
Bungee Jumping off the Ivory_ Tower:
Payoffs and perils when fledgling computer professionals are imprinted on Lisp

John Hodgkinson
Gensym Corporation

125 Cambridge Park Dr
Cambridge MA 02140

(617) 547-2500
jh@gensym.com

Abstract
From the viewpoint of at least one corporate consumer of computer education,
Lisp-based training confers many professional advantages, even if the student never
goes on to use Lisp in real life. Among these advantages are a grasp of computer
science fundamentals that comes from simply knowing the Lisp language (Whorf
was right, in this domain at least) and good software engineering habits
(incremental development, abstraction, modularity, object-orientation). These
habits are widely believed to be advantages, but Lisp is not widely seen as helping
students acquire them. This paper will corroborate the connection between Lisp-
based training and these good habits. On the other hand, some of these habits may
not be good at all (this is one reading of Gabriel's "worse is better" theory). This
paper will argue that Lisp-based training is more flexible than training based on
popular imperative languages at discouraging the bad in these habits. Then this
paper will describe some true drawbacks of Lisp-based training. These drawbacks
include stylistic jingoism, excessive delegation of performance issues to the Lisp
implementor or to the machine, superstitious avoidance of the more complex (albeit
more casually implemented) Lisp facilities, stubborn reluctance to distinguish
between compilation, runtime, and delivery environments, and a tendency to make
use of Lisp's extensibility to re-invent the wheel merely because the tread size is not
quite right. Ironically, Lisp itself contains the cure for the diseases it spreads. This
paper concludes by offering, from real-world experience, some suggestions for
modification, not abandonment, of Lisp-based training.

Why teach computer fundamentals using an arcane, ancient language that has found limited use in

the world beyond the ivory tower? Why not use a language that is found everywhere, or build a

special pedagogical language from scratch? Arguments about the best way to conduct computer
education can go on without end, but unfortunately, Darwin always has the last word. If the Lisp

language is too fascinating for its own good, then using it to train computer professionals is ill-

conceived, as ill-conceived as the topheavy tail feathers that make a bird of paradise tip over as

soon as it displays them. If, on the other hand, the marketplace rewards elegance, universality,
and flexibility, then Lisp can substantially augment a student's fitness to survive when jumping off

the ivory tower.

Gensym Corporation is a growing, profitable software company that produces G2, a real-time
expert system shell. G2 is installed at over 2000 sites around the world, often in applications

where performance and reliability are crucial. G2 runs on a wide range of workstation and PC
platforms (including Sun, HP, IBM RS6000, Windows, and Alpha), with more ports in progress.

To maintain and extend G2 and its satellite products, Gensym requires the best developers and
engineers. To that end, we invariably look for computer professionals with a background in Lisp.

30

We do not look for a Lisp background simply because some of G2's source code is written in this

language. Since we translate our Lisp sources to C for consistent behavior across platforms, many

of our developers will not end up working directly with the Lisp sources. As well, the Lisp we

use at runtime is restricted to a small subset of Common Lisp functionality. We have compelling

performance reasons not to use generic arithmetic or closures at runtime, for example. In order to

provide real-time response, we have rewritten many Lisp facilities that are known to create garbage

in memory, including cons itself. For portability's sake, we have rewritten other Lisp facilities

whose behavior is not yet standardized, such as loop (we need the ability to define new iteration

paths) and a subset of the Common Lisp Object System. Finally, we confine our Lisp calls to

those that translate to portable, reliable C code (we have found the notion that C is intrinsically

portable or reliable to be a pernicious myth). Even with a Lisp background, therefore, new

developers will follow a steep learning curve.

Nevertheless, a Lisp background confers a broader advantage, something that might be called a

s u p e r i o r wo r l d v i e w. Granted, world views are intangible things, but "intangible" does not

imply "inconsequential." A world view can be seen as a set of habits that supply strategies for

solving problems. Both good habits and effective strategies are necessary, as we will see.

It is hard to mention world view and language in the same breath without recalling the Whorfian

hypothesis. Roughly speaking, this is the notion that some thoughts are easier to think in some

languages than in others. This hypothesis has been largely discredited for natural languages. One

disconfirrning experiment, for example, shows that there appear to be language-independent ways

of making color judgments. But computer languages are another story. Programs are easier to

implement in some languages than in others. The most trivial confirmation is the fact that code

disassemblers make life easier.

