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Numerous high-level control operators, with various properties, exist in the literature. To understand 
or compare them is difficult since their definitions use quite different theoretical frameworks; moreover, 
to our knowledge, no implementation offers them all. This paper tries to explain control operators by 
the often simple stack manipulation they perform. We therefore present what we think these operators 
are, in an executable framework derived from abstract continuations. This library is published in the 
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For instance, we do not claim 
our implementation to be faithful nor we attempt to formally derive these implementations from their 
original definitions. The goal is to give a flavor of what control operators are, from an implementation 
point of view. Last but worth to say, all errors are mine. 

Among the many existing control operators, we only consider ca11/cc ,  p r o m p t / c o n t r o l ,  s h i f t / r e s e t ,  
sequential spawn, s p l i t t e r / a b o r t / c a l l / p c .  We also add dynamic-wind to them although it does not 
belong to the same family of control operators. 

Our lingua franca is Scheme extended with a simple class definition facility. We use Scheme (i) to avoid 
frightening Greek letters and, (ii) to provide implementations people can play with in any plain Scheme 
system. Our defining process is two-fold: first, we use a program transformation making continuations appar- 
ent: Abstract Continuation Passing Style (ACPS) [FWFD88]. ACPS is somewhat similar to Continuation 
Passing Style (CPS) but confers a richer structure to continuations. ACPS represents continuations by lists 
of "continuation slices". Implementors will recognize in these slices a functional abstraction for stack frames. 
In a second step, the rewritten equivalent program is evaluated with any regular Scheme evaluator. The 
key point is the use of ACPS which allows control operators to be written as regular (but reflective) Scheme 
functions acting on the representation of continuations. Our presentation has the definite advantage to be 
executable and to offer all these control operators altogether. 

The paper has the following structure: we first present ACPS then exercise it on the well-known ca11 / cc  
operator. This will be followed by a brief description of what partial continuations are. We will then expose 
the various sets of control operators 1. 

1 Abstract Continuation Passing Style 

CPS is a program transformation that makes continuations apparent. CPS also corresponds to a program- 
ming style where functions take an additional argument, the continuation: an unary function which is 
applied to the value that would have been returned in normal style. Continuations come from the work 
of Strachey and Wadsworth [SW74, Rey93] and were used to denote control features such as go to  i.e., 
unconditional jump. CPS and sophisticated control handling have always been sources of inspiration, see 
[DL92, SF92, Mot92, FSDF93, Sit93] for recent developments. 

Denotational techniques often drift into program transformations: CPS was exploited in Rabbit, the 
first Scheme compiler [Ste78], as a kind of intermediate language. CPS provides a simple (but not unique) 
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mean to compile programs using c a l l / c c :  CPS turns these programs into new equivalent programs where 
continuations are represented by regular closures which only require normal compiling technology 2. In other 
terms, CPS turns c a l l / c c  into a regular function that  the user could have directly written3: 

(define (CPS-cali/c¢ kl f) 
( f  k l  ( lambda (k2 v a l u e )  (k l  v a l u e ) ) )  ) 

In this definition, continuations appear as the first variable (this makes easier the introduction of dotted 
variables) with a name conventionally prefixed by k: functional applications therefore take the current 
continuation as first argument.  Being a function, the reified continuation obeys the CPS protocol: it takes a 
continuation as first argument  (k2) then forgets it and, finally applies k l  to va lue .  CPS-style continuations 
are closures i.e., opaque objects that  can only be applied. More elaborate control operators need more 
information about  the continuation. 

Abstract  continuations were introduced in [FWFD88] to describe the meaning of prompt  and c o n t r o l  
operators.  We use its syntactic counterpart  and encode continuations as lists of frames. With  an imple- 
menta t ion bias, a f rame will be represented by an object whose first slot contains a behavior i.e., a binary 
function tha t  expects a stack (composed of all the frames that  are below this very frame) and a value. 
When a f rame is activated, it computes a new value to be sent back to the rest of the frames. Frames are 
represented by objects and not directly by behaviors so that  they can be recognized and specialized to hold 
extra  slots (other than behaviors), this will be needed later by some control operators. 

Since the continuation is no longer represented by a function, we ought to provide the necessary procedures 
tha t  encapsulate its representation: a value is sent to a continuation using resume. A frame is added, i.e., 
pushed, onto a continuation using e x t e n d .  

(define-class frame Object (behavior)) 

(define (resume q v)  
((frame-behavior (car q)) (cdr q) v) ) 

(define (extend q frame) 
(cons frame q) ) 

The d e f i n e - c l a s s  form defines a new class known as f rame (subclass of the root class here named 
0bj ec t ) .  A frame has a single slot that  contains its b e h a v i o r .  This behavior can be extracted from a f rame 
using the f r a m e - b e h a v i o r  selector; make- f rame builds a new frame out of a behavior; finally, a f rame can 
be recognized with the f r ame?  predicate. We use objects rather than records since we use inheritance in the 
resume function: the f r a m e - b e h a v i o r  selector will thus work for any direct or indirect instances of f r ame  4. 

