:~ii~:~:i:~:i:i:~:~:~:~:~:!:~::':i:~ ii

Interpreter iiii :::

JAM UI I I5UI [Ii IHyperCard UI] iii i~

Figure 1: RDM Proa~ss Architecture

The design of the RDM API was strongly influenced by the Lisp read-eval -print
loop. This influence is evident in the fact that the RDM Command Interpreter
includes limited Lisp READ and PRINT modules capable of handling atoms
(without package prefixes), strings (with slashification), numbers, and nested list
structure. As will be seen, this is sufficient to communicate the entire range of RDM
requests and responses. With READ and PRINT as the common denominator,
communications between the Command Interpreter and I5 are established using
character streams. The first time a user invokes RDM, I5 automatically starts the
Command Interpreter as a separate process and connects its standard input and
standard output to I5 Lisp streams. I5 then makes RDM calls using print on the
Command Interpreter's input stream and receives the returned data using read on
its output stream.

Input to the Command Interpreter is of the form (request data-list). Some requests
need no input and so do not need a data-list. Each request corresponds to a C
function that takes a data list as an argument, interprets the various elements of the
data list, and calls the appropriate database interface function with the arguments

parsed from the data list. It is also responsible for signaling errors caused by the
wrong number of arguments or incorrect argument types.

Values are returned from the Command Interpreter in the form (error data-list). If the
request caused an error, error is a string describing the problem; otherwise it is nil. If
the request was a query, the selected data is returned in data-list. For updates,
data-list is nil. The format of data-list depends on the spedfic request, but it is
generally a list of lists, one per row from the SQL SELECT statement. Each query
request defines the columns or fields returned in these sublists. Each field is a string
or, in some cases, a list. Example I shows a typical API call and the returned values.

Example 1: API Input and Output

Input:
Output:

(get-user-detail ('CTD'))
(nil
(('CTD" "USR" "" "CHARLES DALE" "ADMIN" "System Administrator" "SYSTEM"

"SYSTEM TOP LEVEL /u/monteverdi/ctd/desktop" "ctd" ")))

In this example, the request get-user-detai 1 takes one argument, "CTD", a user-id.
The rows that it returns contain 12 columns. In this case, only one row was returned.

To make it easier to deal with the lists returned from the Command Interpreter, we
use a macro that constructs a defs t ruc t to define list structures and provide accessor
functions. The structure returned in Example I could be defined as follows:

Example 2: The user API Data Structure

(define-api-structure user
name type password full-name default-function function-description parent-group
group-description last-message work-area mail-address group-vault)

While the above mechanism works, it would be very cumbersome to write a large
program using it. There are two major problems. First, every time you make an RDM
request, you have to check the error value and handle it if it is non-nil. For functions
that make several RDM requests, a considerable amount of code would have to be
devoted to handling API errors. This not only detracts from the readability of the
code, but it is very repetitive and error-prone. The other problem is that the
argument structure of API requests is very rigid, in that it supports only required
arguments. For calls with many arguments, such as object search, this can be difficult
to program and maintain.

To make access to the API more Lisp-like, we defined a Lisp API layer that mediates
between the Command Interpreter and the rest of the I5 UI. For every API request,
we define a Lisp function that provides the interface to it. The Lisp API function can
use optional and keyword arguments and provide defaults. It also takes care of cases
in which errors are returned by signaling an RDM error condition.

Figure 2 shows how the Lisp API fits into the overall RDM architecture.