Computer education can take advantage of this m o d i f i e d W h o r f i a n h y p o t h e s i s . A major part

of educating computer novices is teaching them that "everything you know is wrong." Intuitive

algorithms (like bubble sort) are seldom the fastest. Time and space are not independent entities,

but co-exist with unavoidable tradeoffs (you can't make your program as fast as possible and then

go on to make it as small as possible). Some problems are inherently serial, and can' t benefit from

any parallel strategy. True randomness is hard to find. A symbol is not merely a name, but a

unique name, guaranteed in various ways not to clash with other names that may look identical.

And so on.

How does Lisp prevail here? Lisp is a language that is fundamentally indifferent to machine

model. This indifference goes deep: Lisp is oblivious to whether the machine is a specific piece of

hardware, an architecture (like RISC), a paradigm (like the von Neumann model), or a

mathematical abstraction (like a Turing machine). The semantics of a given Lisp construct span

31

from low level to high level (a s e t q is at first glance like a move instruction, but s e tqs take place

within a special binding environment, something outside most instruction sets). A blunt way of

putting things is that, having learned a language in which everything you know is already wrong,
there is no additional confusion in learning that your common sense about algorithms is also

wrong. A more accurate way of saying this is that Lisp permits students to reason equally well at

any d i s tance f r o m the mach ine . Destructive operations like (s e r f car) and nconc may be

used when dealing with pointer manipulation, whereas copy-and-drop operations like append may

be used when memory is not the focus. Awareness of the various distances from the machine can

also help when evaluating optimizations. For instance, an optimization like cdr-coding is useless

in G2, which must manipulate cons structures destructively. In contrast to Lisp, C and C++ have

specific memory and evaluation models. It is happy coincidence that these models cover many

popular pieces of hardware, but how long will this remain so? To paraphrase Tsiolkovsky, the von

Neumann bottleneck may be the cradle of computation, but you can't live in the cradle forever.

One world-view strategy provided by Lisp training is abstraction. The benefits of functional

abstraction are well known, among them lexical scope, code reuse, and the ability to parametrize

program behavior. And, as the size of a program increases, so does the need for textual

abstraction. Through its macro facility, Lisp permits t rue tex tua l abs t r ac t ion , unlike the mere

token-manipulation provided by the C preprocessor. True textual abstraction lets us perceive

computationally interesting events - - evaluation, binding, value return, and so on - - in a different

arrangement from the one mandated by core language syntax. We can focus on a different

ordering, or on a salient subset of events. Inability to focus in this way makes program

maintenance and extension more difficult, and in some cases even impossible (try adding a new

modify macro to += and friends in C or C++).

Yet the risks of abstraction are becoming known, too, as [Gabriel, 1992] has pointed out. A

poorly designed but pervasive abstraction can leverage into big trouble if it has to be modified, and

if the abstraction was not designed by an expert, eventual modification is all too likely. An

abstraction that fails to co-design data and control flow is fragile and limited, although such

abstractions are in the overwhelming majority. Slot-based abstractions encourage programmers to

conflate the instantaneous state of an object with its history. The more opaque an abstraction's

interface, the more its clients are reduced to slow methods (like empirical tests) to discover how to

use it in boundary cases. Yet the more transparent the interface, the more its clients are tempted to

dispense with the abstraction altogether. This dialectic often tunas programs into a mixture of

abstraction sites and unabstracted code, and can even sometimes make them harder to understand

than before abstraction set in.

But the superior world view furnished by Lisp is not simply an unstructured set of glamorous

problem-solving strategies like abstraction. It is the habit of judicious choice among them. A

blindly applied abstraction can do as much damage as a missing one. Some of the wrong reasons

32

for using an abstraction are mistrust of its clients, misplaced desire for elegance, and fastidiousness

about textually repeated code. These reasons are language-neutral, but their remedy depends on

having a flexible language like Lisp. The best way to learn how to abstract is to write a bad

abstraction and suffer the slings and arrows of outraged clients. Lisp gives this vital process a

rapid turnaround time. Code may be inlined or placed out of line, sites of the abstracfion's use may

be examined, type declarations heeded more or less strictly, and (Schemers, please look the other

way for a moment) variables may be selectively captured or shadowed. Even experts can benefit
from this ease o f turnaround, since it permits abstractions to be improved incrementally or

radically. Installing a good habit is painful, exercising a good habit should be guiltless pleasure - -

Pavlov wields a two-edged sword.