As shown in the definition of resume,  a behavior is a binary function taking a continuation and a value. 
A continuation is represented by a list of frames. To send a value to a continuation corresponds to the 
application of the behavior of the first f rame to the rest of the frames and to the received value. This t ightly 
mimics the behavior of a frame that  receives a value and has access to the frames that  are below it. 

The ACPS program transformation appears  in table 1, see [Que92b] for a variant. Computa t ions  are 
split into small a tomic computat ion steps. A computat ion step is fed with a value and a continuation, may  
extend the continuation with new computat ions to be done or just  gives a value back to the continuation. 
Making frames apparent  allows some compile-time analyzes to compact  the continuation or to remove some 
kinds of associatively wrapped recursions [Que93]. 

ACPS-transformed programs contain a lot of administrat ive redexes: elaborate algorithms [DF92, SF92] 
can be devised to avoid their generation. One can also observe that  CPS may be recovered from ACPS with 
a special encoding of resume and extend: 

(define (resume q v) (q v)) 
(define (extend q frame) 

(lambda (v) ((frame-behavior frame) q v)) ) 

To project an ACPS-transformed program into a CPS-transformed program i.e., to t ransform inspectable 
lists of frames into opaque closures, restrict the possibility of introspection which is the basis of reflective 
p rogramming  [dRS, FW84, Wan86, dR87, WF88, DM88]. 

2To compile well these closures requires a higher compiling technology lApp92]. 
3This is true only if the user can submit such a definition and prevent the evaluator to CPS-convert it. 
4We use our own home-made object system called MERooNV3, consult again the Scheme repository to get it. 
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Acps[y]q = (resume q ~,) • ~, is a non global variable 
lcps~v~q = (resume q ACPS-v) if  ~, is a global variable 
AcT~s[(quote e)~q = (resume q (quote e)) 
/ cPs[ ( i : f  ~r0 r l  r2)~q = /cps~r0](extend q (make-frame (A(q' v') ( i f  v' l c p s [ r l~q '  Acps[r2~q ' ) ) ) )  
A c p s [ ( s e t !  ~, ~)~q = Acps[~'~(extend q (make-frame (A(q' v') (resume q' ( se t !  z, v ' ) ) ) ) )  
l c p s [ ( A ( v * )  ~)~q = (resume q (A(q' v*) Acps[~r~q')) 
~c~s[(~ ... ~)]qo = 

Acps[~l](extend qo (make-:frame (A(ql vl) .. .  
Ac~s[rn~(ex t end  q . - i  (make-:frame (A(qn Vn) (vl q. v2 . . . v . ) ) ) ) . . . ) ) )  

Table 1: ACPS rules 

To end this section, we give the usual factorial function as transformed by ACPS and massaged a little 
to avoid administrat ive redexes. 

(DEFINE FACT (LAMBDA (N) ( IF  (= N 1) 1 (* N (FACT ( -  N 1 ) ) ) ) ) )  
---~ (DEFINE ACPS-FACT 

(LAMBDA (Q73 N) 
(IF (= N I) 

(RESUME Q73 I) 
(ACPS-FACT (EXTEND Q73 (MAKE-FRAME 

(LAMBDA (Q81 V78) 
(RESUME QSi (* N V78)) ) )) 

( - N 1 ) )  ) ) ) 

An interesting point of this massaged form is related to errors like trying to multiply a non-number. If  the 
error handling system allows you to correct this on the fly, then obviously the multiplication has a mean to 
reify and use (infra-)continuations that  do not appear in the above program. 

The continuation of the internal recursive call to ACPS-:fact explicitly shows the pending multiplication 
frame, [Que93] takes benefit of this static observation to combine frames together thus opening new oppor- 
tunities for optimizations.  ACPS is very expressive and can be used to describe implementat ions of dynamic 
variables, error handling, multi tasking [Que92b, Que92a, QD93]. 

2 A tout seigneur, tout honneur: c a l l / c c  

The c a l l / c c  operator  is the basic control operator of Scheme. It  reifies the current continuation into a 
function and applies its sole argument  on it, the value of this application becomes the value of the original 
c a l l / c c  form. c a l l / c c  can be used to program any sequential control operator and, at least, mult i tasking 
[Wan80], engines [HF84], escapes [HFW84] and even partial continuations! From a more implementat ional  
point of view, three usages can be recognized: 

• escape operator:  the continuation is only invoked once and only while in the dynamic extent of the 
c a l l / c c  form that  created it. This usage provides a s e t j m p / l o n g j m p  facility h la C, c a t c h / t h r o w  and 
variants h la COMMON LISP, c a l l / e p  h la PaiLisp [IM89] etc. 

• coroutine operator: the computat ion is reified into a continuation, which will be invoked at most  once 
later. An example of coroutine scheduler appear  in [Wan80, Mat92]; 

• the last case is when a continuation is multiply invoked i.e., multiple values are returned to the same 
continuation. This can be used by generators ~ la Icon [MH90] but also appears in presence of concur- 
rency [QD93]. 

The definition of c a l l / c o  as defined in [CR91] and according to ACPS, is as simple as it was according 
to CPS. Observe the duplication of ql  which is still the current continuation of the call to :f as well as a part  

13 



of the reified continuation. This apparent simplicity must not hide the fact that continuations are difficult 
to compile and implement efficiently as can be seen in [CHO88, HD90, JG89, Mat92]. 

