
To N R e v e r s e W h e n Cons ing a List or
B y Po inter Manipu la t ion , To Avo id It;

That is the Ques t ion

Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway; Cambridge MA 02139

Dick@MERL.COM

A situation that arises all the time in Lisp
is the need to create a list of elements where
the order of the elements in the list is the same
as the order that they are created in t ime--i .e. ,
the first element computed is the first element
in the list, the second element computed is the
second element in the list, etc. There are two
basic ways of doing this: the nreverse approach
and the rplacd approach. In the nreverse ap-
proach, you push the elements onto the list as
they are computed and then use nreverse to
put the list into the correct order after all of the
elements have been computed. In the r p l a c d

approach, you maintain a pointer to the end
of the list and use rplacd to put each element
directly into its proper place in the list.

Which of the two approaches to creating a
list is better?

Over the two decades that I have been writ-
ing Lisp programs, I have overheard (and par-
ticipated in) quite a number of arguments about
this question. Some people argue vehemently
that the rplacd approach is o b v i o u s l y much
faster and therefore better. Others argue just
as vehemently that the n r e v e r s e approach is
actually faster and given its greater simplicity
is therefore o b v i o u s l y better. However, I have
seen very little in the way of hard facts.

As discussed in detail below, the facts sug-
gest that neither approach is o b v i o u s l y faster.
It is just as easy to imagine Lisp implementa-
tions where one approach is faster as implemen-
tations where the other is faster. It is easiest of
all to imagine implementations where the two

approaches run at more or less the same speed.
Experimentat ion suggests that the n r e v e r s e

approach is actually faster in many if not most
Lisp implementations. However, more impor-
tantly, it supports the idea that the speed dif-
ference is not enough to be important . There-
fore, given that the n r e v e r s e approach is easier
to write and understand, I recommend using
n r e v e r s e when creating lists.

A S p e c i f i c E x a m p l e

As a precise foundation for comparing the
two approaches, it is best to look at a specific
example. Consider implementing a simplified
version of the standard Common Lisp function
maplist that takes only one list argument-- i .e . ,
it enumerates each sublist in a list, calls a func-
tion on each sublist, and creates a list of the
results. This example is convenient because it
contains very little computat ion other than the
creation of the output list.

The program maplist-nreverse shows how
a one-list-argument mapl is t can be implemented
using the n r e v e r s e approach to creating the
output list.

(defun maplist-nreverse (f list)
(do ((sub list (cdr sub))

(r nil (cons (funcall f sub) r)))
((null sub) (nreverse r))))

The program maplist-rplacd shows how a
one-list-argument maplist can be implemented
using the rp laca approach to creating the out-
put list. The code is less clear and less concise,

28

but avoids calling nreverse .

(defun maplist-rplacd (f list)
(let ((r (cons nil nil)))

(do ((sub list (cdr sub))
(end r (let ((x (cons

(funcall f sub)
nil)))

(rplacd end x)
x)))

((n u l l sub) (c d r r)))))

The code starts by creating a dummy cons
cell r that is later discarded. This makes the
main loop simpler and faster, because it avoids
the need for code tha t handles the first output
element specially. The savings is greater than
the cost of the ext ra cons unless the input list
is extremely short. (In the Lisp I use, the break
even point is at an input length of five.)

In order to compare maplist-nreverse with
m a p l i s t - r p l a c d o n e must look in detail at the
function nreverse , since this should properly
be considered as part of mapl i s t -n reverse . As
shown below, n reverse is a very simple func-
tion. It merely runs down a list applying c d r

a n d rp lacd once to each cons cell.

(defun nreverse (list)
(prog ((prey nil) next)

(.hen (null list) (return nil))
ip (setq next (cdr list))

(rplacd list prey)
(.hen (not next) (return list))
(setq prey list)
(setq list next)
(go lp)))

The key observation to make is that the
code for m a p l i s t - r p l a c d is very much the same
as the code for map l i s t -n reve r se plus the code
for nreverse . In particular, each approach calls
cons to create the cells of the output list, and
uses rp lacd to place the cells in the correct
order. The only difference is that taken to-
gether maplist-nreverse and nreverse traverse
the output list twice as opposed to once for

maplist-rplacd. This is a real difference, but

not a large enough difference to be important.

