
A Library of High Level Control Operators *

C h r i s t i a n Q u e i n n e c t

t~cole P o l y t e c h n i q u e & I N R I A - R o c q u e n c o u r t

Abs t rac t

Numerous high-level control operators, with various properties, exist in the literature. To understand
or compare them is difficult since their definitions use quite different theoretical frameworks; moreover,
to our knowledge, no implementation offers them all. This paper tries to explain control operators by
the often simple stack manipulation they perform. We therefore present what we think these operators
are, in an executable framework derived from abstract continuations. This library is published in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For instance, we do not claim
our implementation to be faithful nor we attempt to formally derive these implementations from their
original definitions. The goal is to give a flavor of what control operators are, from an implementation
point of view. Last but worth to say, all errors are mine.

Among the many existing control operators, we only consider ca11/cc , p r o m p t / c o n t r o l , s h i f t / r e s e t ,
sequential spawn, s p l i t t e r / a b o r t / c a l l / p c . We also add dynamic-wind to them although it does not
belong to the same family of control operators.

Our lingua franca is Scheme extended with a simple class definition facility. We use Scheme (i) to avoid
frightening Greek letters and, (ii) to provide implementations people can play with in any plain Scheme
system. Our defining process is two-fold: first, we use a program transformation making continuations appar-
ent: Abstract Continuation Passing Style (ACPS) [FWFD88]. ACPS is somewhat similar to Continuation
Passing Style (CPS) but confers a richer structure to continuations. ACPS represents continuations by lists
of "continuation slices". Implementors will recognize in these slices a functional abstraction for stack frames.
In a second step, the rewritten equivalent program is evaluated with any regular Scheme evaluator. The
key point is the use of ACPS which allows control operators to be written as regular (but reflective) Scheme
functions acting on the representation of continuations. Our presentation has the definite advantage to be
executable and to offer all these control operators altogether.

The paper has the following structure: we first present ACPS then exercise it on the well-known ca11 / cc
operator. This will be followed by a brief description of what partial continuations are. We will then expose
the various sets of control operators 1.

1 Abstract Continuation Passing Style

CPS is a program transformation that makes continuations apparent. CPS also corresponds to a program-
ming style where functions take an additional argument, the continuation: an unary function which is
applied to the value that would have been returned in normal style. Continuations come from the work
of Strachey and Wadsworth [SW74, Rey93] and were used to denote control features such as go to i.e.,
unconditional jump. CPS and sophisticated control handling have always been sources of inspiration, see
[DL92, SF92, Mot92, FSDF93, Sit93] for recent developments.

Denotational techniques often drift into program transformations: CPS was exploited in Rabbit, the
first Scheme compiler [Ste78], as a kind of intermediate language. CPS provides a simple (but not unique)

*Id: c o n t l i b . b k , v 1.26 1994102/04 19:41:34 queinnec Exp . Subinittedto Lisp Pointers.
tLaboratoire d'].nformatique de l']~cole Polytechnique (URA 1439), 91128 Palaiseau Cedex, France - Emaih

queinnecQpolytechnique.fr This work has been partially funded by GDH-PRC de Program_rnation du CNRS.
1 Their definitionis the actual code as it appears in the cont lib. tar. gz package and automatically extracted using LiSP2TEX.

See the Scheme Repository or ftp. inria, fr : IliRIA/Proj ects]icsla]Programs to get them.

11

mean to compile programs using c a l l / c c : CPS turns these programs into new equivalent programs where
continuations are represented by regular closures which only require normal compiling technology 2. In other
terms, CPS turns c a l l / c c into a regular function that the user could have directly written3:

(define (CPS-cali/c¢ kl f)
(f k l (lambda (k2 v a l u e) (k l v a l u e))))

In this definition, continuations appear as the first variable (this makes easier the introduction of dotted
variables) with a name conventionally prefixed by k: functional applications therefore take the current
continuation as first argument. Being a function, the reified continuation obeys the CPS protocol: it takes a
continuation as first argument (k2) then forgets it and, finally applies k l to va lue . CPS-style continuations
are closures i.e., opaque objects that can only be applied. More elaborate control operators need more
information about the continuation.

Abstract continuations were introduced in [FWFD88] to describe the meaning of prompt and c o n t r o l
operators. We use its syntactic counterpart and encode continuations as lists of frames. With an imple-
menta t ion bias, a f rame will be represented by an object whose first slot contains a behavior i.e., a binary
function tha t expects a stack (composed of all the frames that are below this very frame) and a value.
When a f rame is activated, it computes a new value to be sent back to the rest of the frames. Frames are
represented by objects and not directly by behaviors so that they can be recognized and specialized to hold
extra slots (other than behaviors), this will be needed later by some control operators.

Since the continuation is no longer represented by a function, we ought to provide the necessary procedures
tha t encapsulate its representation: a value is sent to a continuation using resume. A frame is added, i.e.,
pushed, onto a continuation using e x t e n d .

(define-class frame Object (behavior))

(define (resume q v)
((frame-behavior (car q)) (cdr q) v))

(define (extend q frame)
(cons frame q))

The d e f i n e - c l a s s form defines a new class known as f rame (subclass of the root class here named
0bj ec t) . A frame has a single slot that contains its b e h a v i o r . This behavior can be extracted from a f rame
using the f r a m e - b e h a v i o r selector; make- f rame builds a new frame out of a behavior; finally, a f rame can
be recognized with the f r ame? predicate. We use objects rather than records since we use inheritance in the
resume function: the f r a m e - b e h a v i o r selector will thus work for any direct or indirect instances of f r ame 4.

As shown in the definition of resume, a behavior is a binary function taking a continuation and a value.
A continuation is represented by a list of frames. To send a value to a continuation corresponds to the
application of the behavior of the first f rame to the rest of the frames and to the received value. This t ightly
mimics the behavior of a frame that receives a value and has access to the frames that are below it.

The ACPS program transformation appears in table 1, see [Que92b] for a variant. Computa t ions are
split into small a tomic computat ion steps. A computat ion step is fed with a value and a continuation, may
extend the continuation with new computat ions to be done or just gives a value back to the continuation.
Making frames apparent allows some compile-time analyzes to compact the continuation or to remove some
kinds of associatively wrapped recursions [Que93].

