
g o r i t h S

Richard C. Waters, editor

Mitsubishi Electric Research Laboratories
201 Broadway

Cambridge MA 02139

Dick@MERL.COM

This issue's Algorithms article discusses a minor but entertaining question that has
been a source of argument between Lisp programmers for decades. Suppose that you
are performing an iterative computation and wish to create a list of values in the order
that they are computed. An easy thing to do is to initialize a list to ni l , push each
value onto the list as it is computed, and then nreverse the list before returning it, to
get the values into the correct order. Alternatively, you can write more complex code
that enters the values in the list in the correct order in the first place and avoids having
to call mreverse. The question is, is this nreverse-avoiding code better or not?

Over the years, many people have insisted that the nreverse-avoiding approach is
much faster and therefore better. Others have insisted that using nreverse is faster and
since it is simpler, is therefore doubly better.

The following article argues that as a practical matter, using nreverse is probably
a bit faster in most Lisp implementations. However, more importantly there is no
reason to believe that the speed difference either way in any Lisp implementation is
large enough to get excited about. As a result, the decision between the two approaches
should be made on the basis of simplicity and clarity, not speed. From this perspective,
nreverse is pretty clearly better.

Richard C. Waters

27