C o u n t i n g I n s t r u c t i o n s

To sharpen the comparison of the functions

above, it is interesting to consider the best pos-
sible ways that the functions can be imple-
mented using low level machine instructions.
Since I do my work on an HP-9000 series ma-
chine and am more familiar with it than with
other current machines, I will use HP's PA-RISC
architecture [1] as the basis for the examples
below.

Maplist_nreverse approximates the best PA-
RISC implementat ion of maplist-nreverse. It
is approximate because it makes many assump-
tions about the associated Lisp implementa-
t ion3 In particular, it assumes that the imple-
menta t ion is using the s tandard PA-RISC call-
ing conventions and that cons cells are imple-
mented as a 4-byte car pointer followed by a
4-byte cdr, with n i l implemented as 0.

maplist_nreverse
.CALLINFO CALLER,SAVE_RP,ENTER_GR=5
r .reg %r3
sub .reg Xr4
f . r e g %r5

.ENTER
LDI O,r ;(setq r nil)
MOVB,=,n %argl,sub,DN
HOVB %argO,f

LP MOVB sub,%argO
BLR f,%rp
HOVB %retO,%argO ;Ist cons arg
HOVB r,%argl ;2nd cons arg
BL cons,%rp ;cons
MOVB %retO,r ;(setq r ...)
LDW 4(sub),sub
COMIB,<>,n O,sub,LP

DN MOVB r,%argO ;Ist arg
BL nreverse,%rp;nreverse
.LEAVE

As long as quantities are stored in registers,
operations like car, c d r , r p l a c d , a n d se tq can
be implemented as single PA-RISC instructions.
As a result, maplis t_rtreverse is very compact.
The parts of the code that concern us are the
seven instructions that create the output list.
The correspondence between these instructions
and parts of maplist-nreverse is indicated by
comment s.

The list r being constructed is stored in a

1The machine code shown is also approximate be-
cause it was not practical to test it. As a result, there
might be minor errors; however, this should not effect
the basic comparisons being made.

29

register. A load immediate instruction (LDI) is
used to initialize r to n i l . Two move instruc-
tions (MOVB) are used to set up the arguments of
cons. A branch and link instruction (BL) is used
to call the cons subroutine. A move is used to
store the result returned by cons in r. The last
two instructions call nreverse , whose result is
returned as the result of maplist_nrevorse .

M a p l i s t _ r p l a c d approximates the best PA-
RISC implementat ion of map l i s t - rp l acd . As
above, the relationship between the instruc-
tions that create the ou tpu t list and the code
in map l i s t - r p l acd is indicated by comments.

maplist_rplacd
.CALLINFO FRAME=4,CALLER,SAVE_RP,ENTER_GR=5
end .reg 7,r3
sub .reg 7,r4
f . r e g Zr5

• ENTER
STW
ADDI
MOVB,=,n
MOVB

LP MOVB
BLR
MOVB
LDI
BL
STW
MOVB
LDW
COMIB, <> ,n

DN LDW
• LEAVE

O,-52(~sp) ;set cdr r nil
-56,~sp,end ;(setq end r)
~axgl,sub,DN
XargO,f
sub,XargO
f,Zrp
Zre tO,ZargO ; l s t cons a r g
0 , ~ a x g l ;2nd cons axg
cons,~rp ;cons
~ r e t O , 4 (e n d) ; (r p l a c d end x)
~ r e t O , e n d ; (s e t q end x)
4 (s u b) , s u b
O,sub,LP
- 5 2 (~ s p) , ~ r e t O ; r e t u r n cdr r

To save on overhead, the dummy header
cons cell is simulated on the PA-RISC stack in-
s tead of calling cons. The first store instruc-
tion (STW) initializes the cdr of this cons cell to
n i l by storing 0 in the appropria te stack frame
slot. The add immediate instruction (ADDI) ini-
tializes end to point to four bytes in front of
this cdr. The car par t of the cons cell never
actually has to exist since it is never referred
to. A store instruct ion is used to implement
the required r p l a c d .

