
Building Common Lisp Applications
with Reasonable Performance*

John Boreczky
Lawrence A. Rowe

Compute r Science Divis ion-EECS
Univers i ty of California

Berkeley, CA 94720

Abstract
This paper describes our experience with a number of methods that can be used to improve
the performance of Common Lisp applications. These methods include vendor-
independent optimizations such as recoding high traffic functions and vendor-dependent
optimizations such as incremental loading. The results of these optimizations are quantified
and compared.

1. Introduction
Over the past several years we have developed several applications in Common Lisp (CL) [Steg0]

including a graphical user interface toolkit [RKS91], an end-user browser for a CIM database [SmR92], and
a hyperrnedia system and courseware [BeR91,ScR92a]. It is well-known that CL is an excellent prototyping
environment, however, the CPU and memory resources required by CL applications have prevented them
from being used in a production environment [Gab91, LaR91]. CL vendors have invested significant
resources to produce compiler improvements and tools to reduce the resources required.

This paper describes the use of tools produced by two CL vendors, namely Franz Inc. (Allegro CL
[FrI91a]) and Lucid Inc. (Lucid CL [LuI90]), to productize a moderately complex semiconductor
manufacturing application. A variety of different optimizations, including vendor-independent and vendor-
dependent optimizations, were applied to improve resource utilization. The results of these improvements are
quantified and compared.

The sample application used in this experiment is CIMTOOL [SmR92] which provides a graphical user
interface (GUI) to a semiconductor manufacturing CIM database that contains data about the fabrication
facility (e.g., floor plan, equipment, utility lines, etc.), equipment (e.g., status, trouble reports, processing
history, etc.), and work-in-progress (e.g., lot status and history). It also displays data captured from real-time
sensors and images and videos that describe the facility, equipment, and its operation. Figure 1 shows a screen
dump with CIMTOOL running that displays the floorplan, an equipment image, a query selection window,
and status windows for equipment and utility lines.

CIMTOOL is written almost entirely in CL using the Picasso GUI development environment also
produced at Berkeley IRKS91, KoR91]. Picasso provides an application framework and an X Window
System [Sch91] interface toolkit. CIMTOOL and Picasso make extensive use of the Common Lisp Object
System (CLOS) [Kee88].

* This research was supported by the National Science Foundation (Grant MIP-90-14940) and the Semiconductor Re-
search Corporation, Texas Instruments, and National Semiconductor, with a matching grant from the State of California's
MICRO program. This material is based in part upon work supported by the National Science Foundation under Infra-
structure Grant No. CDA-8722788.

20

Figure 1: CIMTOOL screendump

The vendor-independent optimiTatious that we applied to tile code included: 1) recoding high traffic
functions, 2) compiling the CLOS method dispatch code, and 3) implementing a dump system to reduce
interface and application object creation. The vendor-specific optimizations that we applied included: 1)
dynamic loading of compiled functions supported by Allegro CL and 2) reducing the working set size
supported by Lucid CL. Applying these optimizations reduced startup time by 50% and execution time by
25% on a representative task. Memory requirements increased slightly for Lucid CL because we were not able
to use their Treeshaker technology to remove unused code for reasons discussed below. Memory requirements
were reduced 20% for Allegro CL. However, in the best case, CIMTOOL required 19 MB of memory which
is impractical for deployment to a user community that might run 10 concurrent copies of the application on
X terminals connected to a shared server.

The remainder of this paper describes the experiment in more detail. It is organized as follows. Section
2 describes CIMTOOL, the Lisp systems, and a baseline benchmark before optimization. Section 3 describes
the vendor independent optimizations, and Section 4 describes the vendor specific optimizations. Sections 3
and 4 also describe the effects of performing these optimizations. Section 5 discusses our experiences
performing this experiment. Section 6 concludes the paper.

2. Baseline Application
Picasso is a GUI development system that provides an application framework and an interface toolkit.

The application framework provides high-level abstractions such as dialog boxes, panels for interacting with
dam; frames for presenting the top level appfication interface, and tools for collecting the various interface
abstractions into a coherent application. The interface toolkit provides an extensive collection of widgets
including: buttons, serollbars, text editors, graphic browsers, tables and video widgets. Picasso includes a
simple constraint system to bind variables to other variables or interface objects, several parameter passing/
variable passing options, and a large assortment of geometry managers.

