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Of the Gabriel Lisp Benchmarks, the Boyer Benchmark CBoyer") is the most representative of real AI applications, 
because it performs Prolog-like rule-directed rewriting, and because it relies heavily on garbage collection (GC) for the 
recovery of storage. We investigated the notion that such programs are unsuitable for explicit storage management-- 
e.g., by means of a "linear" programming style in which every bound name dynamically occurs exactly once. We 
programmed Boyer in a "linear" fragment of Lisp in both interpretive-rule and compiled-rule versions, using both true 
linear (unshared) and reference count methods. 

We found that since the intermediate result of r ewr i t e  is unshared, the linear interpreted version is slower than the 
non-linear interpreted version, while the linear compiled version is slightly faster than the non-linear compiled 
version. When shanng is allowed, requiring reference counts for the linear versions, the linear shared versions are not 
competitive with the non-linear versions, except when "anchored pointers" are used. The anchored pointer reference 
count version, which reclaims storage, is still 1.25X slower than the non-linear version, which reclaims no storage. 

INTRODUCTION 

C programmers deride Lisp programmers as lazy, because they refuse to specify explicitly when storage is to be 
released. Lisp programmers nghtly retort that C is unsafe, and curse the crashes of their C-based operating systems. 
Both camps assume that explicit storage management may be more efficient, but also more dangerous. This trade-off 
between efficiency and safety is particularly difficult in "production" code, where customers will not abide either 
inefficient or crash-prone code. Lisp systems currently offer great security, but extreme efficiency is gained only by 
going outside the language and its type system, where a single misstep may result in disaster. Lisp needs to allow 
the tuning of programs through additional programmer effort in ways that will not compromise security. We believe 
that the linear style of programming offers such a way. 

Lisp implementors have long known that most list cells have a reference count of 1 [Clark77]--i.e., most cells are 
unshared. Unshared cells can have particularly efficient deallocation policies. Unfortunately, determining at compile 
time whether a cell is shared may be as expensive as ML type inference [Baker90], which is known to have 
exponential time complexity [Mairson90]. Linear logic [Girard87] [Lafont88] [Abramsky93] [Wadler91], on the other 
hand, exploits unshared cells by typing them as unshared, and the type system then preserves this property. 

Since we are interested in understanding the advantages and disadvantages of the "linear" style of programming, we 
have tested this style on several different "real" programs [Baker93a, b] [Baker94]. We were particularly drawn to the 
Boyer Benchmark CBoyer"), because it is the most representative of all the Gabriel Lisp benchmarks [Gabriel85]. 
Boyer is a classic Lisp program, because it recursively examines and constructs lists at a great rate. Boyer proves that 
a formula is a tautology by continually rewriting it until it is in a normalized form, and then testing whether this 
normalized form is a tautology. This rewriting utilizes a database of rewrite rules (axioms), whose left-hand-sides are 
matched (unified) against the formula, and when a match occurs, the formula is rewritten utilizing the fight-hand-side 
as a pattern. This rewriting is analogous to the operation of a Prolog system in which the rules act as Prolog 
predicates and the initial formula acts as the initial form to be "evaluated". There is a major difference, however, in 
that (the standard) Boyer interprets these rules on-the-fly rather than compiling them. 

Our present interest in a linear version of Boyer is driven not so much by speed or space per se, since a memoized 
Boyer is two orders of magnitude faster and smaller than the standard Boyer [Baker92]. We are more interested in the 
effect of copying versus sharing on total storage requirements of a non-memoized Boyer, and in whether more explicit 
storage management is onerous relative to automatic garbage collection. 

STANDARD (NON-LINEAR) INTERPRETED BOYER BENCHMARK 

The code in [Gabriel85] has several bugs. assq is not defined, and falsep and truep need fixing: 

(defmacro assq (x y) (assoc ,x ,y :test #'eq)) 

(defun falsep (x ist) (or (equal x ' (f)) (member x ist :test #'equal))) 

(defun truep (x ist) (or (equal x ' (t)) (member x ist :test #'equal))) 

The prog in the function t e s t  must be changed into a l e t  to report the answer. Some Lisps--e.g., x l i s p - - d o n ' t  
provide n i l  with a property list, which Boyer requires. Rewrite rule #84 should have g r e a t e r e q p  instead of 
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greatereqpr, although this rule is never used. Rule #101 should have (t) and (f) instead o f t  and f, respectively, 
in the fight-hand-side, although this rule never matches. 