(def ine  (ACPS-call/cc ql f )  
(f ql (lambda (q2 value) (resume ql value)) )  ) 

Figure 1: c a l l / c c  

3 Part ia l  cont inuat ions  

Consider the following function, which uses c a l l / c c  to perform a premature exit. It receives a list of numbers 
to multiply: 

(define (multiply-list list-of-numbers) 
(call/cc (lambda (exit) 

(define (mult i) 
(if (null? i) I 

(if (= (car i) O) (exit O) (* (car i) (mult (cdr i)))) ) ) 
(mult list-of-numbers) )) ) 

Whenever a zero is found, an immediate escape is performed to directly return zero without performing 
any multiplications. Suppose we invoke m u l t i p l y - l i s t  on (4 3 2 0 . . . ) ,  to escape means that,  when 
zero is encountered, a prefix of the continuation (the prefix that  is waiting for a value to multiply by 2, 
3 and 4) will suddenly disappear. Rather than just erasing this prefix from the stack, one might imagine 
to turn it into an interesting programmatic object: this is the essence of partial continuations. Still using 
the previous example, the partial continuation represents three pending multiplications and is equivalent to 
A~.4 * (3 * (2 • z)).  

Once reified, a partial continuation can be used as a regular function. Unlike continuations, partial 
continuations return a value and therefore can be composed. A partial continuation is a "continuation slice" 
which may be viewed as the "difference" of two regular continuations [MQ93]. A partial continuation is thus 
identified by two points in a stack and all partial continuation control operators offer the three following 
functionalities: 

1. to identify where a partial continuation starts, 

2. to identify where a partial continuation finishes, 

3. to reify a partial continuation between these two points. 

Very often, the two last actions are not separated, they are performed in one go. 
Partial  continuations appeared in [FFDM87, FFDM87, FF87] as well as in [Joh87, JD88]. Many papers 

follow in the Scheme realm and among them [Fe188, DF90, HD90, QS91, MQ93]. A detailed example of 
partial continuation use appears in [Dan89]. 

4 Use fu l  funct ions  

We introduce some functions to ease the forthcoming definitions, extend* takes a list of frames whereas 
e x t e n d  takes only one frame. The s p l i t  operator takes a continuation q, a predicate, a success function 
and a failure thunk. It looks for the first tail of q that  satisfies the predicate. If such a tail is found then the 
success function is called on this tail as well as on the list of frames that  precede the found tail; otherwise, 
the failure thunk is invoked. 
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(define (extend* q frames) 
(if (pair? frames) 

(extend (extend* q (cdr frames)) (car frames)) 
q)) 

(define (split q predicate success failure) 
(define (scan q frames) 

(if (pair? q) 
(if (predicate q) 

(success (reverse frames) q) 
(scan (cdr q) (cons (car q) frames)) ) 

(failure)) ) 
(scan q ' ( ) )  ) 

The control operators are generally programmed as follow: the beginning of a partial continuation is 
identified by a special frame pushed onto the stack. When a partial continuation needs to be reified, the 
s p l i t  function is used on the current continuation to find the frames that are above this special frame. 
These frames, properly wrapped with a functional interface, represent the partial continuation. 

The definitions below do not take efficiency into account but they try to suggest that there exist common 
patterns. 

5 prompt, control 

Two control operators, prompt and control, were presented and discussed in [Fe188, FWFD88, SF90a, 
SF90b]. The prompt operator identifies contexts to he used by c o n t r o l .  The c o n t r o l  function reifies the 
context up to the nearest dynamically enclosing prompt, into a partial continuation and, at the same time, 
removes it from the current continuation, prompt is a syntax which expands into a call to p r o m p t - e v a l u a t e ;  
remember that prompt-evaluate is ACPS-transformed into ACPS-prompt-evaluate. 

To define these control operators, we use a subclass of frame: prompt-frame, to mark the presence of a 
prompt; its behavior is similar to the identity, as represented by resume: it just passes the value it receives 
back to the stack below it. p r o m p t - e v a l u a t e  pushes a prompt-frame onto the stack and then invokes its first 
argument: a thunk. When invoked, c o n t r o l  unwinds the frames of the current continuation until finding a 
prompt-frame, wraps all unwound frames into a regular function and applies its argument on it. 

(define-class prompt-frame frame ()) 
(define-syntax prompt 

(syntax-rules () 
((_ expression) (prompt-evaluate (lambda () expression))) ) ) 

(define (ACPS-prompt-evaluate q thunk) 
(thunk (extend q (make-prompt-frame resume))) ) 

(define (ACPS-control q f) 
(split q (lambda (q) (prompt-frame? (car q))) 

(lambda (frames q) 
(f q (lambda (q v) 

(resume (extend* q frames) v) )) ) 
(lambda () (error "No enclosing prompt")) ) ) 

Figure 2: prompt/control 

15 



5 . 1  E x a m p l e s  

Here are some simple examples of p r o m p t / c o n t r o l  that  illustrate various points. 
examples are given in the above references. 