The design and implementation of Picasso required over 10 man-years of work over a 5 year period by
experienced programmers who had limited experience with Lisp when they started. The framework and
toolkit contain roughly 35000 lines of code, while a typical Picasso application requires a few thousand lines
of code (e.g., CI/vlTOOL is about 3000). While writing Picasso, the emphasis was on rapid development and
high functionality with a hope that execution speed would be reasonable. The desire to use Picasso to deploy
multimedia and semiconductor manufacturing applications in the Berkeley Microfabrication Laboratory

21

[VoK89] required us to improve performance which led to the work on attach/detach and the other
optimizations described in this paper.

A typical Picasso application is composed of several Lisp files that describe the interface objects (e.g.,
non-modal panels and modal dialog boxes) and files that contain support functions for the application. The
support functions are usually compiled and loaded with the application. Each interface description file
contains one or more macro calls that create Picasso interface objects which are represented by CLOS objects.
The constraint mechanism is used to propagate changes to a program variable to other variables or to the
display. The Lisp compiler is used to compile the constraint code.

CIMTOOL provides a GUI interface to specify ad hoc queries to a database. The main memory data
structure for the facility floorplan including wails and icons to represent equipment requires about 40 KB of
memory. Picasso interface objects are created as needed for windows to display information.

The benchmark task used for performance measurement consists of 35 actions that involved selecting
data items using a mouse, performing queries on those items, and viewing data graphically and textually. This
task was a representative usage of the application, although images and video were not displayed.

Two commercial Common Lisp implementations were used: Allegro CL 4.0.1 and Lucid CL 4.0.1+. All
tests were run on a SPARCstation 1+ with 40 megabytes of physical memory and 55 megabytes of swap space
running Sun OS 4.1.1. Relatively little paging was done because of the physical memory. Attempts to run any
version of CIMTOOL, including those heavily optimized, on machines with less physical memory (e.g., 24
MB) were much too slow. Since CLX llR5 fixed a number of bugs under Lucid CL but did not change
performance, our tests were run with CLX llR4 in Allegro CL and CLX llR5 in Lucid CL. All Lisp source
files were compiled with optimization settings of safety 1, space 1, debug 1, speed 2, and compilation-speed
0. All executable images and the CIMTOOL files were NFS mounted across a local Etbernet.

Allegro CL partitions dynamic memory into old space and new space. Text space is a third area of
memory used to hold static data. New space is divided into two equal-sized pieces, called semi-spaces, to
allow stop-and-copy garbage collection. New space is used to store newly mated objects. When an object in
new space has survived a fixed number of garbage collections, called generations, it is placed in old space
(i.e., tenured). We created our Allegro images with 14 MB of old space and 11 MB of new space (5.5 biB per
semi-space). This space is in the virtual address space for the image but not necessarily in the working set
when an application is run. This amount of memory is more than is necessary, but it reduces the number of
garbage collections significantly. Since an object in new space is processed multiple times before it is tenured,
reducing the number of garbage collections improves performance, even though each garbage collection
takes longer.

The Lucid memory organiT~Xion is more complicated and more flexible. Generational garbage collection
is implemented with a hierarchy of dynamic spaces called ephemeral levels. Objects that survive a garbage
collection are moved into the next ephemeral level. There are separate areas for static data~ temporary ,~ta
and foreign data in addition to the ephemeral levels and the two semi-spaces for dynamic objects. Ephemeral
level 0 is where new objects are created. When it is filled, a garbage collection is done and any surviving
objects are moved to ephemeral level 1. In the default setup, level 0 is 512 KB, and levels 1 and 2 are 640
KB. Objects that survive level 2 move to the current dynamic semi-space, which is expanded as needed.
Consequently, Lucid CL garbage collection results in shorter but more frequent garbage collections than
Allegro CL. It is possible tO select the number of ephemeral levels and the size of the memory areas to tune
the memory setup for the needs of an application. We used an image with 24 MB of total space for Lucid CL.

Given the substantial differences between the memory organization of these two implementations and
the ability to add memory to an image, it is difficult to determine the size of a running program. The method
used in this paper is to determine the process size from the UNIX process status command (ps) and to subtract
the unused portion of old space for Allegro CL and dynamic space for Lucid CL. The new/ephemeral spaces
were untouched because changing their sizes would affect performance. Thus, oct reported execution size is
the run time size of the smallest images that could run with the reported performance. It would be unrealistic
to run these images because there is no room to tenure objects, but they serve as a useful means of comparison.