Comparing the loops in m a p l i s t _ r p l a c d with
raaplist_nrev~vse shows that the cost of elimi-
nat ing the call on u reve r se is only one instruc-
tion execution per cons cell in the ou tpu t list.
This clearly opens the door to a savings in run
time. However, it turns out tha t u reve r se is so

cheap to compute that the door is not opened
very far.

To see how inexpensive n reverse is, it is
useful to look at the modified implementat ion
shown in n reve r se -unro l l ed . By unrolling the
loop so that three consecutive cons cells are
handled on each cycle of the loop, one can elimi-
nate the pointer shuffling that is required in the
implementat ion shown above. 2 This reduces
the number of basic operations per cons cell
from five to three.

(defunnreverse-unrolled (list)
(prog ((prey nil) next)

(when (null list) (return nil))
lp (setq next (cdr list))

(rplacd list prey)
(.hen (not next) (return list))
(setq prey (cUr next))
(rplacd next list)
(. h e n (no t p r e y) (r e t u r n n e x t))
(s e t q l i s t (c d r p r e v))
(r p l a c d p r e v n e x t)
(when (no t l i s t) (r e t u r n p r e v))
(go l p)))

Nreverse_ulxvolled approximates the best
PA-RISC implementat ion of n r e v e r s e - t m r o l l e d
and therefore nreverse . Cdr and r p l a c d are

implemented with load and store instructions,
as above. The tests for the end of the list
are implemented using compare immediate and
branch instructions (C0MIB). In the loop, only
three instructions per cons cell are require to
reverse the input list•

Just as in maplist_rplacd, one instruction
per cons cell is all that is needed to store the
correct cdr pointers. The only overhead in com-
parison with maplist_rplacd is that nreverse_
unrolled has to traverse the list a second time.
This requires two instructions per cons cell, a
n u l l test and a car.

One way to summarize the results in this

2The nreverse-unrolled approach to implemen-
tating nreverse has been in use in various Lisp imple-
mentations since at least as long ago as the mid-1970s.
At that time, JonL White used it in the PDP10 MacLisp
implementation at MIT. He first discovered the trick by
hand optimizing PDP10 Machine Language code, and
only later noticing that Lisp variables could take the
place of register names allowing for a higher level ex-
pression of the concept.

30

nreverse_unrolled
prey .reg ~retl
list .reg ~retO
next .reg ~argO

.CALLINFO

.ENTER
LDI
MOVB,=,n

LP LDW
STW
C0MIB,=,n
LDW
STW
COMIB,=,n
LDW
STW
COMIB,<>,n
MOVB,TR,n

DNI MOVB
DN2 .LEAVE

O,prev
~argO,list,DN2
4 (l i s t) , n e x t ; cdr
prev ,4 (l i s t) ; r p l a c d
O,next ,DN2 ; when
4 (n e x t) , p r e v ; cdr
l i s t , 4 (n e x t) ; r p l a c d
O,prev,DNl ; when
4(prev),list ; cdr
next,4(prev) ; rplacd
O,list,LP ; when
prev,~retO,DN2
next,~retO

section is to say that the rplacd approach to
creating a list has a clear theoretical advan-
tage of two instructions per cons cell over the
nreverse approach.

However, a better way to summarize the
results is to consider the percentage improve-
ment. Considering only the computation re-
quired to create the output list, the nrevezse
approach uses at least ten instructions to create
each cons cell in the output (three in n r e v e r s e _

u n r o l l e d and four in maplist_nreverse plus sev-
eral instructions per cons cell for the call on
cons even if it is coded in line.) The two in-
structions saved by the rplacd approach are at
most only 20%.

