
Adventures in Multiprocessing:
Controlling Multiple Windows within a Single Application

Shelly Evans
UNISYS Corporation

Systems Technology Operations
San Diego, CA

Abstract

This paper presents the multiprocessing architecture used to control the multiple win-
dow environment of a LISP-based Computer Aided Design tool. The multiprocessing
control is implemented using the Lucid Common LISP Multitasking Facility. This paper
will discuss the system motivation and goals, system architecture, and system develop-
ment, including problems encountered, performance enhancements made, and areas
for further improvement. This illustrates how using high-level, explicit LISP multitasking
control within the LISP development environment can simplify the programmer's task.

System Description

The GLL (Geometric Layout Language) System is a CAD tool used to generate physi-
cal layout of integrated circuit designs. The layout is described using the Geometric
Layout Language, and the GLL System is used to display the generated layout, gener-
ate GLL code, check design rules, create output files for verification and fabrication,
etc. The GLL System is implemented (mostly) using Common Lisp. The Geometric
Layout Language and the GLL System Command Language are also LISP-based.
The GLL System is an internal tool presently at use in UNISYS. It has approximately
twenty active users, typically layout designers and design engineers.

The GLL System has two input areas: a Command Menu and a LISP Input/Transcript
pad (see Fig. 1). Most commands can be entered either through the Menu or by using
the appropriate GLL Command Language command. In addition, large or small chunks
of GLL code are often input through the LISP pad in order to incrementally update the
generator.

In its earliest incarnations, the GLL System was implemented on Apollo workstations
and the Menu interface used Apollo native graphics calls. Users had to indicate with a
command when the input mode was to be switched from the Command Menu to the
LISP input pad, and vice-versa. In order to support the Sun and HP workstation plat-
forms, the Menu was rewritten using (foreign function interfaces to) Motif/Xt/X libraries.
At this time, the top level looping strategy was alsoreconsidered.

5

............................. ~ rim m iN ~ imm u m m i m

: : m

m . i ~ I i l I i i m mill m

MOT85 BUFF_GLL_I

_T.ezt._I PoPt I

_6rJJLI HPT I
m ~ To I
m Pt I Vt:IR I
I

, _ l~_J . U ~ _ I
I ~ , , ~ I " " ~ " m ~ m , I
m m ~ ~ . , J m m - -
m --.,~ m~-- . .mJ

.P.lnbbJ _Ek¢_l
n _I~,LI ~ . _ 1
I

_ I J L I __OuLI
" . . l ~ J ,.mmtJ

JtKIJ_J _]] ¢ ~
_Bmt, J _5~_J

GLL_PLOTIBB completed,

t t ~ p 2 : p i d 2595

~iaking p r o t o t y p e GLL...239

GLL_219 ^

of c e l ! EONROU

DD D
m m m m m

GLL>

Fig. 1: The GLL System has two InputAreas

The main objective was to allow the user to freely interleave commands in the Menu
and LISP input pad areas, without having to indicate the area of input to the system.
Other major goals were to maintain good response time (< 10% downgrade from the
previous system), maintain data integrity, be transparent to the user, and be error free.
A further goal was extensibility, as in the future an integrated editor will be added to the
system.

Multiprocessina Architecture

W e chose to use a m u l t i p r o c e s s i n g a rch i tec tu re to cont ro l the mul t ip le w i n d o w e n v i r o n -
men t within the GLL system (see Fig. 2). In this model, one process controls each win-
dow area, and one process is dedicated to data processing.

6

Menu
Menu Process

DB
Process

LISP

Input Pad
Input

Fig. 2: Processes and Input Paths

This architecture was chosen because it is a natural partition of the multiple window
problem, and we believed it could satisfy all of our goals as well as provide extensibility.
This model allows the system to receive in-order input, to queue up work, and also to
interrupt processing when needed. For example, a user may interrupt a long graphics
plot by pressing a STOP button.

Other approaches were considered. A CLIM implementation on the Apollo platform
was not available to us. This problem aside, a Command Menu/Interactor application
frame could be implemented in CLIM. The only functionality missing would be inter-
ruptability (which could be accomplished with an OS interrupt), and possibly extensibil-
ity to use an integrated editor. We intend to revisit this option once the Apollo platform
is no longer supported.