22

We rejected other possible measures of process size, such as number of bytes consed, number of page faults,
and resident set size, because they did not reflect the real memory required to run the application.

The load times reported are the elapsed time required to load the application from disk and initialize it.
Execution time is the time elapsed from invoking CIMTOOL until the Lisp prompt returns after completing
the test and quitting the CIMTOOL application. All times are reported to the nearest second. We report
elapsed times rather than CPU times because we want to measure user's perceived performance of the
application. In addition, the application is not CPU bound, it is memory and I/O bound, and CPUs are getting
faster more rapidly than memory and I/O bandwidth are increasing.

To provide a sense of perspective and establish a baseline performance, Tables 1 and 2 show performance
measurements of the base CL implementations and the effect of adding Picasso and CIMTOOL code. The
load times for CIMTOOL are large because of the time needed to build the main memory database. We report
both disk size and execution size of the appfication although users typically care more about execution size.
Although specific details are different between the two implementations, overall performance is quite similar.

Optimization

Allegro CL + CLX + CLOS

Load 'rime (sec)
16

Disk Size (KB) Execute Size (KB)

5672 16347

+ Picasso 49 11616 22349

+ CIMTOOL 158 11602 24132

Table I: Allegro Common Lisp Baseline Performance

Optimization

Lucid CL + CLX + CLOS

Load Ttme (sec)

19
+ Picasso 40

+ CIMTOOL 136

Disk Size (KB) Execute Size (KB)

10048 15432

14656 22096

14648 26340

Table 2: Lucid Common Lisp Baseline Performance

3. Vendor Independent Optimizations

Many optimizations can be applied to improve the performance of a CL application. Some optimi7mions
involve making improvements to the source code of an application and are thus implementation independent,
even though vendors might provide tools to aid in the process. This section describes three such optimizations
and the resulting performance improvements.

3.1 Time and Space Profiling and Type Declarations

Profiling is used to provide a rough estimate of the time and space used by individual functions.
Functions that require more time and space than seem necessary or functions that are called very often can be
rewritten using a better implementation or algorithm. Both Lisp implementations provide facilities to count
function calls and estimate time and space usage.

The Lucid profiler provides data in a number of formats. We examined profile d~tu for both initlaliTntion
and execution. General internal functions such as LRUN were the largest time consumers, but some standard
functions were also large time consumers. We then used the Performance Monitor to gather more detailed and
accurate statistics on these standard functions.

We examined all functions that accounted for more than 0.5% of the initialization time or more than 0.5%
of the execution time, which included more than 50 functions. The percentage of time spent in the standard
functions during loading/initialization and execution are shown in Tables 3 and 4, respectively. The sequence
and arithmetic functions indicaze that type declarations should improve performance. For the other functions,
it is easy to see and accept why a large amount of time is spent there. The information did tell us that we might

23

achieve a 5 to 10% performance improvement from careful type declarations, but it did not suggest a specific
course of action.

Function

NTHCDR
GETHASH
READ-CHAR
MEMBER
LIST-NREVERSE

% of
load time

3.88
3.52
1.70
1.21
1.17

DIRECTORY-NAMESTRING 1.14
SUBTYPEP 0.82
TYPEP 0.60
STRING= 0.55

ASSOC 0.51

Table 3: Percentage of Load Time Spent
in Standard CL Functions

Function i % of
execution time

GETHASH 3.96
READ-CHAR 1.14
LIST-NREVERSE 1.06

EQUAL 0.89
DIRECTORY-NAMESTRING 0.81
TYPEP 0.71

LISTEN 0.63
SUBTYPEP 0.60
POSITION 0.6O

STRINCG~ 0.57

Table 4: Percentage of Execution Time Spent
in Standard CL Functions

We did not collect time and space profiles using Allegro CL. The profilers in version 4.0.1 and 4.1 Beta
didn't work with our code, although the official 4.1 release fixed many of the problems. We have not pursued
this analysis further, mainly because we doubt that significant improvement is possible since we already
profiled with the Lucid CL tools.

Type declarations allow a Lisp compiler to produce more efficient code by reducing the need for run-time
type checks and by reducing the overhead to dispatch functions. Both Lisp compilers can report the type
information that is assumed or inferred while optimizing. When these assumptions are insufficient, type
declarations allow the compiler to do a much better job of code optimization.