It should be noted that the results presented
above are not overly distorted by the fact that
we have looked at only one specific hardware
architecture. The PA-RISC architecture is at
an intermediate level of complexity. There are
RISC machines with much simpler instruction
sets. There are non-RISC machines with much
more complex instruction sets.

Switching to a simpler architecture would
increase the number of instructions in the ex-
amples above. However, the programs are so
similar that it is hard to imagine that the rel-
ative lengths of the critical loops would change
much. The same can be said about switching
to a more complex architecture.

H a n d T a i l o r e d C o d e

It must be kept in mind that the speed ad-
vantage of the rplacd approach presented in
the last section is only theoretical, because the
hyper-efficient code shown is the result of care-
ful hand coding, rather than being the output
of a Lisp compiler. It is unlikely that any com-
piler will produce code that is anywhere near
as efficient.

To start with, the typical compiler is likely
to implement operations like rplacd as subrou-
tine calls rather than inline instructions. In ad-
dition, it may store some intermediate values
on the stack rather than in registers. Together,
these and other factors are liable to lead to com-
piled code that is several times larger than the
idealized code above.

The deficiencies of compilers are unfortu-
nate in many ways, but in the main, they are
not relevant to the current discussion. There
is no reason to believe that the compiler will
work better for any one function than for the
others. Therefore, the quality of the compiler
should not effect the comparisons being made
here, except for one important thing.

Since nreverse is a built-in function, imple-
mentors may choose to write it using special
implementation-specific subprimitives and/or to
hand compile it. Either way, this could tilt the
performance balance in favor of the n r e v e r s e

approach, because the hand tailored code in
n r e v e r s e could perform a good deal better than
the equivalent user code required by the rplacd
approach. Given that the typical compiler pro-
duces relatively voluminous code, this differ-
ence can be quite significant.

M e m o r y P e r f o r m a n c e E f f e c t s

A potential difference between the n r e v e r s e

and rplacd approaches is that memory is refer-
enced in a different way--in two passes rather
than in one. There are at least two negative
effects that this might have.

First, there could be a negative interaction
with garbage collection. If reference counters
are used, then changing them at a later time
can be more complex than setting them to a

31

correct value in the first place. Somewhat simi-
larly, if an ephemeral garbage collection scheme
is being used, then garbage collecting cons cells
that have experienced an apparently arbitrary
rp laed can be more complex than garbage col-
lecting cons ceils that have been created and
used in a more controlled way.

Second, a two-pass approach might lead to
poorer cache performance. Recently, proces-
sor speed has increased much faster than main
memory speed. This has progressed to the
point where the instruction cycle t ime is 1/10 of
the memory cycle t ime or even less. This mis-
match is overcome by using fast cache memory
between the processor and the main memory.
However, to work well, this requires good mem-
ory locality in order to minimize cache misses.

This could tilt the performance balance in
favor of the r p l a c d approach, because that ap-
proach processes the cons cells created in a very
local way. In contrast, the traversal of the out-
put list initiated by n r e v e r s e does not begin
until after the entire list has been created. If
the output list is long enough, some of the cons
cells in it may have fallen out of the cache before
they are revisited by n r e v e r s e . If this happens,
the main loop of nreverse could slow down by
the equivalent of 10 additional instructions or
more for each of these cons cells.

However, it is unlikely that this would be
a significant difference for two reasons. First,
since the nreverse visits the most recently cre-
ated cons cells first, the initial ceils it visits
must be in the cache. Second, given that the
typical compiler produces relatively voluminous
code, 10 instructions is not liable to be a signif-
icant percentage difference.

S o m e E x p e r i m e n t s

To assess the relative practical significance
of the arguments above, experiments were per-
formed in three very different environments:
Lucid Common Lisp on an HP-730 machine,
Allegro Common Lisp on an old (slow) Apple
Macintosh, and MIT Scheme on an HP-715 ma-
chine.