Im_olementetion Options

Having chosen the multiprocessing architecture model, there were several options for
implementation. We chose to use the Lucid Common LISP Multitasking Facility be-
cause it provides good high-level support for multiprocessing within a single LISP envi-
ronment. 1 The Multitasking Facility provides operators for creating, killing, suspending,
and interrupting processes, as well as inspecting process state, etc. It has a built-in
scheduler which cycles between processes using a prioritized time-slice algorithm.
The scheduler automatically saves and restores each process' state when stopping and
restarting it. The Multitasking Facility also provides locking operators. The Multitasking
Facility offers a lot of control over processes at a high level, which made the imple-
mentation of the multiprocessing control both easy and natural.

1. To the operating system, the LISP environment is a single process. The 'processes' referred to herein are
wholly created and nmnaged by the Multitasking Facility, and unknown to the operating system.

Other options considered were implementing our own multiprocessing system in LISP,
from a simple model such as input polling to a more full-fledged implementation such
as the Multitasking Facility. We considered the simple models too restrictive and the
more advanced ones too time-consuming to implement, especially as the needed func-
tionality was already available. We also could have implemented multiprocessing con-
trol using C operators such as fork and exec. This approach would have been unnatural
within the context of the LISP system--for example, it would not allow sharing of the
address space, meaning all communication would have to be done using message-
passing. Also, the C operators lack the clarity and high-level control features of the
Multitasking Facility operators.

System Architecture

We chose to implement three processes within the GLL system:

Menu ~ X s e r v e r ~ f Menu

LISP
Transcript

Processing
Queue I I

' DB
Process

Fig. 3: GLL Mult iprocess ing Architecture

The Database (DB) Process does all the GLL database Processing. It processes forms
that have been inserted by the other two processes into the Processing Queue, in a
first in, first out manner.

The Lisp Input (LI) Process listens to the LISP input pad and places the forms that it
reads into the Processing Queue.

The Menu Process listens to the Menu via the X server Event Queue, and places forms
that need to be processed into the GLL Processing Queue. It also handles sending any
results back to the Menu via X server calls. 2

2. The X server is an application which runs on the local workstation and acts as an intermediary between the
user programs (e.g. the GLL client) and the resources of the workstation, in order to perform low-level I/O.

8

Architecture Description

The multiprocessing architecture is now described in more detail.

The Processina Queue

The Processing Queue is a LISP structure which contains a list of forms to be pro-
cessed (the queue), and a count of the number of forms currently in the queue. The
queue is accessed in a first in, first out manner.

The Processing Queue structure also contains a lock. The lock is a named slot which
is nil, if no-one currently holds the lock, or else equal to the process id of the process
which currently holds the lock. To ensure integrity, any process which wants to access
or change the Processing Queue must first acquire the lock, using the Multitasking Fa-
cility's locking operators. These operators ensure that only one process may hold the
lock at any time. All others are locked out.

The Database (DB) Process

All accesses to the GLL database must be performed through the DB Process.

,_..~rocW. Ad2eue~ " , I

I'k G
Get J Process
Form G Form

Fig. 4: DB Process Top Loop

The DB Process' top loop executes a process-wait on the condition that the Processing
Queue's count is not O. When this condition is met, the DB Process tries to acquire the
Processing Queue lock, by executing the process-lock operator, such that the DB Pro-
cess will wait if another process holds the lock. When the lock is acquired, the DB Pro-
cess pops the top form from the Queue, deactivates the LISP Input Process, and re-
leases the lock. The LISP Input Process is deactivated to avoid competition in case
the DB Process needs to request input from the LISP input pad in the course of proces-
sing the form. The LISP Input Process is reactivated after the form has finished pro-
cessing. At this time, the DB Process also acquires the Queue lock again to decrement
the count. The DB Process then returns to the top of the loop, and executes a process-
wait on the Processing Queue's count not equal to O.

The LISP Input (LI) Process

The LI Process is responsible for listening to the LISP input pad, and placing forms that
it reads into the Processing Queue.