"Worse is better" may be irrevocably loose in the world, but the world contains two types of

people: those who like it and those who don't. Lisp users seem to have the unanalyzed notion that

"the right thing" will somehow triumph by virtue alone. Alas, "the right thing" often needs help.

Most developers find themselves responsible for a l iv in g program, one they did not completely
write themselves, and one on whose behavior many users depend. There is always a tension

between tearing out large, ugly parts of such a program and maintaining its behavior. One

compromise is the gradual re-writing of parts of the program to conform to current practice. We

have found that Lisp facilitates this task. The same flexibility that eases abstraction permits us to

erect a scaffold around offending sections of the program, and make them conditional on a wide

variety of contexts. Some techniques we use to achieve this include runtime flags, optional

function arguments, reader features, and package discipline. These last two techniques are

especially germane to this paper.

Since we maintain a single set of sources for all Lisp environments, we admit that reader features

are often a necessary evil. However, our use of a Lisp-to-C translator, itself a Lisp program,

requires that macroexpanders work across different Lisp implementations as much as is practical.

In order to intern symbols in their proper package at macroexpansion time rather than read time, we

have used Lisp's macro facility to circumvent the Lisp reader, interning symbols only when their

package is known to exist, producing no-op code in other Lisp implementations.

We have used package discipline during our transition from CLtL Common Lisp to ANSI standard

Common Lisp. It is worth going into some detail here to illustrate the concept of n e c e s s a r y hair,

a middle ground between abstraction and the refusal to abstract. This concept alludes to the fact

that some tasks are inherently special-case, performance-intensive, or refractory of abstraction.
Implementing some data structures (for example, buffers) is neither elegant nor abstract. Worse, it

seems that such implementations must be written over and over, even in object-oriented systems.

Abstraction may come down the road, but the necessary first step, for a commercial firm at least, is

to get the program to perform well enough to justify its existence.

33

Our source code is read into a single package, call it g2. In order to access core Lisp symbols, the

g2 package stm-ted out by directly using the l i s p package (see Figure 1). But we wished to

upgrade to ANSI Common Lisp, which specifies that core Lisp symbols should reside in the el
package instead of in the l i s p package. A number of other considerations hold for our use of core

Lisp symbols. First, we only use a subset of Common Lisp symbols, and we would like to guard
against inadvertent use of any Lisp symbol outside our canon. (For example, we do not use the

Lisp pathname or file I/O facilities because they create garbage.) Further, we must shadow some
of the Common Lisp symbols that we do use, because of mistakes in an implementation, or

because a straightforward C translation is not always reliable. (We have found, for instance, that
the C boolean-or construct I I is not implemented correctly on all platforms.) And we occasionally

need to bypass the shadowing on a symbol; that is, we need to refer directly to a core Lisp symbol
(say for performance reasons). Because of these considerations, our sources sometimes contain

explicitly package-qualified symbols in the core Lisp package, whatever its name may be. One

way for us to upgrade to ANSI, therefore, would be a simple textual replacement of every explicit
lisp package-qualifier with a cl qualifier.

(d}Lm foo ...) (car x) I

l

/
(shadow 'lis :def)un (use- cka e :lis)

" T
lisp:defun

lisp:cons

LISP

lisp~

(defun foo ...)

(defmacro defun . . .

• (g2-1isp: :defuLn -.))

G2

[no export] [
(use-package :g2-1isp)

tTT
[other exports]

G2-LISP

(use~package :cl)

t

(car x) [
(export 'el :earl

el:defun

cl:cons

C[

(or LISP)

cl : car

Figure 1. The Nai've Way. Figure 2. Necessary Hair.

34

But one of our hard-won heuristics states that a change that happens once is likely to happen again.