Luc id . In Lucid Common Lisp on an HP-
730 machine, the functions mapl i s t -nreverse

and maplist-rplacd compile into 54 and 65 in-
structions respectively--4 to 5 times the size
of the idealized code. Using the compiled code,
I determined the average time required per cons
cell for various size input lists. I used #' i d e n t i t y
as the map function to maximize the percent-
age of t ime spent actually creating the output
list. The results of these experiments are shown
in the table below.

input list length
10 102 103 104 105

nreverse 3.1 2.6 2.6 2.9 6.2
r p l a c d 3.3 2.8 2.8 3.1 6.4

The numbers in the body of the table are
the computat ion t ime in terms of microseconds
per cons created. The data suggests that some
difficulty arises when processing long lists, but
does not reveal any relative penalty for the
n r e v e r s e approach in comparison with r l p a c d .

Interestingly, the n r e v e r s e approach is con-
sistently faster than the r p l a c d approach--some
7% faster. It appears that this is due to hand-
coding of n r e v e r s e .

Comparing the speeds of the system imple-
mentat ion of n r e v e r s e and the result of compil-
ing nreverse-unrolled revealed that the user
compiled version is 66% slower (1.0 microsec-
onds per cons cell versus .6 microseconds per
cons cell). This suggests that something was
done to improve the machine code for nreverse
in comparison with what a user can easily get
the compiler to generate. 3 The hand-coding
benefit obtained (.4 microseconds per cons cell)
is easily large enough to account for the fact
that the nreverse approach is faster than the
rp laed approach, and to suggest that without
the hand-coding benefit, the n r e v e r s e approach
would be slower.

A l l eg ro . In Allegro Common Lisp on a
Macintosh, the functions maplist-nreverse and
m a p l i s t - r p l a e d compile into 29 and 42 instruc-
tions respectively. This reflects the fact that

3According to JonL White, Lucid uses the
nreverse-unroll technique to implement nreverse.
It appears that it uses significant hand optimization in
addition.

32

the Macintosh is not a RISC machine. Since I
know very little about the machine instructions
the Macintosh uses, I cannot comment on how
close this is to the best that is possible.

Timing experiments identical to the ones
above revealed the following.

input listlength
10 102 10 3 10 4 105

n r e v e r s e 95 75 75 75 73
rp lacd 110 92 91 90 90

The data does not suggest any cache-miss
penalty for either approach on long lists.

As above, the nreverrse approach is consis-
tently faster than the r p l a c d approach--some
17% faster. It appears that this is due to a
major hand-coding effect for nreverrse.

Comparing the speeds of the system imple-
mentat ion of n r e v e r s e and the result of com-
piling nrreverse-unrolled reveals that the user
compiled version is 208% slower (40 microsec-
onds per cons cell versus 13 microseconds per
cons cell). This suggests that n r e v e r s e has been
very carefully hand coded. As above, the hand-
coding benefit obtained (27 microseconds per
cons cell) is easily large enough to account for
the fact that the n r r e v e r s e approach is faster
than the rplacd approach, and to suggest that
without the hand-coding benefit, the r p l a c d ap-
proach would be faster.

M I T - S c h e m e . Scheme differs significantly
from Common Lisp. However, from the per-
spective of the comparisons being made in this
paper, these differences are not important . 4 In
MIT-Scheme on an HP-715 machine, t iming ex-
periments identical to the ones above revealed
the following. 5

input list length
10 102 10 3 10 4 105

n r e v e r s e 2.0 2.0 2.1 2.2 2.2
rplacd 1.6 1.6 1.7 1.7 1.7

4But, note that in Scheme n r e v e r s e is called
reverse !

sI am indebted to Franklyn Turbak for performing
the Scheme experiments reported here.

The data does not suggest any cache-miss
penalty for either approach on long lists.