The most serious problem is with rule #54 - - ( equa l  (remainder y 1) ( ze ro ) ) - -wh ich  requires a constant 1 as 
remainder'S second argument, one -way-un i fy l  incorrectly treats the atom 1 like a variable, however, so that this 
rule matches any use of r e m a i n d e r ,  replacing two occurrences in the benchmark with ( z e ro ) .  After one-way- 
uni f y l  is fixed, the r e m a i n d e r  rules #54, #56, #67, #86--are called 2,003 times instead of only twice; consing is 
increased by 12%, and one -way-un i fy l  now calls equal  7,053 times instead of the previous 1,046 times. Fixing 
this bug increases the time on the standard Boyer Benchmark by 10-25%. 1 From now on, we use the term "standard 
Boyer" to refer to Boyer with this bug fixed, and "buggy Boyer" to refer to the code published in [Gabriel85]. 

(defun one-way-unifyl (terml term2) ; With bug fixed. 
(cond ((atom term2) 

(cond ((setq temp-temp (assq term2 unify-subst)) (equal terml (cdr temp-temp))) 
((numberp term2) (equal terml term2)) ; This clause is new. 
(t (setq unify-subst (cons (cons term2 terml) unify-subst)) t))) 

((atom terml) nil) 
((eq (car terml) (car term2)) (one-way-unifyl-lst (cdr terml) (cdr term2))) 
(t nil) ) ) 

Essentially all of Boyer's time and space are used in rewriting; the resources required for tautology testing are 
relatively insignificant. The Boyer rewrite system includes 106 rewrite rules, each with a "left-hand-side" pattern to 
be matched, and a "fight-hand-side" pattern which shows how a matching expression is to be rewritten. Of these 106 
rules, 49 rules are tried in the standard benchmark, and only 8 rules ever succeed (#18,#21,#23,#25,#33,#34,#35,#36). 
Rule #23 ( i f )  is attempted 21,491 times and succeeds 934 times, rule #25, #51 and #95 (plus)  are each attempted 
5,252 times and rule #25 succeeds twice. The rules are indexed by their outermost function symbol on the property 
lists of 58 symbols; equal  has the most rules (14), d i f f e r e n c e  and l e s sp  have 7 rules, and 15 function names each 
have but one rule associated with them. The rules are tried in reverse order of their occurrence in the text, and the 
benchmark is sensitive to this ordenng--one alternative ordenng increased running time by 40%. Storage for the 
rules themselves account for 1,849 list cells (without sharing). 

The intermediate result of rewriting in standard Boyer contains 49,747 cells, all of them unique! In other words, the 
classical reason for preferring non-linearity is to enable sharing, hut r e w r i t e  produces completely unshared data 
structures! The reason is that r ewr i t e  makes a fresh copy of its argument even when no rules have been successfully 
applied. To determine the potential for sharing in r ewr i t e ,  we tested code similar to the following: 

(defun scons (a d c) ; c is cell whose car might be a and whose cdr might be d. 
(if (and (eq (car c) a) (eq (cdr c) d)) c ; if car&car match, use c instead of new cell. 

(cons a d))) ; scons should be inlined. 

(defun rewrite (term) ; rewrite with sharing. 

(if (atom term) term 
(rewrite-with-lemmas (scons (car term) (rewrite-args (cdr term)) term) ; scons v. cons. 

(get (car term) 'lemmas)))) 

(defun rewrite-args (ist) ; rewrite-args with sharing. 

(if (null ist) nil 
(scons (rewrite (car ist)) (rewrite-args (cdr ist)) ist))) ; scons v. cons. 