So, instead of "the wrong thing" - - editing the sources - - we now indirect through a package of

our own, call it g 2 - 1 i s p (see Figure 2). Depending on implementation, the g2-a.istz package uses

either the l i s p or the ca. package. The g2-1.isp package exports only those Lisp symbols that are

in our canon, minus those symbols we wish to redefine. (This replaces our use of the Common

Lisp shadow function - - to "shadow" is now to "decline to exp~ ".) Our source-code package ~,2

then uses the g2-a.isp package to access all the Lisp symbols in our canon that we don't have to

shadow, and redefines the Lisp symbols that we do have to shadow. For base cases in these

redefinitions, we use an explicit g2-a.isp package qualifier to refer to the core Lisp symbol. So

when the source code contains an unqualified symbol, it will either indirectly access the core Lisp

symbol or our redefinition, depending on our needs.

So where is "the right thing" hiding in all this hair? The Lisp reader now protects from us from

accidentally using a core Lisp symbol that is not in our canon. The heretical symbol is simply read

as a new symbol, with no connection to the core Lisp package. When the compiler subsequently

issues a warning about an undefined function or undeclared variable, we are led directly to the

scene of the crime. And we are immune from any future changes in the name of the core Lisp

package, whether from an over-solicitous vendor, or because of a coup d'6tat in a standards

committee. We therefore believe the complexity of our fix is necessary, since any simpler fix (such

as manipulation of package nicknames or large-scale source edits) fails to do everything we need.

Not only is the Lisp world view superior in conferring good software engineering habits, but it is a

superset of the world views promulgated by other, more popular but less powerful, languages.

Such w o r l d v i e w su p e r s e t t i n g makes it easier to learn other languages, even inferior ones.

Lisp is rich enough to contain the seeds of many other languages, without forcing a complete

implementation of those languages. Lisp is a paragon of incremental, interactive development.

Core Lisp syntax is uniform and simple. (Experience with peripheral, more complicated Lisp

syntax facilities, such as reader macros, backquote, and format, could help more advanced

students understand guild secrets like the multiple evaluations in UNIX and VMS command-

lines.) Lisp lacks as well the confusing variety of associativity rules offered by other languages.

All these factors allow the programmer to concentrate on the task at hand rather than the token

placement necessary to achieve the task. Lisp, translated to C, can be as universal as C, but

without its drawbacks.

F u n v e r s u s prof i t . We have to bring up the Puritan ethic here, since there is something about

Lisp users that makes them disbelieve it. To them, fun programming is useful programming, an

idea perhaps encouraged by the power of the Lisp language. Wielding Thor's hammer is generally

more pleasurable than waving around its Fisher-Price variant. But wielding to what purpose?

[Baker 1992] presents a series of ingenious definitions of Lisp special forms in Lisp itself.

Granted, a metach'cular definition of a special form is by no means a mandated implementation.

35

But, despite the healthy contempt for lawyers evinced in the paper, this kind of definition brings

casuistic disputation to new heights. Now, thanks to multiple ways of expressing the same special

form, we get to argue about, not only the meaning of boundary cases, but the meaning of core
cases. In other words, now we get to argue about the shape of the pin and the definition of

dancing, as well as the number of angels. This of course should be tempered with a lot of

appreciation for the neatness Of it all. Try doing metacircular definitions in C without writing an

enth-e compiler

[Allard & Hawkinson, 1991] note that performance must be designed into the program "from the

ground up." It is not something to veneer on later, with desultory declarations and embarrassed

inlinings. It is work, not fun, to locate performance-critical parts of the program you are
designing, and add indirections to overcome some of the known peccadilloes of Lisp. We have

extended our Lisps with many mechanisms that allow considerations of efficiency to take part in

the early stages of program development. We have suites that let us bypass generic Lisp

arithmetic, and unboxed number declarations that let us take advantage of raw C floats and integers

where possible. Since we know the layout of many tree structures beforehand, we have instituted

list accessors whose behavior is undefined when given n±l as an argument. We have introduced

an inlined funcall mechanism for use when indirectly calling a function that might as well be a C

function pointer. The necessity for these facilities may be difficult to convey to students, who

already have too much to think about. But until our new developers grok the way things must be.

we give them the ability to choose functional, en'or-checking (slower) operations in development

environments, that expand properly to inlined, en'or-oblivious (faster) operations in distribution

environments.