ACPS-transformed programs contain a lot of administrat ive redexes: elaborate algorithms [DF92, SF92]
can be devised to avoid their generation. One can also observe that CPS may be recovered from ACPS with
a special encoding of resume and extend:

(define (resume q v) (q v))
(define (extend q frame)

(lambda (v) ((frame-behavior frame) q v)))

To project an ACPS-transformed program into a CPS-transformed program i.e., to t ransform inspectable
lists of frames into opaque closures, restrict the possibility of introspection which is the basis of reflective
p rogramming [dRS, FW84, Wan86, dR87, WF88, DM88].

2To compile well these closures requires a higher compiling technology lApp92].
3This is true only if the user can submit such a definition and prevent the evaluator to CPS-convert it.
4We use our own home-made object system called MERooNV3, consult again the Scheme repository to get it.

1 2

Acps[y]q = (resume q ~,) • ~, is a non global variable
lcps~v~q = (resume q ACPS-v) if ~, is a global variable
AcT~s[(quote e)~q = (resume q (quote e))
/ cPs[(i : f ~r0 r l r2)~q = /cps~r0](extend q (make-frame (A(q' v') (i f v' l c p s [r l~q ' Acps[r2~q '))))
A c p s [(s e t ! ~, ~)~q = Acps[~'~(extend q (make-frame (A(q' v') (resume q' (se t ! z, v ')))))
l c p s [(A (v *) ~)~q = (resume q (A(q' v*) Acps[~r~q'))
~c~s[(~ ... ~)]qo =

Acps[~l](extend qo (make-:frame (A(ql vl) .. .
Ac~s[rn~(ex t end q . - i (make-:frame (A(qn Vn) (vl q. v2 . . . v .)))) . . .)))

Table 1: ACPS rules

To end this section, we give the usual factorial function as transformed by ACPS and massaged a little
to avoid administrat ive redexes.

(DEFINE FACT (LAMBDA (N) (IF (= N 1) 1 (* N (FACT (- N 1))))))
---~ (DEFINE ACPS-FACT

(LAMBDA (Q73 N)
(IF (= N I)

(RESUME Q73 I)
(ACPS-FACT (EXTEND Q73 (MAKE-FRAME

(LAMBDA (Q81 V78)
(RESUME QSi (* N V78)))))

(- N 1)))))

An interesting point of this massaged form is related to errors like trying to multiply a non-number. If the
error handling system allows you to correct this on the fly, then obviously the multiplication has a mean to
reify and use (infra-)continuations that do not appear in the above program.

The continuation of the internal recursive call to ACPS-:fact explicitly shows the pending multiplication
frame, [Que93] takes benefit of this static observation to combine frames together thus opening new oppor-
tunities for optimizations. ACPS is very expressive and can be used to describe implementat ions of dynamic
variables, error handling, multi tasking [Que92b, Que92a, QD93].

2 A tout seigneur, tout honneur: c a l l / c c

The c a l l / c c operator is the basic control operator of Scheme. It reifies the current continuation into a
function and applies its sole argument on it, the value of this application becomes the value of the original
c a l l / c c form. c a l l / c c can be used to program any sequential control operator and, at least, mult i tasking
[Wan80], engines [HF84], escapes [HFW84] and even partial continuations! From a more implementat ional
point of view, three usages can be recognized:

• escape operator: the continuation is only invoked once and only while in the dynamic extent of the
c a l l / c c form that created it. This usage provides a s e t j m p / l o n g j m p facility h la C, c a t c h / t h r o w and
variants h la COMMON LISP, c a l l / e p h la PaiLisp [IM89] etc.

• coroutine operator: the computat ion is reified into a continuation, which will be invoked at most once
later. An example of coroutine scheduler appear in [Wan80, Mat92];

• the last case is when a continuation is multiply invoked i.e., multiple values are returned to the same
continuation. This can be used by generators ~ la Icon [MH90] but also appears in presence of concur-
rency [QD93].

The definition of c a l l / c o as defined in [CR91] and according to ACPS, is as simple as it was according
to CPS. Observe the duplication of ql which is still the current continuation of the call to :f as well as a part

13

of the reified continuation. This apparent simplicity must not hide the fact that continuations are difficult
to compile and implement efficiently as can be seen in [CHO88, HD90, JG89, Mat92].

(def ine (ACPS-call/cc ql f)
(f ql (lambda (q2 value) (resume ql value))))

Figure 1: c a l l / c c

3 Part ia l cont inuat ions

Consider the following function, which uses c a l l / c c to perform a premature exit. It receives a list of numbers
to multiply:

(define (multiply-list list-of-numbers)
(call/cc (lambda (exit)

(define (mult i)
(if (null? i) I

(if (= (car i) O) (exit O) (* (car i) (mult (cdr i))))))
(mult list-of-numbers))))

Whenever a zero is found, an immediate escape is performed to directly return zero without performing
any multiplications. Suppose we invoke m u l t i p l y - l i s t on (4 3 2 0 . . .) , to escape means that, when
zero is encountered, a prefix of the continuation (the prefix that is waiting for a value to multiply by 2,
3 and 4) will suddenly disappear. Rather than just erasing this prefix from the stack, one might imagine
to turn it into an interesting programmatic object: this is the essence of partial continuations. Still using
the previous example, the partial continuation represents three pending multiplications and is equivalent to
A~.4 * (3 * (2 • z)).

Once reified, a partial continuation can be used as a regular function. Unlike continuations, partial
continuations return a value and therefore can be composed. A partial continuation is a "continuation slice"
which may be viewed as the "difference" of two regular continuations [MQ93]. A partial continuation is thus
identified by two points in a stack and all partial continuation control operators offer the three following
functionalities:

1. to identify where a partial continuation starts,

2. to identify where a partial continuation finishes,

3. to reify a partial continuation between these two points.

Very often, the two last actions are not separated, they are performed in one go.
Partial continuations appeared in [FFDM87, FFDM87, FF87] as well as in [Joh87, JD88]. Many papers

follow in the Scheme realm and among them [Fe188, DF90, HD90, QS91, MQ93]. A detailed example of
partial continuation use appears in [Dan89].