The use of scons  within r e w r i t e  and r e w r i t e - a r g s  was extremely successful: it won 171,878 times out of 
173,804 tries--a 98.9% "hit rate". This use of scons eliminated 68% of all Boyer consing and dramatically increased 
sharing: the result of r e w r i t e  now required only 6,362 distinct cells instead of 49,747 cells, although both structures 
are equal .  This reduction in storage usage produced a 23% reduction in execution time. 2 We tried scons within 
applw-subst  and a p p l y - s u b s t - l s t  and got a further sharing of only 23 cells (6,339 cells), although with a slightly 
increased running time. We thus found that the sharing implicit in non-linear styles of programming can be valuable 
for Boyer, but only when it is properly exploited! 

LINEAR INTERPRETED BOYER BENCHMARK 

The translation of Boyer into a "linear" fragment of Lisp is quite straightforward--whenever a bound variable occurs 
more than once in a context, the variable must be explicitly duplicated, and whenever a bound variable is not utilized 

1Since our rule compiler performs this check correctly, all of  our "compiled" times are with this bug fixed. 

2The scons function was inlined in every version that we timed. 



in a context, the variable must be explicitly killed. It is interesting to note the places in Boyer where these explicit 
duplications and kills must be inserted. A portion of Boyer copies and performs substitutions according to an 
"association list" which records the mapping of a variable name to its value. Obviously, if the variable occurs more 
than once in the expression, its associated value must be copied when it is substituted; similarly, if the variable does 
not occur, then its associated value must be destroyed. Unfortunately, since the substitution patterns with their 
variable occurrences have not been compiled, the number of occurrences of each variable is not known in advance, and 
therefore each value must be copied at least one extra time before it is discovered that it will not be needed and must 
then be explicitly destroyed. This is an interesting case of non-linearity in an interpreted pattern being reflected back 
into non-linear behavior in the interpreter itself! 

A similar situation occurs elsewhere in Boyer. When the database of rewrite rules is consulted, the set of rules 
indexed by a particular function symbol must be "copied", even though none of the rules may match. Furthermore, 
once a matching rule has been found, the rest of the rules for that function symbol are explicitly discarded, since the 
new function symbol to be rewritten is most likely different from the previous function symbol. Since most rule 
matches fail, and fail before a significant fraction of the rule has been examined, it is most efficient to keep only one 
copy of each rule, which copy is decomposed during matching and then reconstructed for later use. 

The non-functional style of updating the variable association list in one-way-uni fyl Was changed into a functional 
style. In particular, the tasks of one -way-un i fy l  were split into three functions: one -way-un i fy l ,  which simply 
matches shapes, o n e - w a y - u n i f y 2 ,  which constructs an association list, and c h e c k - a l i s t ,  which checks that 
duplicate variables have equal values. This new style is slower than the non-functional style, but only slightly, since 
shapes very seldom match, in which case the construction of association lists is not necessary. 

The strictly linear (unshared) style for Boyer was 1.58X slower than the non-linear Boyer, which is due primarily to 
the fact that linear Boyer has to recirculate many argument values as multiple result values which can be quite 
expensive. Furthermore, the linear interpreted Boyer performed one excess copy for each substitution performed, 
because it could not tell that there were no more occurrences of the variable. 

We then programmed a traditional reference count implementation "underneath" our linear Boyer, by having dup 
increment reference counts instead of copying, having k i l l  decrement reference counts instead of recycling, and 
having crier* adjust reference counts on cells it is dissolving. This simple reference count implementation is not 
competitive, being about 2.9X as slow as the non-linear Boyer, and 1.62X slower than the strictly linear Boyer. This 
slowdown is worse than expected, since the copying involved during substitution is replaced by a simple reference 
count increment. One reason for this difference is the change from the built-in c o n s  cell to a d e f s t r u e t  cell; type 
testing for d e f s t r u c t  cells is substantially slower in Coral Common Lisp than testing for consp. Another reason is 
that most reference count updates involve a type test in addition to the increment itself. Additionally, the bulk of the 
work in Boyer is unsuccessful pattern matching, so the costs involved in manipulating reference counts on the 
patterns and values far exceeds the slight savings dunng substitution. Finally, the next call to r e w r i t e  eliminates 
the sharing created by substitution. 

We then used the concept of "anchored pointers" [Bakei93AP] to further optimize our linear reference counted Boyer. 
An anchored pointer is similar to a "derived" or "weak" pointer in that it does not protect its target from being 
reclaimed. However, if the target is already protected by an anchor, then the anchored pointer will always point to an 
accessible target. Anchored pointers can be more efficient than normal pointers for traversing data structures because 
reference counts do not have to be manipulated. Anchored pointers can be safely used only within a dynamic context 
in which the anchor holds, and any anchored pointer which escapes this context must first be normalized by 
incrementing the target's reference count. 