This brings us to another inexorable impediment to fun: the difference between interpreted and

compiled code (or, more generally, the difference between interpretation-based languages and

compilation-based languages). Although the Common Lisp Committee has done yeoman's work
in fleshing out Lisp compiler semantics (in the face of outcries from both purists and vendors), this

is an ironclad barrier. Now that we translate to C, we have had to adjust to native C debuggers.

Ironically, Lisp has given C development environments their best ideas. But it is simply not

feasible to run such development environments on every platform where we deriver. So we have
to resort to the debuggers bundled with the C compilers we use. The differences among debuggers

in various Lisp implementations are matters of ideology, and thus easily ignored. But the C

debuggers on various platforms have fundamental variances, most notably when we try to reenter

the code at different places, traverse the call stack, or refer to complex data structures.

As an aside, all debuggers we've encountered have a serious defect. They assume a universe in
which multiple processes are rare. For a real-time, distributed system this is, to put it mildly, not

the case. This might be a way for Lisp to gain an edge. UNIX and VMS environments encourage

multiply threaded programs, but as far as these environments are concerned, manipulating threads

36

profitably is a black art practiced by laconic, temperamental alchemists called system programmers.

Lisp could break up this priesthood. Debugging multiple processes is inherently interpretive, since

it is inherently asynchronous. And, while it may be too much to expect from a C debugger, the
ability to macroexpand C constructs is increasingly important as we encounter more and more

platform-specific C compiler bugs in our porting. We have implemented this ability in-house, but

integrating it with existing C debuggers looks difficult.

In order to track down particularly evasive C compiler bugs, we have had to dabble further with C

preprocessing. A rough way to characterize such bugs is that the C compiler on a given platform

sometimes seems to make local, intermittent mistakes, mistakes that don't appear on other

platforms. The best diagnosis we can make in such cases is that a certain pattern of C code is not

handled properly. These pat terns o f deceit are sometimes particularly complex sequences of

operations or particularly deeply nested constructs. Sometimes they are neither. In order to search

megabytes of translated C code for such patterns, we have had to devise C tokenizers of varying

degrees of completeness. We then arrange for the translator to produce a different sequence of C
expressions on all platforms. After all, we must maintain the "portability" of our C code. (C

provides a certain consistency across platforms, but this is a long way from true portability.)

One principle of teaching is (per Einstein) to make things "as simple as possible, but no simpler."

C seems to misread this into "as complex as you can get away with, and never less complex than

von Neumann." The notions of sequence points and implicit type conversion in C are an
illustration. From students' point of view, the compiler is allowed to rewrite their code, not in the

benign, semantics-preserving way of a Lisp compiler macro, but in a way that changes numeric
results and reorders control flow. C library functions can be enormously counter-intuitive as well.

The function ungetc () is allowed to "un-unget" characters if a buffer-clearing operation has

occm'red before the next character is re-read. Since C contains neither compiler nor dynamic

linker, constructs like include files, preprocessors, and external compilers present an additional

barrier to understanding. Since in some sense Lisp is Lisp all the way down, Lisp conceals

no such confusing interactions with the operating system. As well, Lisp macros can handle most

anomalous evaluation models. As a final coffin nail, the notion of graceful degradation is absent

from C. Common Lisp compiler safety settings can insert runtime checks that prevent mistakes
like type mismatch and array overflow, whereas the C philosophy is that novices or prototypers

deserve what they get.

In closing, our experience with fledgling Lisp programmers prompts a series of suggestions for

those who produce them.

Don't turn out any more Lisp zealots. Instead, turn out tolerant polyglots whose milk tongue is

Lisp. Zealotry causes friction, not only friction within groups which should be fighting on the
same side, but friction with the mainstream, which can then thankfully marginalize Lispers as

37

temperamental squabblers.

Don't be timid about teaching students in a language they will probably not end up using.

Pedagogical uses and commercial uses of even the same language will diverge wildly. Cross-

language expertise matters more than a slavishly exact simulation of the student's eventual tools
and surroundings.

Memory exists, memory matters, and students need to know this. Just as camping in the wild can

make students appreciate civilization, one tack might be to force students to be aware of memory

management before they can thankfully relinquish it to the garbage collector. Even ff they never

again had to manage memory by hand, this would prepare them for the real world, at the very least
for one small comer of it. They will also be in a position to evaluate new memory management

strategies. Since it lacks pointer encapsulation, C++ offers something called "heuristic garbage

collection." Who said C++ wasn't on the cutting edge? But this is a cutting edge some students

may wish to avoid.