4 Use fu l funct ions

We introduce some functions to ease the forthcoming definitions, extend* takes a list of frames whereas
e x t e n d takes only one frame. The s p l i t operator takes a continuation q, a predicate, a success function
and a failure thunk. It looks for the first tail of q that satisfies the predicate. If such a tail is found then the
success function is called on this tail as well as on the list of frames that precede the found tail; otherwise,
the failure thunk is invoked.

1 4

(define (extend* q frames)
(if (pair? frames)

(extend (extend* q (cdr frames)) (car frames))
q))

(define (split q predicate success failure)
(define (scan q frames)

(if (pair? q)
(if (predicate q)

(success (reverse frames) q)
(scan (cdr q) (cons (car q) frames)))

(failure)))
(scan q ' ()))

The control operators are generally programmed as follow: the beginning of a partial continuation is
identified by a special frame pushed onto the stack. When a partial continuation needs to be reified, the
s p l i t function is used on the current continuation to find the frames that are above this special frame.
These frames, properly wrapped with a functional interface, represent the partial continuation.

The definitions below do not take efficiency into account but they try to suggest that there exist common
patterns.

5 prompt, control

Two control operators, prompt and control, were presented and discussed in [Fe188, FWFD88, SF90a,
SF90b]. The prompt operator identifies contexts to he used by c o n t r o l . The c o n t r o l function reifies the
context up to the nearest dynamically enclosing prompt, into a partial continuation and, at the same time,
removes it from the current continuation, prompt is a syntax which expands into a call to p r o m p t - e v a l u a t e ;
remember that prompt-evaluate is ACPS-transformed into ACPS-prompt-evaluate.

To define these control operators, we use a subclass of frame: prompt-frame, to mark the presence of a
prompt; its behavior is similar to the identity, as represented by resume: it just passes the value it receives
back to the stack below it. p r o m p t - e v a l u a t e pushes a prompt-frame onto the stack and then invokes its first
argument: a thunk. When invoked, c o n t r o l unwinds the frames of the current continuation until finding a
prompt-frame, wraps all unwound frames into a regular function and applies its argument on it.

(define-class prompt-frame frame ())
(define-syntax prompt

(syntax-rules ()
((_ expression) (prompt-evaluate (lambda () expression)))))

(define (ACPS-prompt-evaluate q thunk)
(thunk (extend q (make-prompt-frame resume))))

(define (ACPS-control q f)
(split q (lambda (q) (prompt-frame? (car q)))

(lambda (frames q)
(f q (lambda (q v)

(resume (extend* q frames) v))))
(lambda () (error "No enclosing prompt"))))

Figure 2: prompt/control

15

5 . 1 E x a m p l e s

Here are some simple examples of p r o m p t / c o n t r o l that illustrate various points.
examples are given in the above references.

(prompt (* 2 (control (lambda (f) 3)))) -~ 3
(prompt (* 2 (control (lambda (f) (* 5 (f 3)))))) -~ 30
(prompt (* 2 (control (lambda (f) (f (f 3)))))) --+ 12
((prompt (* 2 (control (lambda (f) f)))) 3) -~ 6

More comprehensive

/4

In these four examples, the partial continuation is Az.2.x. When c o n t r o l retries this partial continuation,
it removes its associated frames from the stack as shown in example In]. This is an "abort" , an imperat ive
effect. The part ial continuation is a regular function that yields a value, as shown in [b]; hence partial
continuations are composable, see example [c]. Once retried, there is no restriction on the use of partial
continuations: they can be used out of the extent of the control form that creates them as illustrated on
example [d].

These examples are simple and show the interest of partial continuations. Unfortunately, there are more
complex usages when control operators are called from within the retried continuation. It is difficult to figure
out what is natural in these cases and we will see that it is a divergence point between the various sets of
control operators.

(prompt (* 5 [e]
(prompt (* 2

(c o n t r o l (lambda (f2) ; f 2 = Az.2* z
(* 3 (c o n t r o l (lambda (f3) ; f 3 = Az . 3*x

7))))))))) ~ 35
(prompt (* 5 (If]

(prompt (* 2
(control (lambda (f2) ;f2---- Ax.2* x

(lambda ()
(* 3 (c o n t r o l (lambda (f3) ; f 3 = A x . 5 * (3 * x)

7)))))))))))
--~7

(prompt (* 5 [g]
((l ambda (x) ;let ¢ be this abstraction

(c o n t r o l (lambda (f l) ; f l - : ~v.2 • 5 * v
x)))

(* 3 (c o n t r o l (lambda (f2) ; f 2 = A u . 5 * ¢ (3 * u)
(, 2 (f2 7)))))))) -~ 2i

Example [e] exhibits the effect of a c o n t r o l inside a c o n t r o l , the two c o n t r o l forms reify a partial
continuation up to the same prompt . On the contrary, example If] shows embedded c o n t r o l forms relying
up to different prompt forms. The final example [g] shows c o n t r o l called from inside the application of a
reified part ial continuation. These examples are complex and require some care to be checked.

5.2 call/cc with prompt/control

The c o n t r o l operator is somewhat dynamic since it looks for the nearest enclosing prompt- f rame in the
continuation. This dynamic behavior of c o n t r o l poses problems of capture similar to those posed by dynamic
variables in tradit ional Lisp interpreters. To arbitrarily wrap an expression into a prompt form i.e., to replace
7r by (prompt ~') may thus have a non-local effect. Using multiple embedded c o n t r o l forms is difficult but
can be done if some protocol is added around each prompt form as studied in [SF90a].

The c a l l / c c operator can be defined with these operators. Given a program 7r not using prompt , we
can provide the c a l l / c c facility, rewriting 7r as:

(l e t ()
(define (call/cc f)

1 6

(control (lambda (pc)
(pc (f (lambda (v)

(control (lambda (ignore-pc) (pc v)))))))))
(prompt ~))

ReciprocM|y, prompt and control can be simulated with call/cc (andassignment) asexplainedin [SF90~.