We began using declarations early in Picasso development expecting that the compilers and run-time
environments would report type errors. Unfortunately, Lisp compilers at the time (late '86 and early '87) did
not do type checking or make much use of type declarations. This deficiency discouraged us from using
declarations since there was no immediate benefit. In retrospect we should have disciplined ourselves to use
type declarations but we naively believed the Lisp religion that faster machines would solve all performance
problems. The only type declarations currently in Pieasso a r e ignore declarations in methods and ineeger
declarations in a few time-critical methods.

We asked both compilers to provide suggestions for type declarations, and they produced a lot of output.
Trimming away the useless information left us with two main types of declarations: declare numerical
arguments and/or results to be ffixnums and declare sequences to be simple arrays (the same recommen~tlons
we inferred from the profiling). The results of adding type declarations to the code are shown in Section 3.4.

3.2 Attach/Detach

Attaching is the process of creating the CLX data structures that correspond to a Picasso interface object,
such as a window, and establishing a link between the object and the dam structures. This ensures that the X
server knows about and allocates the proper resources for the object and its children. Normally, Pieasso
objects are created and attached when they are needed, and they are implicitly detached when an application
is exited. Detach methods allow Picasso objects (and their children) to be severed from the X server once they
are initialized which means that Picasso applications can be initialized, detached, and dumped to disk for later
use. Upon loading, these images require the Picasso objects to be attached, and the application is ready to run.

Using attach/detach resulted in substantial savings in startup time because the creation and initizli7ztion
of Picasso objects is quite slow. This slowness is due to the large number of slots that need to be initialized
for some objects, the large number of"call-next-method" calls to support inheritance for Picasso objects, and

24

the naive use of CLOS by inexperienced programmers. Because the top-level Picasso tool has all of the other
Picasso objects in an application as descendants, it is possible to perform attaches or detaches with one top-
level method call.

3.3 CLOS method dispatch compilation

The final vendor independent optimization that we investigated was compilation of CLOS method
dispatching. When a generic function is invoked for the first time or after a new method is defined, method
dispatch code is created and compiled. This compilation requires the compiler to be present in the image,
makes loading of files with many method definitions slow, and causes Ixx)r perfonnance for the first call to a
generic function. Both Lucid CL and Allegro CL provide facilities to compile the dispatch code from a
running application into a file so that it can be loaded at startup the next time that application is run.

3.4 Optimization performance tests

The results of applying the optimizations described above alone and in combination to both Allegro CL
and Lucid CL are shown in Tables 5 and 6, respectively.

Optimization

No Optimizations

Time (% of unoptimized)

Load Execute

Disk Size
(KB)

Execute Size
(KB)

158 (100) 171 (100) 11602 24132

Profiling/Declarations 159 (101) 146 (85) 11570 24102

Attach/Detach 82 (52) 135 (79) 14026 24720

Method Compilation 153 (97) 153 (89) 11610 24028

Method + Attach 86 (54) 130 (76) 14034 24720

All 3 Combined 92 (58) 127 (74) 14242 24571

Table 5: Effect of Vendor Independent Optimizations on Allegro CL Application Performance

Optimization

No Optimizations
i

Profiling/Declarations

Time (% of unoptimized)

Load

136 (I00)
137 (101)

Execute

157 (100)

143 (91)

Disk Size
(KB)

14648

14520

Execute Size
(Ka)

26340

25956

Attach/Detach 74 (54) 126 (80) 16888 28324

Method Compilation 133 (98) 136 (87) 14714 25060

Method + Attach 81 (60) 116 (74) 16954 28324

All 3 Combined 83 (61) 129 (82) 16696 28260

Table 6: Effect of Vendor Independent Optimizations on Lucid CL Application Performance

As discussed above, we expected only a small performance improvement from the use of type
declarations. Most sequences in Picasso are lists, and the few arrays we use are of variable size, so the
sequence declarations provide no benefit. The ffixnum declarations do help, but many functions where such
declarations would have the greatest effect, such as geometry managers, use ratios or floats. We made the
recommended declarations when possible, erring on the side of canfion to avoid the introduction of new bugs.
In general, type declarations resulted in a 15 to 25% reduction in size in the compiled code for functions that
had a large number of declarations. Averaged across all of Picasso, however, the space reduction was small.
The effect on execution time was also small. Elapsed time was reduced by 10 to 15%.