Anchored pointers are perfect for most of the manipulations involved in interpreted Boyer. The rules themselves are 
anchored, and during the pattern match, the expression to be matched is anchored, as well. However, the argument 
and result of r e w r i t e  are normal pointers, because we want the argument to r e w r i t e  to be consumed in the 
production of its result, which is also normal. The arguments to the function a p p l y - s u e s t  are anchored pointers, 
but its value is normal, because it is newly consed. 

The linear reference counted Boyer with anchored pointers was more than twice as fast as the simple reference counted 
Boyer, and 1.37X faster than the strictly linear Boyer without reference counts. The linear reference counted Boyer 
was 1.42X slower than the standard non-linear Boyer. When sharing (scons) was used, the linear reference counted 
Boyer was 1.28X slower than the standard non-linear Boyer using d e f s t r u c t  cells. 

NON-LINEAR COMPILED BOYER BENCHMARK 

While the standard Boyer with its interpreted rules is a good benchmark for Lisp prototyping, it is less effective at 
predicting performance on a production program, which would use compiled rules [Boyer86]. A compiled rule can be 



more efficient, since it knows in advance the pattern to be matched, and does not have to access the list cells of either 
pattern. If all of the rules which are indexed to a particular function symbol are compiled together, then the 
optimizations familiar to any Prolog implementor can be achieved. 

Our rule compiler compiles each rule separately, and does not therefore take advantage of important inter-rule 
optimizations. The compiler consists of two parts--a pattern match compiler, and a pattern-directed constructor, both 
classical. Our non-linear rule compiler uses sharing for subexpressions of the input which appear in the output, as 
well as for multiple copies in the output. Each compiled rule is a function with one argument--the expression to be 
rewritten--and 2 results--a truth value which is false if no match occurred, and the rewritten expression. Thus, when 
( f u n c a l l  <rule> <exp>).fails, it returns n i l ,  <exp>. The non-linear compiled rules are similar to the linear 
compiled rules below, except that upon failure the input expression is not reconstituted. 

The rule compiler eliminates the consing required to construct association lists during pattern matching, which saves 
69,208 conses, or about 27% of the total, and also runs 1.32X faster than the interpreted version. We also tested a 
"shared cons" (scons) compiled version, which eliminated another 171,878 conses, leaving 13,372 conses. This non- 
linear shared compiled version ran 1.34X faster than the non-s con s compiled version. 

LINEAR COMPILED BOYER BENCHMARK 

When compiling rules into a linear Lisp, additional optimizations are possible. The number of occurrences of a 
variable in a pattern can be determined in advance, as can the number of additional occurrences required during the 
actual rewriting. Furthermore, since a strictly linear pattern matcher destroys the portion of the expression which 
matches, the cells recovered during this decomposition can be reused for the construction of the rewritten expression. 
In this case, the cell is never actually put back onto the freelist, but is immediately reused by the constructor code. 

Our linear rule compiler also compiles each rule separately. The compiler consists of three parts--a pattern match 
compiler, a pattern-directed constructor, and a copy analyzer which determines how many copies of a matched variable 
are kept or produced for the constructor. The pattern-directed constructor is classical, except that it is given a list of 
names of cells it is allowed to reuse during construction. The pattern match compiler is also classical, except that 
when a non-match occurs, the input expression must be explicitly re-constituted. The copy analyzer is novel in the 
linear style, which requires that any copying and deletion be made explicit. Our linear rule compiler is strictly linear, 
and does not use reference counts or sharing, so that all copying is "deep" copying. 