6 shift/reset
Danvy and Filinski introduced in [DF90, DF89] a new couple of control operators: reset and shift; reset
identifies the contexts up to which s h i f t reifies partial continuations. A s h i f t form reifies its context up
to the dynamical ly nearest r e s e t form and removes it from the current continuation, r e s e t and s h i f t are
syntaxes that we expand into functions taking thunks as argument: r e s e t - e v a l u a t e and s h i f t - e v a l u a t e .

One interesting difference with p r o m p t / c o n t r o l lies in the definition of the reified partial continuation:
it now contains (and finishes with) the nearest reset-frame. Therefore partial continuations have at least
their invocation point as enclosing context.

(define-class reset-frame frame ())
(define-syntax reset

(syntax-rules ()
((_ expression) (reset-evaluate (lambda () expression)))))

(define-syntax shift
(syntax-rules ()

((_ variable expression)
(shift-evaluate (lambda (variable) expression)))))

(define (ACPS-reset-evaluate q thunk)
(thunk (extend q (make-reset-frame resume))))

(define (ACPS-shift-evaluate q f)
(split q (lambda (q) (reset-frame? (car q)))

(lambda (frames q)
(let ((frames (append frames (list (car q)))))

(f q (lambda (q v)
(resume (extend* q frames) v)))))

(lambda () (error "No enclosing reset"))))

Figure 3: reset/shift

6.1 Examples

Here are the previous examples rewritten with these new control operators. Examples were similarly named
to ease comparison. There are no divergence in the six first examples, ~om[a]to[f].

(reset (* 2 (shift f 3))) ~ 3
(reset (* 2 (shift f (* 5 (f 3))))) --~ 30
(reset (* 2 (shift f (f (f 3))))) -~ 12
((reset (* 2 (shift f f))) 3) ---~ 6
(reset (* 5

(reset (* 2 (shift f2

(reset (* 5 (

; f2= At.reset(2 • x)
(* 3 (s h i f t f3 ;f3=Ax.reset(3,z)

7))))))))) -~ 3s

/4

/d]

17

(r e s e t (* 2
(shift f2 ;f2= Ax.rese~(2, x)

(lambda ()
(* 3 (shift f3 ; f 3 = Ax.rese t (5*3*x)

7))))))))) ~ 7
(r e s e t (* 5

((lambda (x) ; let ¢ be this abstraction
(s h i f t fl x)) ; f l ± A v . r e s e t (5 * v)

(* 3 (s h i f t f2 ; f 2 = Au.reset(5 * ¢(3 * u))
(* 2 (f2 7))))))) ~ 42

A difference can be observed in the seventh example [g]. The reason is that when the partial continuation
f2 is invoked, the (s h i f t f l x) form reifies up to the nearest reset-frame and thus do not capture the
pending multiplication by 2 since the call to f2 reinstalls a reset-frame.

6.2 ca l l / cc with s h i f t / r e s e t

As for the other control operators, it is possible to program c a l l / c c with s h i f t and r e s e t . Once again,
the program ~r is required not to use r e s e t to avoid interference with the coding of c a l l / c c . The program
• " is wrapped as:

(l e t ()
(define (call/cc f)

(shift pc (pc (f (lambda (v)
(shift ignore-pc (pc v)))))))

(reset ~))

7 spawn

Hieb and Dybvig presented, in [HD90], a new control operator called spawn. Although specified in presence
of concurrency, spawn is useful even in the absence of multiple processes. We will only present a sequential
version here. One of the goals of the authors was to replace the dynamic behavior of the two previous
proposals by more control on the point up to which a partial continuation is reified. A consequence is that
spawn reifies a process controller that can only be used while in the dynamic extent of the spawn form that
created it. The reason is that if you want to reify up to a spawn point, this point must exist somewhere
in your future i.e., you must be in the dynamic extent of this very spawn form. This problem does not
exist with c o n t r o l and s h i f t since they do not target a specific point but just the nearest one, whatever
it is. Finally, the authors devised a functional protocol with a single special function, spawn, to offer the
identification of the context up to which reification is needed and the identification of the reification point.

spawn takes a single argument, a unary function that will be invoked by spawn on a synthesized object
named a process controller, say c. The process controller c can only be applied while in the dynamic extent
of the original spawn form. Whenever applied, it takes a single argument: an unary function that it applies
on the reified partial continuation that extends up to the associated spawn; at the same time the process
controller removes this partial continuation from the current continuation. Similarly to s h i f t , the reified
partial continuation retains the spawn-frame up to which it is reified, spawn can be viewed as a generalized
prompt creating a new c o n t r o l function at each invocation.

7.1 Examples

To give a flavor of spawn, let us once again rewrite the former examples. With respect to the previous section
and roughly said, r e s e t is changed into (spawn (lambda (c) . . .)) while (s h i f t f . . .) is replaced by (c
(lambda (f) . . .)). This works well if there is a single r e s e t form but if there are more, then we can choose
up to which one reification is wanted, see for instance, examples If1] and If2].

(spawn (lambda (c) (* 2 (c (lambda (f) 3))))) -~ 3 [a]

18

(define-class spawn-frame frame ())

(define (ACPS-spawn q f)
(let ((frame (make-spawn-frame resume)))

(f (extend q frame)
(lambda (q g)

(split q (lambda (q) (eq? (car q) frame))
(lambda (frames q)

(let ((frames (append frames (list (car q)))))
(g q (lambda (q v)

(resume (extend* q frames)v)))))
(lambda () (error "Out of extent")))))))

Figure 4: spawn

(spawn (lambda (c) (* 2 (¢ (lambda (f) (* 5 (f 3))))))) -~ 30 [b]
(spawn (lambda (c) (* 2 (c (lambed (f) (f (f 3))))))) -+ 12 [c]
((spawn (lambda (c) (* 2 (c (lambda (~) f)))) 3)) --+ 6 [d]
(spawn (lambda (cl) [e]

(* 5 (spawn (lambda (c2)
(* 2 (c2 (lambda (f2) ;f2---- Az.S*z

(* 3 (c2 (lambda (f3) ;f3----Ax.3*x
7))))))))))) -~ ms

(spawn (lambda (cl) [fl]
(* 5 ((spawn (lambda (c2)