Attach/detach provided tremendous improvements in load time because most of the slow initialization
of Pieasso objects is precomputed. Much of the load time is due to disk I/O. The effect is especially dramatic

25

for CIMTOOL because the facility database is loaded when the program is executed. Using attach/detach
eliminates data loading. Attach/detach allows a user to stop a Picasso application in progress and restart it at
a later dme. When using Lucid Common Lisp, it is a good idea to garbage collect dynamic space before doing
a dump, because the image dump process places all tenured objects into static space.

The effect of loading the compiled dispatch code upon startup is small. The extra overhead of loading the
binary containing the compiled dispatch code is repaid by slightly faster initialization and execution, except
when used with attach/detach, where there is not enough initialization performed to recover the cost.

4. Vendor Specific Optimizations
This section describes the tools provided by Franz and Lucid to productize CL applications.

4.1 Allegro Common Lisp

Allegro Presto [FrI9 lb] allows a Lisp image to be built that contains only the functions necessary for an
application with the option of loading in other functions if needed. It does this dynamic loading by extending
the concept of autoloading, which allows an entire compiled file to be loaded if one of its functions is called.
This approach allows individual functions to be loaded as needed.

Allegro Presto allows a compiled binary to be libfasl loaded by creating a stub function in the image for
each funcdon in the compiled file. The code vectors and other information, such as argument lists, are loaded
from the files on disk only when those functions are called. Thus, the compiled files serve as fibraries of
functions that can be loaded if and when they are needed. Consequently, it is possible to create a small Lisp
system that has the standard CL functions libfasl loaded and build your appfication on this foundation.

Once an image is built with Allegro Presto, libfasl loaded binary files cannot by moved or modified, since
the stubs refer to the code vectors by position within an absolute filename. Allowing these files to be refer-
enced by relative pathname is necessary for delivering applications and it is reportedly under development.

Allegro Presto also allows you to specify the functions that will always be needed in an application and
to place them in text space. A process similar to performance monitoring is used to record the functions that
are loaded from stubs while the user exercises the application. A new Lisp image can then be built that
contains these functions in text space. Placing the required functions in text space helps to improve locality
of reference and allows code to be shared by multiple running images.

The results of applying Allegro Presto alone and in combination with some vendor independent
opfimizations to CIMTOOL are shown in Table 7. The "All Optimizafions" case is a libfasl loaded image with
code in text space, attach/detach, method compilation, and type declarations. Loading functions dynamically,
done with libfasl and code in text space, reduces the memory required at the expense of longer load time. The
disk size for these images is small because we dynamically load the 7 MB Lisp bundle file that contains the
compiled code for the standard CL functions and optional packages.

Optimization

No optimizations

Time (% of unoptimized)

Load

158 (100)

Execute

171 (100)

Disk Size
(KB)
11602

Execute Size
(KB)

24132

Libfasl 162 (103) 154 (90) 6483 20547

Code in text space 186 (118) 147 (86) 8681 19225

Libfasl + Text + Attach 76 (48) ~ 123 (72) 11289 19440 i
I

All Optimizations 77 (49) I 126 (74) 11434 19230

Table 7: Effect of Allegro Presto on Common Lisp Application Performance

Many Lisp images must be created when using Allegro Presto. Starting from scratch, placing code in text
space requires three images to be built: one in which to compile your application, the second to make a fibfasl

26

image of your application to determine which functions are loaded, and the third to place those functions in
text space. Allegro Presto is also of limited use during application development, since it requires rebuilding
the image when any of the libfasl loaded binaries change. The interface to Allegro Presto in Allegro CL 4.0.1
requires the user to be involved with the low level details of how images are built. The interface is slightly
improved in Allegro CL 4.1.

4.2 Lucid Common Lisp

The Lucid Delivery Toolkit [LuI91] includes the Backtrace Logging Facility and the Performance
Monitor. In addition, it includes the code Reorganizer and Treeshaker. We used the Beta version of the
Treeshaker provided with Lucid CL 4.0.1+.

The Reorganizer rearranges the memory space of a Lucid CL appfication image to reduce disk paging.
If items that are used together are located near each other, locality of reference is increased and paging is
reduced. The Reorganizer operates like a profiler in that monitoring code is added to the image that records
which functions and data items are accessed during execution. You can then dump a fresh image of your
application using the data produced by the Reorganizer.