Relational [::iii
Database [~ii~i

Tables [

iCn~nmrae~ed r I ii::i

........... ::::::::::::~:i:i:~:i::::::::::::::::::::::::::::::::::::: i!ii

:~:~:~:~:~:~:~:~:~:~:~:~:~T ~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:~:iiii HyperCard UI iliiil jAMUi Iii [LispAPI [ii;::

Figure 2: RDM Process Architecture with Lisp API

A macro called handl i ng-api -errors is provided to make programming with Lisp
API functions more transparent. The Lisp API can be called multiple times within a
single handl i ng-api -errors form. By default, each API call runs as a separate
transaction, but calls can be grouped into a single transaction by using the
open-transacti on, c0mmi t, and rol 1 back API calls, handl i ng-api -errors catches the
rdm-api -er ror condition and performs error recovery, optionally calling rol 1 back.
! t also starts the Command Interpreter process if it is not already running. Inside
handl i ng-api -errors, programs use the Lisp API functions like any other Lisp
functions. Example 3 shows the interface to the get-user-detai 1 request in the Lisp
API. Compared with Example 1, this is simpler to call, and the return values are
easier to use.

Example 3: Lisp API Input and Output

Input:
Output:

(get-user-detail "CTO')
(('CTD" "USR" "" "CHARLES DALE" "ADMIN" "System Administrator" "SYSTEM"

"SYSTEM TOP LEVEL /u/monteverdi/ctd/desktop" "ctd" " '))

In Example 3, if get-user-detai I encounters an error, it signals an error of type
rdm-api -error rather than return any output. Example 4 shows a simple program
written using the Lisp API.

8

Example 4: A Simple Program

(defun list-all-users {)
(handling-api-errors ()

(terpri)
(dolist {user (get-user-detail))

{format t "-I2A ~A~k"
(user-name user)
(user-full-name user)))))

The RDM API defines over 100 requests, but it is designed to be tailored to spedfic
applications. To provide maximum flexibility, we have a request called
execute-sql -statement that takes an SQL statement (to protect database integrity,
only SELECTs are normally allowed) and returns the resulting rows in sublists as
described above. With this request, customizers can define their own new queries,
structures, and API calls. This type of interface could be extended to provide access
to any database that provides an SQL interface.

Example 5 shows a program that uses the execute-sql -statement request. It first
defines a new API structure that mirrors the list of fields to be returned. It then
defines a Lisp API function that uses the cal 1 -api function. The contract of the
cal 1 -api function is to format the data list, call the Command Interpreter, check for
and signal errors, and return the data list from the API. In practice, the
defi ne-api - s t ruc ture and defun of the Lisp API function are generated by a single
macro called defi ne-api -cal l, which also generates a documentation string and
optionally exports the function symbol. The last step is to define a UI function. This
looks just like the function in Example 4.

Example 5: Using the execute-sql -statement API Call

(define-api-structure my-object
name author)

{defun get-my-objects-by-author {author)
{cal l-api "execute-sql-statement

(format ni l "SELECT objectname, object_author FROM object -
WHERE object_author LIKE " ~ A " ~

ORDER BY object_name r
author)))

(defun list-my-objects {author)
{handllng-api-errors {)

{terpri)
{dolist {my-object (get-my-objects-by-author author))
{print (my-object-name my-object)))))

9

After spending a great deal of time and effort developing and debugging this code,
the most persistent problem has been getting the read and pri nt functions in the
Command Interpreter to obey enough of the contract of their Lisp counterparts to
keep both sides from becoming hopelessly confused. The most common error occurs
because Lisp and SQL have different quoting and other special characters, and
getting the escaping right in both syntaxes is tricky. In retrospect, the choice of read
and prJ nt for this interface may not have been the best. It certainly made the Lisp
side easy to implement, but it has added a lot of complexity to the Command
Interpreter and other non-Lisp UIs.

Another problem with the current implementation is that the Lisp API is defined
separately from the C API. Since different people maintain each end of this interface,
it is relatively easy for them to get out of sync. One way to fix this would be to
enhance the defi ne-api -ca11 macro to write the C API interface functions as well.

The Lisp environment in Interleaf 5 has allowed us to build a very powerful and
flexible user interface for RDM. Since most installations require at least some amount
of customization, making that it as easy as possible was a major design goal. We also
expect to be able to adapt the tools we built for the RDM interface to other, more
generic database applications.

I0