(prompt (* 2 (control (lambda (f) 3)))) -~ 3 
(prompt (* 2 (control (lambda (f) (* 5 (f 3)))))) -~ 30 
(prompt (* 2 (control (lambda (f) (f (f 3)))))) --+ 12 
((prompt (* 2 (control (lambda (f) f)))) 3) -~ 6 

More comprehensive 

/4 

In these four examples,  the partial  continuation is Az.2.x.  When c o n t r o l  retries this partial  continuation, 
it removes its associated frames from the stack as shown in example In]. This is an "abort" ,  an imperat ive 
effect. The part ial  continuation is a regular function that  yields a value, as shown in [b]; hence partial  
continuations are composable,  see example [c]. Once retried, there is no restriction on the use of partial  
continuations: they can be used out of the extent of the control form that  creates them as illustrated on 
example [d]. 

These examples are simple and show the interest of partial  continuations. Unfortunately, there are more 
complex usages when control operators are called from within the retried continuation. It  is difficult to figure 
out what  is natural  in these cases and we will see that  it is a divergence point between the various sets of 
control operators.  

(prompt (* 5 [e] 
(prompt (* 2 

( c o n t r o l  ( lambda ( f2 )  ; f 2 =  Az.2* z 
(* 3 ( c o n t r o l  ( lambda ( f3 )  ; f 3 =  Az . 3*x  

7 ))) )) )) )) ~ 35 
(prompt (* 5 ( If] 

(prompt (* 2 
(control (lambda (f2) ;f2---- Ax.2* x 

(lambda () 
(* 3 ( c o n t r o l  ( lambda ( f3 )  ; f 3 = A x . 5 * ( 3 * x )  

7 ) ) )  ) ))  ) )  ) ) )  
--~7 

(prompt  (* 5 [g] 
( ( l ambda  (x) ;let ¢ be this abstraction 

( c o n t r o l  ( lambda ( f l )  ; f l - :  ~v.2 • 5 * v 
x ) ) )  

(* 3 ( c o n t r o l  ( lambda ( f2 )  ; f 2 = A u . 5 * ¢ ( 3 * u )  
(, 2 (f2 7)) ))) ) )) -~ 2i  

Example  [e] exhibits the effect of a c o n t r o l  inside a c o n t r o l ,  the two c o n t r o l  forms reify a partial  
continuation up to the same prompt .  On the contrary, example If] shows embedded c o n t r o l  forms relying 
up to different prompt  forms. The final example [g] shows c o n t r o l  called from inside the application of a 
reified part ial  continuation. These examples are complex and require some care to be checked. 

5.2 call/cc with prompt/control 

The c o n t r o l  operator  is somewhat  dynamic since it looks for the nearest enclosing prompt- f rame in the 
continuation. This dynamic behavior of c o n t r o l  poses problems of capture similar to those posed by dynamic 
variables in tradit ional  Lisp interpreters. To arbitrarily wrap an expression into a prompt form i.e., to replace 
7r by (prompt  ~') may  thus have a non-local effect. Using multiple embedded c o n t r o l  forms is difficult but  
can be done if some protocol is added around each prompt form as studied in [SF90a]. 

The c a l l / c c  operator  can be defined with these operators. Given a program 7r not using prompt ,  we 
can provide the c a l l / c c  facility, rewriting 7r as: 

( l e t  () 
(define (call/cc f) 
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(control (lambda (pc)  
(pc (f (lambda (v) 

(control (lambda (ignore-pc) (pc v))) ))) )) ) 
(prompt ~) ) 

ReciprocM|y, prompt and control can be simulated with call/cc (andassignment) asexplainedin [SF90~. 

6 shift/reset 
Danvy and Filinski introduced in [DF90, DF89] a new couple of control operators: reset and shift; reset 
identifies the contexts up to which s h i f t  reifies partial  continuations. A s h i f t  form reifies its context up 
to the dynamical ly nearest r e s e t  form and removes it from the current continuation, r e s e t  and s h i f t  are 
syntaxes that  we expand into functions taking thunks as argument: r e s e t - e v a l u a t e  and s h i f t - e v a l u a t e .  

One interesting difference with p r o m p t / c o n t r o l  lies in the definition of the reified partial  continuation: 
it now contains (and finishes with) the nearest reset-frame. Therefore partial continuations have at least 
their invocation point as enclosing context. 

(define-class reset-frame frame ()) 
(define-syntax reset 

(syntax-rules () 
((_ expression) (reset-evaluate (lambda () expression))) ) ) 

(define-syntax shift 
(syntax-rules () 

((_ variable expression) 
(shift-evaluate (lambda (variable) expression)) ) ) ) 

(define (ACPS-reset-evaluate q thunk) 
(thunk (extend q (make-reset-frame resume))) ) 

(define (ACPS-shift-evaluate q f) 
(split q (lambda (q) (reset-frame? (car q))) 

(lambda (frames q) 
(let ((frames (append frames (list (car q))))) 

(f q (lambda (q v) 
(resume (extend* q frames) v) )) ) ) 

(lambda () (error "No enclosing reset")) ) ) 

Figure 3: reset/shift 

6.1 Examples 

Here are the previous examples rewritten with these new control operators. Examples were similarly named 
to ease comparison. There are no divergence in the six first examples, ~om[a]to[f]. 