A complete rule is a more convenient modularization for the linear style than is the separation of matching and 
construction found in the interpreted Boyer. Complete rules allow the compiler to more efficiently reuse cells 
reclaimed from the input expression in the construction of the output expression. Below is an example of the 
compiled version of the rule ( e q u a l  ( f o o  x y x) ( b a r  y y ) ) :  

(defun rule-foo-i (e) ; compiled from rule (equal (foo x y x) (bar y y)) 

(if-atom e (values nil e) 

(dlet* (((fn . el) e)) 

(if-atom el (values nil " (,fn ,@el)) 

(if-neq 'foo fn (values nil " (,fn ,@el)) 

(dlet* (((xl . e2) el)) 

(if-atom e2 (values nil " (,fn ,xl ,@e2)) 

(dlet* (((yl . e3) e2)) 
(if-atom e3 (values nil " (,fn ,xl ,yl 

(dlet* (((x2 . e4) e3)) 

(if-natom e4 (values nil " (,fn ,xl 

; Acquire first cell of input list. 

; These conses reuse the input cells. 

; These conses reuse the input cells. 
; Acquire second cell of input list. 

; These conses reuse the input cells. 

; Acquire third cell of input list. 
,@e3)) ; Reuse input cells. 

; Acquire fourth cell of input list. 

,yl ,x2 ,@e4)) ; Reuse input cells. 

(if-nequal x2 xl (values nil " (,fn ,xl ,yl ,x2 ,@e4)) ; Reuse cells. 

(let* ((yl y2 (dup yl))) ; Acquire copy of input y. 

(kill fn) (kill xl) (kill x2) ; Start freeing resources. 
(values t "(bar ,yl ,y2))))))))))))))) ; These conses are optimized. 

This compiled code for a rewrite rule bears a close resemblance to concurrent programs which perform "two-phase 
locking" [Gray78]. In two-phase locking, a program's first phase acquires all the resources it needs, so that during its 
second phase, it will be guaranteed to succeed. In the code above, the rule first "acquires" the entire input expression 
that matches the pattern, followed by the "acquisition" of a duplicate of the y variable. If at any time during the first 
phase the "resources" cannot be acquired, then the rule can fail without "deadlocking". The second phase is guaranteed 
to succeed, because y has already been copied, and the number of cells required for the fight-hand-side of the rule (3) is 
fewer than those appearing in the left-hand-side (4). If we make the analogy between these rewrite rules and chemical 
reactions which can happen in parallel [Berry92], then the two-phase locking analogy becomes very intuitive. 

This compiled linear Boyer uses strict copying, so each call to dup causes its argument to be "deep" copied. Since 
most people expect this copying to be expensive, we collected statistics for this Boyer benchmark. There were 1,868 
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calls to dup on non-atoms, with a mean size of 24.5 cells, a max size of 1801 cells and a standard deviation of 64.1 
ceils. The total number of cells copied is 45,784, which accounts for most of the 49,747 cells which appear in the 
result of r e w r i t e .  The rest of the cells (3,963) come from incremental additions by the successful rules---e.g., the 
934 successful applications of rule #23 add 934*4=3,736 additional cells. 3 Since the 8 successful rules cause neither 
deletions (kil l 'S) nor incremental reductions in the cell count, every cell is accounted for. 

A major speed difference between the standard (non-linear) Boyer and our linear Boyer is the speed of t au to logep .  
The non-linear tautologyp takes about 12 times longer than the linear tautologyp. The reason for this discrepancy 
is instructive. The linear t a u t o l o g y p  on an argument of 49,747 cells takes only 14% longer than k i l l  on the same 
argument, and the absolute difference is only marginally greater than the time for non-linear t au to logyp .  Thus, the 
time for linear t a u t o l o g y p  is just the time to test a tautology, plus the time to reclaim all the cells of its argument. 

RESULTS 

The following results were obtained on an Apple Mac+ with 4 MBytes of memory and a 68020 accelerator running 
Coral Common Lisp version 1.2. The different versions use the following labels: 
NL - -  non-linear (garbage collected) using standard c o n s  cells. 
NL3 - -  non-linear (garbage collected) using de f st  ruct  cells. 
L - -  linear (deep copy) using standard cons cells. 
LRC - - l inea r  sharing using reference counts; uses d e f s t r u c t  cells. 
LRCAP - -  linear sharing using reference counts and anchored pointers; uses d e f s t r u c t  cells. 

Note that compiled versions (C) have the bug fixed (BF), and strict linear (L) versions cannot represent sharing (S). 
Interpreted versions (I) do not count the number of cells used to represent the rules themselves (1,849 cells). 