(* 2 (c2 (lambda (f2)
(lambda ()

(* 3 (ci (lambda (f3)
7))))))))))))) -~ 7

(spawn (lambda (cl) If2]
(* 5 ((spawn (lambda (c2)

(* 2 (c2 (lambda (f2)
(lambda ()

(* 3 (¢2 (lambda (f3)
z)))))))))))))

Out of extent error, c2 is not used in its correct dynamic extent
(spawn (lambda (c) [g]

(* 5 ((lambda (x) (c (lambda (fl) x)))
(* 3 (c (lambda (f2) (* 2 (f2 7))))))))) ~ 42

((spawn (lambda (c l) [hi
(* 5 (spawn (lambda (c2)

(* 2 ((c l (larabda (f l) ; f l = A u . (5 , 2 , (u)) (¢)
(lambda (g) (g fl c2)))))))))))

; ; let ¢ be the value of the following term. It will be bound to g.
(lambda (f l c2) (f l (lambda () (* 7 (c2 (lambda (f2) ; f2=Av.2*7*v

(* 11 (f2 13)))))))))
10010 i.e., 5"11"2"7"13

Example [g] still yields the same value; although there are two spawn-frames associated to c in the stack,
spawn chooses to reify a partied continuation up to the closest. Therefore it does not capture the pending
multiplication by two.

19

The final example is the most mind-boggling, it shows a fine example where the concept of dynamic
extent appears not so intuitive. In example [h], a partial continuation :fl and a process controller c2 are
used far from their birth site. :fl reinstalls the spawn-frame associated to c2 that it captured when created.
Consequently, to call c2 within :fl, is correct since we are still in its dynamic extent. We will return to the
concept of dynamic extent in section 8.2.

7.2 call/cc with spawn

Similarly to the previous operators it is possible to write c a l l / c c with spawn. This is even easier since now
there is no restriction on programs which can use spawn for themselves without interference. The reason is
tha t now c a l l / c c captures the correct process controller:

(spawn (lambda (lower)
(define (call/cc :f)

(lower (lambda (pc)
(pc (:f (lambda (v)

(lower (lambda (ignore) (pc v)))))))))
~))

8 splitter/abort/call/pc

Another set of control operators was proposed by Queinnec and Serpette in [QS91] 5. Their effect is very close
to spawn although one goal was to separate the different effects involved by spawn into different operators.
s p l i t t e r marks a context up to which partial continuations can be reified. The context is reified into
an object called a mark which can serve as first argument to the a b o r t , c a l l / p c and w i t h i n - e x t e n t ?
functions, a b o r t allows to replace the current computat ion up to a given mark with a new computat ion
expressed with a thunk, c a l l / p c reifies the partial continuation up to the given mark and applies its second
argument on it. In contrast to the previous c o n t r o l , sh i : f t or process controller, c a l l / p c only reifies the
partial continuation but does not remove it: this is the job of a b o r t which is then the only imperat ive control
operator. Similarly to spawn, marks can only be used while in the dynamic extent of the splitter form that
created them and this can be tested with the w i t h i n - e x t e n t ? predicate adding some reflective capability
to the language. Finally and similarly to c o n t r o l , a reified continuation does not capture the spli t ter-frame
up to which it was reified.

8.1 Examples

Since s p l i t t e r provides more basic operators, our preferred examples become more verbose. Compared
to the previous section and again roughly stated, (spawn (lambda (c) . . .)) is rewritten as (s p l i t t e r
(lambda (c) . . .)) while (c (lambda (:f) . . .)) is replaced by (c a l l / p c c (lambda (:f) (a b o r t c (lambda
() . ..)))) to combine the reification and imperative abortion effect of process controller.

(splitter (lambda (m) (* 2 (call/pc m (lambda (:f) [c]
(abort m (lambda ()

(:f (:f 3))))))))) ~ 12
(splitter (lambda (m) (* 2 (call/pc m (lambda (:f) (:f (:f 3))))))) -~ 24 [cl]
((splitter (lambda (m) (* 2 (call/pc m (lambda (:f) [d]

(abort m (lambda () :f)))))))
3) ---~6
(splitter Is1]
(lambda (ml)

(* 5 (splitter
/(lambda (m2)

(* 2 (call/pc m2 (lambda (:f2) ;:f2----Au.2*u

5The presentation of [QS91] is slightly different, we adopt here one of the described variants.

20

(define-class splitter-frame frame ())
(define-class mark Object (q))

(define (ACPS-splitter q f)
(let* ((frame (make-splitter-frame resume))

(q (extend q frame)))
(f q (make-mark q))))

(define (ACPS-within-extent? q mark)
(resume q (split q (lambda (q) (eq? q (mark-q mark)))

(lambda (frames q) #t)
(lambda () #f))))

(define (ACPS-abort q mark thunk)
(split q (lambda (q) (eq? q (mark-q mark)))

(lambda (frames q) (thunk q))
(lambda () (error "Out of extent"))))

(define (ACPS-cali/pc qq mark f)
(split qq (lambda (q) (eq? q (mark-q mark)))

(lambda (frames q)
(f qq (lambda (q v)

(resume (extend* q frames) v))))
(lambda () (error "Out of extent"))))

Figure 5: splitter

(* 3 (call/pc m2 (lambda (f3) ;f3= Au.(2* (3. u))
7)))))))))))

---+ 210 i.e., 5*2*3*7
(splitter (lambda (m) [g]

(* 5 ((lambda (x) (call/pc m (lambda (fl) (abort m (lambda () x)))))
(* 3 (call/pc m (lambda (f2)

(abort m (lambda () (* 2 (f2 7)))))))))))
-~ 21

((splitter (lambda (ml) [hi
(* 5 (splitter

(lambda (m2)

(* 2 ((call/pc ml (lambda (fl) ;fl=Au.(5,2,(u))(¢)
(abort ml (lambda ()

(lambda (g) (g fl m2))
)))))))))))

; ; let ¢ be the value of the following term. It will be bound to g.
(lambda (fl m2) (fl (lambda ()

(* 7 (c a l l / p c m2 (lambda (f2) (* 11 (f2 1 3)))))))))
---~ Error: out of extent wrt m2

The major differences with spawn are (i) s p l i t t e r Mways refers to the lowest associated split ter-frame
whereas spawn prefers the nearest one, see example [g]. Partial continuations can in effect duplicate frames
which can therefore appear more than once and s p l i t t e r always refer to the lowest i.e., the one which
has been associated to the mark once created. (ii) When applied out of the extent of the corresponding
splitter form a partial continuation cannot call again call/pc nor abort as shown in example fh] above.