In contrast to the results shown above, the
r r p l a c d approach is consistently faster--some
20% faster. It appears that this is due in part
to the complete lack of any hand-coding effect
for nreverse.

Comparing the speeds of the system imple-
mentat ion of nreverse and the result of com-
piling nreverse -unro l led reveals that the user
compiled version is 24% faster (.47 microsec-
onds per cons cell versus .62 microseconds per
cons cell). This reflects the fact that in MIT-
Scheme, nrreverse is written as a simple user
function and does not use any loop unrolling.
The penalty caused by the lack of loop un-
rolling (.15 microseconds per cons cell) accounts
for 1/3 of the difference between the n r e v e r s e

a n d r p l a c d approaches. If a factor of 2 further
gain in speed could be obtained by hand coding
n r e v e r s e , the gap would disappear altogether.

S u m m a r y . The experiments suggest that
of the three sources of speed difference between
the two approaches (a theoretical advantage for
rplacd, a hand-coding advantage for n r e v e r s e ,

and a cache performance advantage for rplacd)
the hand-coding advantage usually wins out
and therefore the nreverse approach is usually
fastest.

However, more than this, it is clear that the
speed difference between the two approaches is
probably never very large. Therefore, if the
computat ion being performed to compute the
elements being consed together involves much
more than just computing i den t i t y , the differ-
ence recedes into complete insignificance.

If you are interested in such things, you
might run an experiment in your Lisp to see
if any significant speed difference can be found.
However, in the absence of clear evidence for
such a difference, I recommend assuming that
there is none.

C o n c l u s i o n

The rplacd approach to creating an out-
put list has a theoretical speed advantage, but
as a practical mat ter this appears to be over-
whelmed by the fact that nrreverrse is a system

33

function that can be hand coded by the sys-
tem implementors. As a result, the nreverse

approach is probably fastest in most Lisp im-
plementations. Even if the rplacd approach is
faster in a given Lisp, it is unlikely to be much
faster. Therefore, since the nreverse approach
is simpler and clearer, it is the best approach
to use in almost every situation.

The only situation where I would consider
using the rplacd approach is if I were a Lisp
system implementor and had the opportunity
to write a system function where I could hand
tune machine code for creating a list. In this sit-
uation, the rp lacd approach should be able to
achieve its theoretical advantages and I would
consider implementing a hand tuned version of
the rp lacd approach. However, it should be re-
alized that there would be much more to be
gained through the hand tuning than through
the choice of which approach to tune.

In closing, I would like to note that the very
best thing to do is to avoid writing code that
conses lists. Whenever possible, you should
use standard parts of Common Lisp that do
the consing for you. In particular, you should
use functions like replace, map, reduce, remove,
union, etc. whenever they are appropriate. Be-
yond this, you should take advantage of looping
macro packages such as loop and Series.

For example, using the extended features of
loop that are available in the proposed stan-
dard for Common Lisp [2], a simple version of
maplis~ could be written as follows.

(deftm maplist-loop (f list)
(loop for sub on list

collect (funcall f sub)))

Alternatively, the Series macro package [3,
4] could be used as shown below.

(defunmaplist-series (f list)
(collect

(map-fn t f (scan-sublists list))))

Either way, the resulting code is clearer,
more compact, and no slower than anything else
you can write.

References

[1] Hewlett-Packard, PA-RISC 1.1 Architec-
ture and Instruction Set Reference Manual,
Hewlett-Packard, Cupertino CA, 1986.

[2] White, J.L., "Loop", in Common Lisp: the
Language, 2nd Edition, 709-747, Steele
G.L.Jr., Digital Press, Maynard MA, 1990.

[3] Waters R.C., "Automatic Transformation
of Series Expressions into Loops", ACM
Transactions on Programming Languages
and Systems, 13(1):52-98, January 1991.

[4] Waters R.C., "Series", in Common Lisp:
the Language, 2nd Edition, 923-955, Steele
G.L.Jr., Digital Press, Maynard MA, 1990.

34