9

into WAIT k ~] Pre-Reader ~ l (read)

(listen) / q P r o c . Queue

Fig. 5: LI Process Top Loop

The LI Process' top loop does a process-wait on the condition that (listen) returns true.
The LI Process must then acquire the Processing Queue lock. Once the lock is ac-
quired, the input must again be checked through a (listen). This is because another
process may have consumed the input while the LI Process was waiting to acquire the
lock. If this (listen) returns nil, the LI Process releases the lock and waits again. Note
that the DB Process and the LI Process share the LISP input pad, and the DB Process
must be able to preempt the LI Process in order to request and receive input when nec-
essary. (See "Improvement Areas", below, for more on this subject). Note also that
when a break occurs the Condition Handler deactivates the LI Process for the same
reason.

The LI Process now has the lock and something to read. It now enters a Pre-Reader
loop. The Pre-Reader throws away garbage input, such as spaces, which may pre-
cede the form to be read. This is because if the LI Process performs a (read), and the
input is all garbage, the (read) will wait until a valid form is entered. Since the LI Pro-
cess holds the lock, this effectively hangs the system until a form is entered in the LISP
pad. The Pre-Reader seeks to avoid this by getting and throwing away characters in
the set ("space", "newline", "backspace", ")", etc.). When a ")" is encountered, the Pre--
Reader prints the same message the Lucid Interpreter prints: "Ignoring an unmatched
right parenthesis", and when a ";" is encountered, it throws away all characters up to
and including EOLN.

When the Pre-Reader is finished, either a good character has been encountered or
nothing is left, so another (listen) is done to ensure input is available. If so, then a (read)
is performed, and the form is placed in the Processing Queue. The Processing Queue
lock is released. Then the LI Process loops back to wait on (listen) again.

It was found undesirable to have the LI Process queue up input beyond one form.
When the user types ahead, he may be entering input intended as a response to some
command. For example, he may type in 'Y' in anticipation of a question from a com-
mand he has entered. For this reason, the LI Process will only accept input when the
Processing Queue length is 0, so it will wait on both the (listen) and on the Processing
Queue length = 0 at the top of the loop. This tends to give preference to input coming
from the Menu, but it does not cause a problem in practice, as users do not tend to in-
terleave queued input. (But see "LI Process Improvement Areas", below).

10

The Menu Process

The Menu Process is responsible for all communication with the Motif Menu. It was
found necessary to have a single Multitasking Facility 'process' handle all communica-
tion, both input and output, with the X server. This avoids situations in which two LISP
processes are trying to send messages to the X server at the same time, which may
generate out-of-order requests to the X server, causing hard errors.

/ / 1 call-menu r Interrupt

~ , , , , ~ , \ \ \ Maybe

/ ' WA,T \ I Get Event I . ..,,,J"~d "~,,~ YJ P'ace F°rm | "
l-'~Even<tS>QoueUe d/~"'~! D is Patch Ev" ~ Proc.'~ueue

Fig. 6: The Menu Process' top loop and call-menu Interrupt

The Menu Process' top loop waits for events which the X server has placed in the X
Event Queue by executing a process-wait on Events Queued <> 0. When an event is
there, the Menu Process executes XtAppNextEvent, to get the next event, and then
XtDispatchEvent to execute the code associated with the event.

Note: The Xt library has a top--level loop: XtAppMainLoop, which waits until there is
something in the Event Queue, then gets it and dispatches it, performing the same op-
erations as described above. We do not use this top loop because it was slowing
execution time by 50% within the Multitasking Facility context. The reason is that even
when the Menu Process was simply waiting for input using XtAppMainLoop it was taking
its full quantum of time. For example, when the DB Process was executing a form it
would get a quantum of time and then the Menu Process would get a quantum of time,
which was typically spent waiting. Therefore we broke up the loop and performed our
own wait using the Multitasking Facility's process-wait operator.

Some X events require local processing which does not need to go through the
Processing Queue. An example of this is an expose event which needs only to refresh
the Menu area.

However, most events do require Database access and must go through the
Processing Queue. The Menu Process then places such forms to be executed into the
Processing Queue.

11

When graphical output or Menu updates are needed in the course of DB processing,
the Menu Process must send the request to the X server, as noted above. In these
cases the DB Process invokes a function, call-menu, which interrupts the Menu
Process, giving it the request to perform. The DB Process then waits until the Menu
Process has completed its task, as there may be subsequent processing to do. It does
this by waiting on the values returned by the requested function when the Menu
Process has finished processing:

(defun call-menu (fcn &optional args)
. . .