21

8 .2 D y n a m i c e x t e n t r e v i s i t e d

Dynamic extent is often associated to the lifetime of a computation: dynamic extent ends when the com-
putat ion returns a value. In presence of high level control operators such as c a l l / c c (and mainly the third
effect as mentioned in section 2), determining when a computation ends is difficult (GC can help). At least
two views of dynamic extent suggest themselves.

• dynamic extent wrt to a continuation: A computation is within the dynamic extent of a continuation
q if the current continuation has q as tail, this is what checks w i t h i n / d e ? with eq?.

• dynamic extent wrt to a frame: A computation is within the dynamic extent of a frame if that frame
belongs to the current continuation. This is the method spawn uses.

The first definition for dynamic extent has the property that when exited, it can be no more entered again.
The second allows the dynamic extent to contain "holes", portions of time where the dynamic extent is left.

Example [h] exhibits that difference. With spawn, dynamic extent wrt c2, is captured by f l and is
reinstalled when f l is called so c2 can be used to reify :f2. With s p l i t t e r , the dynamic extent of m2 is
finished as soon as (a b o r t ml . . .) is performed, so trying to reify up to m2 is no longer possible.

Interestingly, dynamic extent requires the implementation of spawn and s p l i t t e r to use eq? on frames
or continuations i.e., needs a store.

8 . 3 call/cc w i t h splitter/call/pc/abort

Following the tradition, writing c a l l / c c with s p l i t t e r is possible. This implementation explicitly shows
the copy of the interesting stack-slice pc inside the reified continuation. Observe also that c a l l / p c does not
remove the reified partial continuation so it is not necessary to call it immediately to reestablish the correct
current continuation. Interestingly, the imperative effect performed when invoking continuations is explicit
due to the presence of abort in the reified continuation. A definition of s p l i t t e r in terms of c a l l / c o
appears in [QS91].

(splitter (lambda (lower)
(define (call/cc f)

(call/pc lower (lambda (pc)
(:f (lambda (v)

(abort lower (lambda () (pc v))))))))
))

9 d y n a m i c - w i n d a n d c a l l / c c n o u v e a u

The Scheme community has a sort of an equivalent of COMMON LIsP's unwind-protect often named
dynamic-wind. This form takes three thunks: a prelude, something to do (the real work) and a postlude.
The idea is to execute the postlude whenever control escapes from the real work and to execute the prelude
whenever control enters again the real work. An operational description can be found in [HF87, FWH92],
ACPS allows us to give another one, more functional (without side-effect) and more compact:
Many implementation choices exist in this definition: one can substitute, for instance, (work q2) by (work
q l) or, (resume q3 va lue) by (resume q va lue) whether one wants to make implementations more effi-
cient or real work less sensitive to the side effects on control that can be performed by pre- or post-ludes.
For instance, to write (resume q va lue) implies that the continuation is always the original caller of the
dynamic-wind form whereas (resume q3 va lue) implies that the continuation of the postlude will be the
frames beneath. In general, this is the original caller of the dynamic-wind form unless the frame is copied
via partial continuation reification and reinstalled elsewhere.

The dynamic-wind operator only pushes a wind-frame, therefore a new c a l l / c c has to take these frames
into account. This new c a l l / c c now creates continuations that, when invoked, unwind the current continu-
ation to execute all postludes until finding a point where the target continuation can be rewound executing
all necessary preludes.

22

(de f ine -c la s s wind-frame frame (prelude post lude))

(def ine (ACPS-dynamic-wind q prelude work postlude)
(l e t ((ql (extend q (make-wind-frame

(lambda (q4 value)
(postlude

(extend q4
(make-frame
(lambda (q3 ignore-postlude-value)

(resume q3 value))))))
prelude
postlude))))

(prelude (extend ql (make-frame
(lambda (q2 ignore-prelude-value)

(work q2)))))))

Figure 6: dynamic-wind

(define (ACPS-new-call/cc qq function)
(define (rewind q value)

(define (deepest-wind qq) ;find the deepest wind-frame in qq tillq
(if (eq? qq q)

#f
(or (deepest-wind (cdr qq))

(if (wind-frame? (car qq)) qq #f))))
(let ((wq (deepest-wind qq))) ;evaluate preludes from q to qq

(if wq ((wind-frame-prelude (car wq))
(extend (cdr wq)

(make-frame
(lambda (ignore-q ignore-prelude-value)

(rewind wq value)))))
;;resume the caller ofnew-eall/cc
(resume qq value))))

(define (unwind q value)
(def ine (t a i l ? ql q2) ;is ql a tail of q2 ?

(or (eq? ql q2)
(and (pair? q2) (t a i l ? ql (cdr q2)))))

(i f (t a i l ? q qq) ;is q an ancestor ofqq
(rewind q value)
(i f (~ind-frame? (car q)) ;evaluate postludes Irom q

((wind-frame-postlude (car q))
(extend (cdr q)

(make-frame
(lambda (ignore-q ignore-postlude-value)

(unwind (cdr q) value)))))
(unwind (cdr q) value))))

(function qq unwind))

Figure 7: new-ca11/cc

23

Many problems are raised by the introduction of dynara:i.c-w:i.nd. Not to mention the relationship it
carries with partial continuations nor its various possible implementations, it first makes Scheme a purely
sequential language with only one possible control point and thus somehow negates the parallel extensions
proposed for Scheme. Second, it involves a change in the definition of c a l l / c o that seems to preclude to
program the old ea1:1./¢¢ with the new one. Third, it makes the formal semantics of Scheme bigger, more
complex and, hardly fitting on a single page since the semantics of ¢a] . l / ec grows from a one-liner to half a
page.