(reset (* 2 (shift f 3 ) ) )  ~ 3 
(reset (* 2 (shift f (* 5 (f 3))))) --~ 30 
(reset (* 2 (shift f (f (f 3))))) -~ 12 
((reset (* 2 (shift f f))) 3) ---~ 6 
(reset (* 5 

(reset (* 2 (shift f2 

(reset (* 5 ( 

; f2=  At.reset(2 • x) 
(* 3 ( s h i f t  f3 ;f3=Ax.reset(3,z) 

7 ))) )))) )) -~ 3s 

/4 

/d] 
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( r e s e t  (* 2 
(shift f2 ;f2= Ax.rese~(2, x) 

(lambda () 
(* 3 (shift f3 ; f 3 =  Ax.rese t (5*3*x)  

7 )) )) )) ))) ~ 7 
( r e s e t  (* 5 

( ( lambda (x) ; let ¢ be this abstraction 
( s h i f t  fl x) ) ; f l ± A v . r e s e t ( 5 * v )  

(* 3 ( s h i f t  f2  ; f 2 =  Au.reset(5 * ¢(3 * u)) 
(* 2 ( f2  7)) )) ) )) ~ 42 

A difference can be observed in the seventh example [g]. The reason is that when the partial continuation 
f2  is invoked, the ( s h i f t  f l  x) form reifies up to the nearest reset-frame and thus do not capture the 
pending multiplication by 2 since the call to f2  reinstalls a reset-frame. 

6.2 ca l l / cc  with s h i f t / r e s e t  

As for the other control operators, it is possible to program c a l l / c c  with s h i f t  and r e s e t .  Once again, 
the program ~r is required not to use r e s e t  to avoid interference with the coding of c a l l / c c .  The program 
• " is wrapped as: 

( l e t  () 
(define (call/cc f) 

(shift pc (pc (f (lambda (v) 
(shift ignore-pc (pc v)) )))) ) 

(reset ~) ) 

7 spawn 

Hieb and Dybvig presented, in [HD90], a new control operator called spawn. Although specified in presence 
of concurrency, spawn is useful even in the absence of multiple processes. We will only present a sequential 
version here. One of the goals of the authors was to replace the dynamic behavior of the two previous 
proposals by more control on the point up to which a partial continuation is reified. A consequence is that  
spawn reifies a process controller that  can only be used while in the dynamic extent of the spawn form that  
created it. The reason is that  if you want to reify up to a spawn point, this point must exist somewhere 
in your future i.e., you must be in the dynamic extent of this very spawn form. This problem does not 
exist with c o n t r o l  and s h i f t  since they do not target a specific point but just the nearest one, whatever 
it is. Finally, the authors devised a functional protocol with a single special function, spawn, to offer the 
identification of the context up to which reification is needed and the identification of the reification point. 

spawn takes a single argument, a unary function that will be invoked by spawn on a synthesized object 
named a process controller, say c. The process controller c can only be applied while in the dynamic extent 
of the original spawn form. Whenever applied, it takes a single argument: an unary function that it applies 
on the reified partial continuation that extends up to the associated spawn; at the same time the process 
controller removes this partial continuation from the current continuation. Similarly to s h i f t ,  the reified 
partial continuation retains the spawn-frame up to which it is reified, spawn can be viewed as a generalized 
prompt creating a new c o n t r o l  function at each invocation. 

7.1 Examples 

To give a flavor of spawn, let us once again rewrite the former examples. With respect to the previous section 
and roughly said, r e s e t  is changed into (spawn (lambda (c) . . .  )) while ( s h i f t  f . . .  ) is replaced by (c 
(lambda ( f )  . . .  ) ). This works well if there is a single r e s e t  form but if there are more, then we can choose 
up to which one reification is wanted, see for instance, examples If1] and If2]. 

(spawn (lambda (c) (* 2 (c (lambda (f) 3))))) -~ 3 [a] 
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(define-class spawn-frame frame ()) 

(define (ACPS-spawn q f) 
(let ((frame (make-spawn-frame resume))) 

(f (extend q frame) 
(lambda (q g) 

(split q (lambda (q) (eq? (car q) frame)) 
(lambda (frames q) 

(let ((frames (append frames (list (car q))))) 
(g q (lambda (q v) 

(resume (extend* q frames)v) )) ) ) 
(lambda () (error "Out of extent")) ) ) ) ) ) 

Figure 4: spawn 

(spawn (lambda (c) (* 2 (¢ (lambda (f) (* 5 (f 3))))))) -~ 30 [b] 
(spawn (lambda (c) (* 2 (c (lambed (f) (f (f 3))))))) -+ 12 [c] 
((spawn (lambda (c) (* 2 (c (lambda (~) f)))) 3)) --+ 6 [d] 
(spawn (lambda (cl) [e] 

(* 5 (spawn (lambda (c2) 
(* 2 (c2 (lambda (f2) ;f2---- Az.S*z 

(* 3 (c2 (lambda (f3) ;f3----Ax.3*x 
7 ))) ))) ))) )) -~ ms 

(spawn (lambda (cl) [fl] 
(* 5 ((spawn (lambda (c2) 