The Treeshaker removes unused functions and other data (e.g., data types and printing formats) from an
application to reduce the image size. Unlike Allegro Presto, items that are removed from an image are no
longer available, so the Treeshaker is really creating a subset of Lucid Common Lisp that is sufficient to
execute the application. The Treeshaker is not intended to be used on applications that use the compiler while
running because including the compiler and all code it needs severely limits the amount of code and data that
can be removed from the image.

The Reorganizer requires a lot of memory to run. It requires roughly 3 times the amount used when
running the application normally. In addition, the image runs very slowly due to the code that is tracking data
and code references. The results of applying the Reorganizer alone and in combination with the vendor
independent optimizations to CIMTOOL are shown in Table 8. As promised, the Reorganized image is
slightly larger and about 18% faster. The "All OptimiTadons" image includes applying the Reorganizer with
attach/detach, method compilation and type declarations.

Optimization

No Optimizations

Reorganizer

Reorg. + Attach

All Optimizations

Time (% of unoptimized)

Load

136 (100)

132 (97)

64 (47)
68 60)

Execute

157 (100)

128 (82)
137 (87)

121 (77)

Disk Size
(KB)

14648

14872

18048

17856

Execute Size
(KB)

26340

24420

27428

27364

Table 8: Effect of Lucid Delivery Toolkit on Common Lisp Application Performance

The Treeshaker requires even more memory to run - closer to 4 times the application's normal usage. We
tried to use Treeshaker even though Picasso does use the compiler in certain sit~jations. Unfortunately, the
Beta version of the Treeshaker was not able to handle the dynamic generation and loading of code performed
by Pieasso. The Lucid support staff was helpfid in our getting Treeshaker to run on small Lisp test cases, but
we never managed to get it to run on a Picasso image, even with a simpler Picasso application or no
appfication at all. When Treeshaker is officially released, it can be used to reduce Lucid CL image sizes.
However, in our experience it will have a minimal effect on execution time unless you are running on a
severely memory-limited system.

5. D i s c u s s i o n

This section discusses the overall effect of the optimizations and the tradeoff between the effort needed
and the benefit gained.

27

Using a combination of Lucid Reorganizer, attach/detach, method compilation and type declarations on
the onginal CIMTOOL application, we realized a 50% reduction in load time and a 23% reduction in
execution time at the expense of a 22% increase in disk image size and a 4% increase in run-time image size.

The best results with Allegro Common Lisp came from using a combination of dynamic loading, placing
code in text space and attach/detach on the original application. This resulted in a 52% reduction in load dine
and a 28% reduction in execution time while also providing a 3% decrease in disk image size and a 19%
decrease in run-time image size.

Looldng over the effects of the optimizations, it is clear that attach/detach is the big winner by providing
a 20% execution time reduction and a 50% reduction in load time. The load time improvement is not
surprising, because attach/detach allows most inifialiTadon to be done before the image is made. The
increased performance during execution occurs because some initialization is done when a Picasso object is
first displayed, and attach/detach reduces or eliminates this time.

The other opdmizations produced 15% or less reductions in elapsed execution time, although the
Reorganizer did a bit better. Unfortunately, many of the optimizations conflict, that is, when two or more are
combined, performance is often worse than the best of the included opfimizafions. This result means that we
might be able do a few percent better than our best for Lucid eL by not using method compilation. We
certainly do not want to try every combination to see which is best, but the given results provide some ideas
as to what might work well together.

Attach/detach was not difficult to implement because much of Picasso was designed with the feature in
mind. Although the exact mechanism does not translate to other applications, the idea of doing as much
computation as possible in advance can be useful.

CLOS method compilation is easy to apply to an application, unfortunately it tends to cause worse
performance when combined with other optimizations. The overhead of loading the compiled dispatch code
must be offset by enough initialization and execution to avoid a net loss. Given the utility of attach/detach,
which removes most of the initialization, it does not seem appropriate to use method compilation.

Allegro Presto provided substantial reductions in the image size on disk, given that the bundle file needs
to be present on disk anyway. For a small increase in load time we get a 10 to 15% reduction in elapsed
execution time. It took considerable effort and understanding to produce Lisp images using all the features of
Allegro Presto, and there are limitations that make it less useful during development. Nevertheless, it
produced good results.