Emphasize what Lisp is abstracting away from - - - memory models, numeric representations, file

systems, compilation targets. This has the effect of making students wise beyond their years,

decreasing the population of students who at their first job interview can discourse knowingly on

abstraction but who draw a blank when asked about performance. This emphasis also puts the

sense of"the fight thing" in its place, as an ideal to strive for and sometimes reach, rather than a

non-negotiable demand to insist on in the face of collapsing deadlines or revenues.

Point out that no language can abstract away from every dull detail. Lisp is not a magic filter that

transforms every dingy problem into an interesting testbed for elegance and abstraction. Some
problems cannot be solved elegantly and abstractly. Worse, some problems whose first-pass

solution is elegant will later reveal complexities that require dismantling the elegance. Even at its

best, abstraction just moves complexity to a different part of problem space. Keep in mind,

though, that when it is time to sweep something under the rug, Lisp's flexibility provides a better
broom.

Inculcate a respect for existing standards, and a skepticism for new standards. At the very least,

"new standard" is a contradiction in terms (think about it). Even if programmers have to pick and

chose among fragments, use of exisiing standards will position them fairly close to any eventual

standard. Then the nonstop brawl about emerging standards is relegated to its proper place, a
game with its components of luck and skill. We love a good fight as well as the next guy, but we

have to hedge our bets. We have had to pick and choose fragments of standards for streams, error

handling, array representation, object orientation, and graphics, among others. Existing standards

should have the respect due them, no more. Remember that handwaving is reprehensible wherever

it occurs, even in a standard. A case in point is the fact that the X model believes in infinite

38

memory and asynchronous error reporting. These are contradictions in terms, too.

Demonstrate the ease with which Lisp implements new paradigms (parallel processing, object
orientation, metacircularity, distributed computing, realtime constraints). Students could thereby

acquire immunity both to messianic claims of new languages (like Dylan, the last OO language
you'll ever need, once agreement comes on how to do iteration, macros, and arithmetic) and

bombastic claims of old (C++, wearer of the emperor's new clothes, the emperor being C).

Lisp is not a new Latin. Latin was the language of a corrupt people who conquered the world and
then lost it. Lisp is not a new Esperanto. Esperanto was an idealistic attempt at a universal
language that failed by refusing to face reality. Some might say that Lisp's best hope is to become
a new French, a language spoken by snobs with a side interest in diplomacy. My own hope is that

Lisp becomes a new English, spoken everywhere (though not necessarily as a first language), and
powerful enough to express everything from VCR instruction manuals to Shakespeare.

References
Allard, James R., and Lowell B. Hawkinson, "Real-Time Programrning in Common Lisp,"

Communications of the ACM, September 1991, vol. 34, no. 9.

Apple Computer Eastern Research and Technology, Dylan: An Object-Oriented Dynamic
Language, Apple Computer, Cambridge, Ma., 1992.

Backus; John, "Can Programming Be Liberated from the von Neumann Style?," ACM Turing
Award Lectures 1966-1985, ACM Press, New York, N.Y., 1987.

Baker, Henry G., "Metacircular Semantics for Common Lisp Special Forms," Lisp Pointers,
Oct.-Dec. 1992, vol. V, no. 4.

Crystal, David, The Cambridge Encyclopedia of Language. Cambridge University Press,
Cambridge, U.K., 1987.

Gabriel, Richard P., "Worse is Better," Proceedings of the 1992 Lisp Users and Vendors
Conference, San Diego, Ca., 1992.

Gensym Corporation, G2 3.0 Reference Manual, Cambridge, Massachusetts, 1992.

Harbison, Samuel P., and Guy L. Steele Jr., The C LanGuage, 3rd edition, Prentice Hall,
Englewood Cliffs, N.J., 1991.

Steele, Guy L., Jr., Common Lisp: The Language, 2nd Edition, Digital Press, Bedford, Ma.,
1990.

Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley Publishing, Reading,
Ma., 1987.

Wessells, Michael G., Cognitive Psychology, Harper-and Row, New York, N.Y., 1982.

Whorf, Benjamin Lee, Language. Thought. and Reality, M.I.T. Press, Cambridge Ma., 1956.

39