(* 2 (c2 (lambda (f2) 
(lambda ( ) 

(* 3 (ci (lambda (f3) 
7 ))) ) ))) )))) )) -~ 7 

(spawn (lambda (cl) If2] 
(* 5 ((spawn (lambda (c2) 

(* 2 (c2 (lambda (f2) 
(lambda () 

(* 3 (¢2 (lambda (f3) 
z ))) ) ))) )))) )) 

Out of extent error, c2 is not used in its correct dynamic extent 
(spawn (lambda (c) [g] 

(* 5 ((lambda (x) (c (lambda (fl) x))) 
(* 3 (c (lambda (f2) (* 2 (f2 7 ) ) ) ) )  )) )) ~ 42 

((spawn (lambda (c l )  [hi 
(* 5 (spawn (lambda (c2) 

(* 2 ( (c l  (larabda ( f l )  ; f l = A u . ( 5 , 2 , ( u ) ) ( ¢ )  
(lambda (g) (g fl c2)) )))) ))) )) 

; ; let ¢ be the value of the following term. It will be bound to g. 
(lambda ( f l  c2) ( f l  (lambda () (* 7 (c2 (lambda (f2) ; f2=Av.2*7*v  

(* 11 (f2 13)) ) ) ) ) ) )  ) 
10010 i.e., 5"11"2"7"13 

Example [g] still yields the same value; although there are two spawn-frames associated to c in the stack, 
spawn chooses to reify a partied continuation up to the closest. Therefore it does not capture the pending 
multiplication by two. 
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The final example is the most  mind-boggling, it shows a fine example where the concept of dynamic 
extent appears  not so intuitive. In example [h], a partial continuation :fl and a process controller c2 are 
used far from their birth site. :fl reinstalls the spawn-frame associated to c2 that  it captured when created. 
Consequently, to call c2 within :fl, is correct since we are still in its dynamic extent. We will return to the 
concept of dynamic extent in section 8.2. 

7.2 call/cc with spawn 

Similarly to the previous operators it is possible to write c a l l / c c  with spawn. This is even easier since now 
there is no restriction on programs which can use spawn for themselves without interference. The reason is 
tha t  now c a l l / c c  captures the correct process controller: 

(spawn (lambda (lower) 
(define (call/cc :f) 

(lower (lambda (pc) 
(pc (:f (lambda (v) 

(lower (lambda (ignore) (pc v))) ))) )) ) 
~)) 

8 splitter/abort/call/pc 

Another set of control operators was proposed by Queinnec and Serpette in [QS91] 5. Their effect is very close 
to spawn although one goal was to separate the different effects involved by spawn into different operators.  
s p l i t t e r  marks  a context up to which partial  continuations can be reified. The context is reified into 
an object called a mark  which can serve as first argument  to the a b o r t ,  c a l l / p c  and w i t h i n - e x t e n t ?  
functions, a b o r t  allows to replace the current computat ion up to a given mark  with a new computat ion 
expressed with a thunk, c a l l / p c  reifies the partial  continuation up to the given mark  and applies its second 
argument  on it. In contrast to the previous c o n t r o l ,  sh i : f t  or process controller, c a l l / p c  only reifies the 
partial  continuation but  does not remove it: this is the job of a b o r t  which is then the only imperat ive control 
operator.  Similarly to spawn, marks  can only be used while in the dynamic extent of the splitter form that  
created them and this can be tested with the w i t h i n - e x t e n t ?  predicate adding some reflective capability 
to the language. Finally and similarly to c o n t r o l ,  a reified continuation does not capture the spli t ter-frame 
up to which it was reified. 

8.1 Examples  

Since s p l i t t e r  provides more basic operators,  our preferred examples become more verbose. Compared  
to the previous section and again roughly stated, (spawn ( lambda (c) . . . ) )  is rewritten as ( s p l i t t e r  
( lambda (c) . . .  ) )  while (c ( lambda (:f) . . .  ) )  is replaced by ( c a l l / p c  c ( lambda (:f) ( a b o r t  c ( lambda 
() . .. ) ) ) ) to combine the reification and imperative abortion effect of process controller. 

(splitter (lambda (m) (* 2 (call/pc m (lambda (:f) [c] 
(abort m (lambda () 

(:f (:f 3 ) )  ) )  ) ) ) ) )  ~ 12 
(splitter (lambda (m) (* 2 (call/pc m (lambda (:f) (:f (:f 3))))))) -~ 24 [cl] 
((splitter (lambda (m) (* 2 (call/pc m (lambda (:f) [d] 

(abort m (lambda () :f)) ))))) 
3 )  ---~6 
(splitter Is1] 
(lambda (ml) 

(* 5 (splitter 
/(lambda (m2) 

(* 2 (call/pc m2 (lambda (:f2) ;:f2----Au.2*u 

5The presentation of [QS91] is slightly different, we adopt here one of the described variants. 
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(define-class splitter-frame frame ()) 
(define-class mark Object (q)) 

(define (ACPS-splitter q f) 
(let* ((frame (make-splitter-frame resume)) 

(q (extend q frame)) ) 
(f q (make-mark q)) ) ) 

(define (ACPS-within-extent? q mark) 
(resume q (split q (lambda (q) (eq? q (mark-q mark))) 