The Lucid Reorganizer provided a reduction in execution speed at the expense of a slight increase in disk
image size. Creating the Reorganizer data is slow but not very complicated. And, using the Reorganizer seems
to produce few conflicts with the other optimizations. When the Treeshaker is available it should help to
reduce load time and disk image size as well, although permanently removing code from an image can cause
problems.

6. Conclusions

In the end, the best improvements came from modifying and timing our code. It is good to see major
Common Lisp vendors addressing the performance and resource problems of Lisp, and their tools do provide
benefit. As expected, these general optimiTa!ion tools are not a substitute for careful design, good coding, and
a bit of after-the-fact tuning.

The Franz and Lucid products both provide excellent development environments. In comparison, each
product has strengths. The Allegro dynamic loading of functions facility (Presto) does a good job of reducing
image sizes. The Lucid compiler provides considerable help in detailing which declarations will best improve
performance. The bottom line is that for the versions we tested, Lucid is better for development and Allegro
is better for deployment. However, the differences between these systems are insignificant compared to the
differences between CL and other programming languages.

28

The downside of this experiment was the effort required. Man-months of extra work to tune the
performance of an application is excessive and rarely available. Although the situation is improving, it is still
difficult to justify the use of Common Lisp for the development of a large application that needs to be
delivered to users. In our case, the performance and space gains were not sufficient to justify continuing the
development of Picasso in Lisp.

Acknowledgements
We want to thank Jon L. White and Sayuti Nishimura at Lucid Inc. and Charles Cox at Franz Inc. for

their help.

References
[BeR90] B.S. Becker and L. A. Rowe, "A Hypermedia Extension of the PICASSO Application Frame-

work", Proc. NIST Advanced Information Interfaces: Making Data Accessible 1991, June 1991.

[FrI9 la] Franz Incorporated, Allegro Common Lisp User Guide Release 4.0, Berkeley, CA, January 1991.

[FrI91b] Franz Incorporated,"Technical Memorandum #14: Allegro Presto", Berkeley, CA, January 1991.

[Gab91] R.P. Gabriel, "Lisp: Good News, Bad News, How to Win Big", AI Expert, June 1991, pp. 31-39.

[Kee88] S.E. Keene, Object-Oriented Programming in Common Lisp, Addison-Wesley, Reading, MA,
1988.

[KoR91] J.A. Konstan, L. A. Rowe, "Developing a GUIDE Using Object-Oriented Programming", OOP-
SLA '91.

[LaR91] D.K. Layer and C. Richardson, "Lisp Systems in the 1990s", Communications ACM, Vol. 34,
No. 9, September 1991, pp. 48-57.

[LttI90] Lucid Incorporated, Sun Common Lisp Version 4.0 User's Guide, Second Ed., Menlo Park, CA.
September 1990.

[LuI91] Lucid Incorporated, Sun Common Lisp Version 4.ft. The Delivery Toolkit (Beta Draft), Menlo
Park, CA, March 1991.

[RKS91] L. Rowe, J. Konstan, B. Smith, S. Seitz and C. Liu, "The PICASSO Application Framework",
UIST '91.

[Sch91] R.W. Scheitter, et al., CLX - Common LISP X Interface, Release 5, August 1991.

[ScR92a] P.K. Schank and L. A. Rowe, "An Introduction to Semiconductor Manufacturing and Markets",
(ERL Report No. UCB/ERL M92/35), Berkeley, CA: University of California, Electrical Engi-
neering and Computer Sciences.

[ScR92b] P. K. Schank and L. A. Rowe, "Navigation and Learning in a Multimedia Course on Semicon-
ductor Manufacturing", (ERL Report No. UCB/ERL M924r36), Berkeley, CA: University of Cal-
ifornia, Electrical Engineering and Computer Sciences.

[SmR92] B.C. Smith, L. A. Rowe,"An Applieation-Specilic Ad Hoc Query Interface", I I~E Transactions
on Semiconductor Manuf., Vol. 5, No. 4, November 1992, pp. 281-289.

[Ste90] G.L. Steele Jr., Common Lisp, The Language, Second Ed., Digital Press, 1990.

[VoK89] K. Voros and P. K. Ko, "Evolution of the Microfabrication Facility at Berkeley", Electronics
Research Lab. Memorandum M89/109, Sept. 1989

29