(let (hold-values)
(lcl:interrupt-process *menu-process*

#'(lambda nil (lcl:with-interruptions-allowed ;; Allows pr. to be interrupted again
(setq hold-values (multiple-value-list (apply fcn args))))))

(lcl:process-wait "waiting for interrupt to complete"
#'(lambda nil hold-values))

(values-list hold-values)

After finishing the interrupt processing, the Menu Process automatically returns to what
it was doing when interrupted. It should be noted that the Menu Process requests are
made on a high level, for example by requesting a full screen plot, rather than making a
request for each low-level operator which draws a line or a box, because of the over-
head involved.

Imorovement Ideas

As GLL development continues, we would naturally like to improve upon the Multiple
Window Access implementation.

CLIM

As stated above, when the Apollo workstation platform is no longer supported, we will
look more closely at implementing this kind of window manager using CLIM, or another
high-level Graphical User Interface.

LI Process

A lot of effort goes into the coordination between the LI Process and the DB Process
regarding the "sharing" of the LISP input/transcript pad. The LI Process could perform
all of the input processing for the system and just place whatever it reads into the Pro-
cessing Queue. This would require the DB Process to search the Processing Queue
for input when needed and possibly to wait on this Queue. The DB Process would also
have to differentiate between input from the Menu and the Lisp Input processes in this
search.

12

MENU.~I~,

LI

Processing
Queue I I

Processing
Queue I I

DB
Process

Fig. 7: Two Queues feeding the DB Process

For this reason, it could be beneficial to have two queues feeding the DB Process-~one
for input from the Menu and one for input from the LISP Input Pad. When the DB Pro-
cess required input it would access (or wait on) the LI Processing Queue. Queue re-
quests could be time-stamped so that the older of the requests would be picked for DB
processing when needed and ready.

Menu Process

Whenever Database information is needed by the Menu Process, for example to dis-
play certain sub-menus, a request is placed in the Processing Queue. The results will
be sent back to the Menu Process by the DB Process in the form of an update to the
Menu. A different approach is to have Menu State Objects which represent information
displayed by the Menu. These objects would be controlled by a lock. They would be
updated by the Database Process, and could be accessed by either the Database Pro-
cess or the Menu Process.

MenuobjectsState ~ ' S U B M E N L ~ - . ~
Local

Information

Fig. 8: Menu Process Improvement Ideas

Also, whenever the user enters information into the Menu, the Database and Menu up-
date actions are performed immediately. Since the information is processed as soon as
it is entered, none of the submenus have a "CANCEL" button to clear the state the user
has entered. Each submenu should have a method of storing information locally and
then updating when an "ACCEPT" button is pushed or clearing when a "CANCEL" but-
ton is pushed.

13

Conclusions

This system has been available to and used by our users for some time now, and the
goals for this system were substantially met. Users can freely interleave commands
between the two windows, and are blissfully unaware of the multiprocessing loops
which control the system. Data integrity has been maintained. Response time has also
been maintained, with the addition of a 5% overhead due to the multiprocessing con-
trol. Because of the multiprocessing control, the GLL system is now always performing
some background processing on the workstation, even when otherwise idle, due to the
wait loops which are checked every scheduling quantum. This processing typically
takes between 1-2% of the available processing bandwidth on the workstation, which
does not cause a problem. The final objective of having an error-free system has not
yet been met. X crashes still occur for which the cause is not immediately identifiable.
These problems will continue to be addressed.

In conclusion, we found the Lucid Multitasking Facility to be a good multiprocessing im-
plementation which met all of our needs. Implementing the multiprocessing control
within the LISP environment was fun and educational.

Acknowledgements

I would like to acknowledge my supervisor, Eli Schlachet, for the many ideas he contrib-
uted to the paper and to the design and implementation of this system. Also my co---
workers, Kathy Herring and Diane Melendrez, who also worked on this project and con-
tributed many valuable insights and ideas.

References

1. Lucid, Inc., Lucid Common LI$P, Version 4.0, Advanced User's Guide, 1992

2. Flanagan, David, Ed., X Toolkit Intrinsics Reference Manual, O'Reilly and Associates,
Inc., 1992

3. Steele, Guy L. Jr., Common LISP. The Language, 2nd Edition, Digital Press, 1990

4. Stevens, W. Richard, Advanced Proarammina in the UNIX Environment, Addison-
Wesley Publishing Company, Inc., 1992

14