(lambda (frames q) #t) 
(lambda () #f) )) ) 

(define (ACPS-abort q mark thunk) 
(split q (lambda (q) (eq? q (mark-q mark))) 

(lambda (frames q) (thunk q)) 
(lambda () (error "Out of extent")) ) ) 

(define (ACPS-cali/pc qq mark f) 
(split qq (lambda (q) (eq? q (mark-q mark))) 

(lambda (frames q) 
(f qq (lambda (q v) 

(resume (extend* q frames) v) )) ) 
(lambda () (error "Out of extent")) ) ) 

Figure 5: splitter 

(* 3 (call/pc m2 (lambda (f3) ;f3= Au.(2* (3. u)) 
7 ))) ))) ))) )) 

---+ 210 i.e., 5*2*3*7 
(splitter (lambda (m) [g] 

(* 5 ((lambda (x) (call/pc m (lambda (fl) (abort m (lambda () x))))) 
(* 3 (call/pc m (lambda (f2) 

(abort m (lambda () (* 2 (f2 7)))) ))) )) )) 
-~ 21 

((splitter (lambda (ml) [hi 
(* 5 (splitter 

(lambda (m2) 

(* 2 ((call/pc ml (lambda (fl) ;fl=Au.(5,2,(u))(¢) 
(abort ml (lambda () 

(lambda (g) (g fl m2)) 
)) )))) ))) )) 

; ; let ¢ be the value of the following term. It will be bound to g. 
(lambda (fl m2) (fl (lambda () 

(* 7 ( c a l l / p c  m2 ( lambda ( f2 )  (* 11 ( f2  1 3 ) ) ) ) )  ) ) )  ) 
---~ Error: out of extent wrt m2 

The major  differences with spawn are (i)  s p l i t t e r  Mways refers to the lowest associated split ter-frame 
whereas spawn prefers the nearest one, see example [g]. Partial continuations can in effect duplicate frames 
which can therefore appear  more than once and s p l i t t e r  always refer to the lowest i.e., the one which 
has been associated to the mark  once created. (ii) When applied out of the extent of the corresponding 
splitter form a partial continuation cannot call again call/pc nor abort as shown in example fh] above. 
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8 .2  D y n a m i c  e x t e n t  r e v i s i t e d  

Dynamic extent is often associated to the lifetime of a computation: dynamic extent ends when the com- 
putat ion returns a value. In presence of high level control operators such as c a l l / c c  (and mainly the third 
effect as mentioned in section 2), determining when a computation ends is difficult (GC can help). At least 
two views of dynamic extent suggest themselves. 

• dynamic extent wrt to a continuation: A computation is within the dynamic extent of a continuation 
q if the current continuation has q as tail, this is what checks w i t h i n / d e ?  with eq?. 

• dynamic extent wrt to a frame: A computation is within the dynamic extent of a frame if that  frame 
belongs to the current continuation. This is the method spawn uses. 

The first definition for dynamic extent has the property that  when exited, it can be no more entered again. 
The second allows the dynamic extent to contain "holes", portions of time where the dynamic extent is left. 

Example [h] exhibits that  difference. With spawn, dynamic extent wrt c2, is captured by f l  and is 
reinstalled when f l  is called so c2 can be used to reify :f2. With s p l i t t e r ,  the dynamic extent of m2 is 
finished as soon as ( a b o r t  ml . . .  ) is performed, so trying to reify up to m2 is no longer possible. 

Interestingly, dynamic extent requires the implementation of spawn and s p l i t t e r  to use eq? on frames 
or continuations i.e., needs a store. 

8 . 3  call/cc w i t h  splitter/call/pc/abort 

Following the tradition, writing c a l l / c c  with s p l i t t e r  is possible. This implementation explicitly shows 
the copy of the interesting stack-slice pc inside the reified continuation. Observe also that c a l l / p c  does not 
remove the reified partial continuation so it is not necessary to call it immediately to reestablish the correct 
current continuation. Interestingly, the imperative effect performed when invoking continuations is explicit 
due to the presence of abort in the reified continuation. A definition of s p l i t t e r  in terms of c a l l / c o  
appears in [QS91]. 

(splitter (lambda (lower) 
(define (call/cc f) 

(call/pc lower (lambda (pc) 
(:f (lambda (v) 

(abort lower (lambda () (pc v))) )) )) ) 
)) 

9 d y n a m i c - w i n d  a n d  c a l l / c c  n o u v e a u  

The Scheme community has a sort of an equivalent of COMMON LIsP's unwind-protect often named 
dynamic-wind.  This form takes three thunks: a prelude, something to do (the real work) and a postlude. 
The idea is to execute the postlude whenever control escapes from the real work and to execute the prelude 
whenever control enters again the real work. An operational description can be found in [HF87, FWH92], 
ACPS allows us to give another one, more functional (without side-effect) and more compact: 
Many implementation choices exist in this definition: one can substitute, for instance, (work q2) by (work 
q l )  or, ( resume q3 va lue )  by (resume q va lue )  whether one wants to make implementations more effi- 
cient or real work less sensitive to the side effects on control that can be performed by pre- or post-ludes. 
For instance, to write (resume q va lue )  implies that  the continuation is always the original caller of the 
dynamic-wind form whereas (resume q3 va lue )  implies that the continuation of the postlude will be the 
frames beneath. In general, this is the original caller of the dynamic-wind form unless the frame is copied 
via partial continuation reification and reinstalled elsewhere. 