10 Conclusions
Leaving dynamic-wind apart, the four other sets of control operators can be classified as follows. The first
two have a dynamic behavior negated by the last two which allow to specify the point up to which reification
is wanted: spawn and s p l i t t e r make easy to appropriately pair cort t rol- l ike with reso t - l ike operators.
r e s e t and spawn incorporate, in the reified partial continuation and as last frame, the frame up to which
they were reified. This makes it easy to create a new partial continuation from within a partial continuation
invocation, spawn and splS.t 'eer differ in the amount of reified context as well as in the concept of dynamic
extent. It is also unclear what is the "natural" point targeted by a ca l l / pc - l i ke operator if this operator is
called from within an applied partial continuation and out of the dynamic extent of the original spawn-like

form.
We can now defend two implementation choices: classes and ACPS. Continuations are completely opaque

values in Scheme and, besides applying them, it is not possible to inspect them to know 'if they contain a
given frame or continuation tail. We thus had to make this information explicit and therefore could not use
a c a l l / c o - b a s e d implementation. ACPS, though highly theoretically grounded, is a wonderful tool for that
goal and has the additional benefit to be "close" to the implementation i.e., to suggest that continuations
are made of frames. Reflection-addicts [dl:tS, FW84, Wan86, dR87, WF88, DM88] will also appreciate ACPS
which allows to represent continuations as list of frames thus opening new opportunities to dissect them.

Classes are useful to factorize the behavior of frames in the r e s u m e function as well as to allow various
control operators to cohabit without interference i.e., without confusing a reset-frame with a wind-frame
for instance. Rather than choosing one set of control operators, one may better experiment with all of
them simultaneously. In particular, the meaning of dynara:i.c-wind with respect to these control operators is
obscure and probably deserve more studies. This also the case of the dynamic extent concept.

We hope that these implementations will allow readers to understand control operators better, t ry to
program with them and appreciate their subtleties.

Acknowledgements
Many thanks for all the readers of the many drafts of this paper and especially among them, Matthias
Felleisen and Luc Moreau.

Bibliography
[App92] Andrew Appel. Compiling with continuations. Cambridge Press, 1992.

[CHO88] William D. Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies for continuations.
In Conference Record of the 1988 ACM Conference on Lisp and Functional Programming, page 124 131,
August 1988.

[CR91] William Clinger and Jonathan A Rees. The revised 4 report on the Mgorithmic language scheme. Lisp
Pointer, 4(3), 1991.

[Dan89] Olivier Danvy. On listing list prefixes. Lisp Pointers, 2(3-4):42-46, January 1989.

[DF89] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. DIKU Report 89/12,
DIKU, DIKU, University of Copenhagen (Denmark), August 1989.

[DF90] Olivier Danvy and Andrzej Filinski. Abstracting control. In LFP '90 - ACM Symposium on Lisp and
Functional Programming, pages 151-160, Nice (France), June 1990.

26,

[DF92]

[DL92]

[DM88]

[dR87]

[dRS]

[Fe188]

[FF87]

[FFDM87]

[FSDF93]

[FW84]

[FWFD88]

[FWH92]

[HD90]

[HF84]

[HF87]

[HFW84]

[IM89]

[JD88]

[JG89]

[Joh87]

Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS transformation, pages
361-391, December 1992.

Olivier Danvy and Julia Lawall. Back to direct style II: First-class continuations. In LFP '92 - ACM
Symposium on Lisp and Functional Programming, pages 299-310, San Francisco (California USA), June
1992. ACM Press. Lisp Pointers V(1).

Olivier Danvy and Karoline Malmkjaer. Intensions and extensions in a reflective tower. In LFP '88 -
ACM Symposium on Lisp and Functional Programming, pages 327-341, Snowbird, Utah, July 1988.

Jim des Rivi~res. Control-related meta-level facilities in lisp. In P. Maes and D. Nardi, editors, Workshop
on Meta-Level Architecture and Reflection, Alghiero, Sardinia (Italy), October 1987. North Holland.

Jim des Rivi~res and Brian Cantwell Smith. The implementation of procedurally reflective languages. In
1984 A CM Conference on Lisp and Functional Programming, pages 331-347.

Matthias Felleisen. The theory and practice of first-class prompts. In POPL '88 - Fifteenth Annual
ACM symposium on Principles of Programming Languages, pages 180-190, San Diego (California USA),
January 1988.

Matthias Felleisen and Daniel P. Friedman. A reduction semantics for imperative higher-order languages.
Parallel Architectures and Languages Europe, 259:206-223, 1987.

Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Beyond continuations. Computer
Science Dept. Technical Report 216, Indiana University, Bloomington, Indiana, February 1987.

Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. The essence of compiling with
continuations. In pldi93 [pld93], pages 237-247. Also SIGPLAN Notices 28(6), June 1993.

Daniel P. Friedman and Mitchell Wand. Reification: Reflection without metaphysics. In Conference
Record of the 1984 A CM Symposium on LISP and Functional Programming, pages 348-355, Austin, TX.,
August 1984.

Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce Duba. Abstract continuations: a
mathematical semantics for handling functional jumps. In Proceedings of the 1988 ACM Symposium on
LISP and Functional Programming, Salt Lake City, Utah., July 1988.

Daniel P Friedman, Mitchell Wand, and Christopher Haynes. Essentials of Programming Languages.
MIT Press, Cambridge MA and McGraw-Hill, 1992.

Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In PPOPP '90 - ACM SIGPLAN
Symposium on Principles and Practices of Parallel Programming, pages 128-136, Seattle (Washington
US), March 1990.

Christopher T. Haynes and Daniel P. Friedman. Engines build process abstractions. In Conference Record
of the 1984 ACM Symposium on Lisp and Functional Programming, pages 18-24, Austin, TX., 1984.

Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in procedural objects. ACM
Transactions on Programming Languages and Systems, 9(4):582-598, October 1987.

Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand. Continuations and coroutines. In
Conference Record of the 1984 ACM Symposium on Lisp and Functional Programming, pages 293-298,
Austin, TX., 1984.

Takayasu Ito and Manabu Matsui. A parallel lisp language PaiLisp and its kernel specification. In
Takayasu Ito and Robert H Halstead, Jr., editors, Proceedings of the US/Japan Workshop on Parallel
Lisp, volume Lecture Notes in Computer Science 441, pages 58-100, Sendal (Japan), June 1989. Springer-
Verlag.

G F Johnson and D Duggan. Stores and partial continuations as first-class objects in a language and its
environment. In POPL '88 - Fifteenth Annual A CM symposium on Principles of Programming Languages,
pages 158-168, San Diego (California USA), January 1988.

Pierre Jouvelot and David K Gifford. Reasoning about continuations with control effects. In ACM
SIGPLAN Programming Languages Design and Implementation, volume 24 of SIGPLAN Notices, pages
218-225, Portland (OR), June 1989. SIGPLAN, ACM Press.

Gregory F. Johnson. G1 - a denotational testbed with continuations and partial continuations. In
Proceedings of the SIGPLAN '87 Symposium on Interpreters and Interpretive Techniques, pages 165-176,
Safint-Paul (Minnesotta USA), June 1987.

25

[Mat92]

[MH90]

[Mot92]

[MQ93]

[pld93]

[QD93]

[QS91]

[Que92a]

[Que92b]

[Que93]

[Rey93]

[sr90a]

[SF90b]

[SF92]

[Sit93]

[Ste78]

[SW74]

[Wan80]

[Wan86]

[WFSS]

Luis Mateu. Efficient implementation of coroutines. In Yves Bekkers and Jacques Cohen, editors, Inter-
national Workshop on Memory Management, number 637 in Lecture Notes in Computer Science, pages
230-247, Salnt-Malo (France), September 1992. Springer-Verlag.

Thanasis Mitsofides and Malcolm Harrison. Generators and the repficator control structure in the parallel
environment of alloy. In PLDI '90 -A CM SIGPLA N Programming Languages Design and Implementation,
pages 189-196, White Plains (New-York USA), 1990.

Luc Moreau. An operational semantics for a parallel functional language with continuations. In D. Etiem-
ble and J-C. Syre, editors, PARLE '92 - Parallel Architectures and Languages Europe, pages 415-430,
Paris (France), June 1992. Lecture Notes in Computer Science 605, Springer-Verlag.

Luc Moreau and Christian Queinnec. Partial continuations as the difference of continuations, a du-
umvirate of control operators. Research report LIX RR 93.05, Laboratoire d'Informatique de l'I~cole
Polytechnique, 91128 Palalsean Cedex, France, November 1993.

Proceedings of the ACM SIGPLAN '93 Con]erence on Programming Language Design and Implemen-
tation, Albuquerque (New Mexico USA), June 1993. ACM Press. Also SIGPLAN Notices 28(6), June
1993.

Christian Queinnec and David De Route. Design of a concurrent and distributed language. In Robert H
Halstead Jr and Takayasu Ito, editors, Parallel Symbolic Computing: Languages, Systems, and Applica-
tions, (US/Japan Workshop Proceedings), volume Lecture Notes in Computer Science 748, pages 234-259,
Boston (Massachussetts USA), October 1993.

Christian Queinnec and Bernard Serpette. A Dynamic Extent Control Operator for Partial Continuations.
In POPL '91 - Eighteenth Annual ACM symposium on Principles o] Programming Languages, pages 174-
184, Orlando (Florida USA), January 1991.

Christian Queinnec. A concurrent and distributed extension to scheme. In D. Etiemble and J-C. Syre,
editors, PARLE '92 - Parallel Architectures and Languages Europe, pages 431-446, Paris (France), June
1992. Lecture Notes in Computer Science 605, Springer-Verlag.

Christian Queinnec. Value transforming style. Research Report LIX RR 92/07, Laboratoire
d'Informatique de l'Ecole Polytechnique, 91128 Palaisean Cedex, France, May 1992.

Christian Queinnec. Continuation conscious compilation. Lisp Pointers, 6(1):2-14, January 1993.

J C Reynolds. The discoveries of continuations. International journal on Lisp and Symbolic Computation,
6(3/4):233-247, 1993.

Doral Sitaram and Matthias Felleisen. Control delimiters and their hierarchies. Lisp and Symbolic
Computation: An International Journal, 3(1):67-99, January 1990.

Dorai Sitaram and Matthias Felleisen. Reasoning with continuations ii: Full abstraction for models of
control. In Proceedings of the 1990 ACM Con]erence on Lisp and Functional Programmming, pages
161-175, Nice (France), June 1990. ACM Press.

Amr Sabry and Matthias Felleisen. Reasoning about continuation-passing style programs. In LFP '9~ -
A CM Symposium on Lisp and Functional Programming, pages 288-298, San Francisco (California USA),
June 1992. ACM Press. Lisp Pointers V(1).

Dorai Sitaram. Handling control. In pldi93 [pld93], pages 147-155. Also SIGPLAN Notices 28(6), June
1993.

Guy Lewis Steele Jr. Rabbit: a compiler for scheme. MIT AI Memo 474, Massachusetts Institute of
Technology, Cambridge, Mass., May 1978.

C Strachey and C P Wadsworth. Continuations: A mathematical semantics for handling full jumps.
Technical Monography PRG-11, Oxford University, Computing Laboratory, Oxford University, England,
1974.

Mitchell Wand. Continuation-based multiprocessing. In Con]erence Record o] the 1980 Lisp Con]erence,
pages 19-28. The Lisp Conference, 1980.

Mitchell Wand. The mystery of the tower revealed: a non-reflective description of the reflective tower. In
Proceedings o] the 1986 A CM Symposium on LISP and Functional Programming, pages 298-307, August
1986.

Mitchell Wand and Daniel P. Friedman. The mystery of the tower revealed: a non-reflective description
of the reflective tower. In P. Maes and D. Nardi, editors, Meta-Level Architectures and Reflection, pages
111-134. Elsevier Sci. Publishers B.V. (North Holland), 1988.

26