The dynamic-wind operator only pushes a wind-frame, therefore a new c a l l / c c  has to take these frames 
into account. This new c a l l / c c  now creates continuations that,  when invoked, unwind the current continu- 
ation to execute all postludes until finding a point where the target continuation can be rewound executing 
all necessary preludes. 
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(de f ine -c la s s  wind-frame frame (prelude post lude))  

(def ine (ACPS-dynamic-wind q prelude work postlude) 
( l e t  ( (ql  (extend q (make-wind-frame 

(lambda (q4 value) 
(postlude 

(extend q4 
(make-frame 
(lambda (q3 ignore-postlude-value) 

(resume q3 value) ) ) ) ) ) 
prelude 
postlude ) ))) 

(prelude (extend ql (make-frame 
(lambda (q2 ignore-prelude-value) 

(work q2) ) ))) ) ) 

Figure 6: dynamic-wind 

(define (ACPS-new-call/cc qq function) 
(define (rewind q value) 

(define (deepest-wind qq) ;find the deepest wind-frame in qq tillq 
(if (eq? qq q) 

#f 
(or (deepest-wind (cdr qq)) 

(if (wind-frame? (car qq)) qq #f) ) ) ) 
(let ((wq (deepest-wind qq))) ;evaluate preludes from q to qq 

(if wq ((wind-frame-prelude (car wq)) 
(extend (cdr wq) 

(make-frame 
(lambda (ignore-q ignore-prelude-value) 

(rewind wq value) ) ) )) 
;;resume the caller ofnew-eall/cc 
(resume qq value) ) ) ) 

(define (unwind q value) 
(def ine ( t a i l ?  ql q2) ;is ql a tail of q2 ? 

(or (eq? ql q2) 
(and (pair?  q2) ( t a i l ?  ql (cdr q2))) ) ) 

( i f  ( t a i l ?  q qq) ;is q an ancestor ofqq 
(rewind q value) 
( i f  (~ind-frame? (car q)) ;evaluate postludes Irom q 

((wind-frame-postlude (car q)) 
(extend (cdr q) 

(make-frame 
(lambda (ignore-q ignore-postlude-value) 

(unwind (cdr q) value) ) ) ) ) 
(unwind (cdr q) value) ) ) ) 

(function qq unwind) ) 

Figure 7: new-ca11/cc  
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Many problems are raised by the introduction of dynara:i.c-w:i.nd. Not to mention the relationship it 
carries with partial continuations nor its various possible implementations, it first makes Scheme a purely 
sequential language with only one possible control point and thus somehow negates the parallel extensions 
proposed for Scheme. Second, it involves a change in the definition of c a l l / c o  that  seems to preclude to 
program the old ea1:1./¢¢ with the new one. Third, it makes the formal semantics of Scheme bigger, more 
complex and, hardly fitting on a single page since the semantics of ¢a] . l / ec  grows from a one-liner to half a 
page. 

10 Conclusions 
Leaving dynamic-wind apart,  the four other sets of control operators can be classified as follows. The first 
two have a dynamic behavior negated by the last two which allow to specify the point up to which reification 
is wanted: spawn and s p l i t t e r  make easy to appropriately pair cort t rol- l ike with reso t - l ike  operators. 
r e s e t  and spawn incorporate, in the reified partial continuation and as last frame, the frame up to which 
they were reified. This makes it easy to create a new partial continuation from within a partial continuation 
invocation, spawn and splS.t 'eer differ in the amount of reified context as well as in the concept of dynamic 
extent. It is also unclear what is the "natural" point targeted by a ca l l / pc - l i ke  operator if this operator is 
called from within an applied partial continuation and out of the dynamic extent of the original spawn-like 

form. 
We can now defend two implementation choices: classes and ACPS. Continuations are completely opaque 

values in Scheme and, besides applying them, it is not possible to inspect them to know 'if they contain a 
given frame or continuation tail. We thus had to make this information explicit and therefore could not use 
a c a l l / c o - b a s e d  implementation. ACPS, though highly theoretically grounded, is a wonderful tool for that  
goal and has the additional benefit to be "close" to the implementation i.e., to suggest that  continuations 
are made of frames. Reflection-addicts [dl:tS, FW84, Wan86, dR87, WF88, DM88] will also appreciate ACPS 
which allows to represent continuations as list of frames thus opening new opportunities to dissect them. 

Classes are useful to factorize the behavior of frames in the r e s u m e  function as well as to allow various 
control operators to cohabit without interference i.e., without confusing a reset-frame with a wind-frame 
for instance. Rather than choosing one set of control operators, one may better experiment with all of 
them simultaneously. In particular, the meaning of dynara:i.c-wind with respect to these control operators is 
obscure and probably deserve more studies. This also the case of the dynamic extent concept. 

We hope that  these implementations will allow readers to understand control operators better, t ry to 
program with them and appreciate their subtleties. 
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