Memory 
Management 
NL 
NL 
NL 
NL 
NL 
NL 
NL3 
NL3 

Interpreted (D 
Compiled (C) 
I 

C 
C 

Bug (B) 
Bu S Fixed (BF) 
B 
B 

BF 
BF 
BF 
BF 
BF 

Unshared (US) 
Shared (S) 
US 

US 

US 

rewrite Time 
w/o GC ~ 

24.967 s. 
21.167 s. 
28.050 s. 
24.417 s. 
21.250 s. 
15.900 s. 
25.367 s. 

C BF S 16.533 s. 
L I BF US 44.400 s. 
L C BF US 20.783 s. 
LRC I B US 72.000 s. 
LRCAP I B US 33.133 s. 
LRCAP I B S 27.333 s. 
LRCAP I B F  US 39.767 s. 
LRCAP I BF :S  32.400 s .  

S 20.700 s. C LRCAP BF 

Result Size 

48~139 cells 
6,362 cells 

Total Allocated 

226,436 cells. 
58,566 cells. 

49,747 cells 254,458 cells. 
6,337 cells 82,580 cells. 

49,747 cells 185,250 cells. 
6,337 cells 13,372 cells. 
6,337 cells 82,580 cells. 
6,337 cells 13,372 cells. 

49,747 cells 50,204 cells. 
49,747 cells; -52,000 cells. 
48,139 cells 49,880 cells. 
48,139 cells -66,000 cells. 

6,362 cells -8,000 cells. 
49,747 cells 66,208 cells. 

6,337 cells 7,544 cells. 
6,337 cells 7,478 cells. 

One of the more interesting comparisons is between NL3,C,BF,S at 16.533 secs. and LRCAP, C,BF,S at 20.7 secs. 
Both of these tests use exactly the same code, except that the reference count updating and cell recycling has been 
removed from the non-linear version. The reference counted version is 1.25X slower than the non-linear version, 
meaning that fully 1/5 of all of the work went into reference count updating and cell recycling. Recycling the cells 
themselves takes only about 1/4 of that difference, or about 1/20 of the total effort. The rest of the difference, or 
about 15% of the total effort, is devoted to reference count updating. This test performed 7,584 normalizations, of 
which 7,082 were non-atoms; this number is probably a minimum for the amount of sharing which actually occurs 
Thus, although anchored pointers reduce reference count overhead, it is still a substantial fraction of the total effort. 

The difference between NL3,C,BF,S at 16.533 secs. and NL,C,BF,S at 15.9 secs. is entirely due to the representation 
of the cells and the type testing. The NL3 version uses d e f s t r u c t  cells, while the NL version uses the more 
efficient built-in cons ceils. 

3The statistics of Quicksort [Baker94] support the cell reuse optimization far better than these Boyer statistics do. 



CONCLUSIONS 

To summarize our conclusions: 
• Boyer Benchmark is a kind of worst case for the linear style 
• linear styles generally use less storage--even when deep copying 
• strict copying linear style can be remarkably efficient, due to the elimination of most run-time decisions 
• linear style forces all work to be done by the processor, including trivial copies usually made by the memory 
• reference counting, even after being minimized by linearity and anchored pointers, can still be expensive 
• reference counting may require hardware help in memory systems to be competitive 
• the true cost of reference count updating is a store-to-store increment, plus a type check 
• linear style requires heavy use of multiple returned values, which must therefore be efficient 
• linear style definitely requires a linearity checking tool 

If one wishes to execute the fastest possible Boyer benchmark, one should compile the rules [Boyer86] and utilize 
memoization [Baker92]. Such a scheme requires only about 1% of the time and space of the standard Boyer, and is 
clearly superior. However, we wanted to estimate the performance to be expected from problems that could not be 
successfully memoized. Rule compilation provides an overall performance improvement of perhaps 1.4X. Since rule 
matches are hundreds of times more common than rule rewrites, one can focus most optimizations on matches. 
Compiling rule matches saves the cost of destructunng the pattern as well as the expression, and about doubles the 
speed of this operation. Significant additional performance improvements are possible through compiling all patterns 
as a group, but we did not pursue it because this optimization is orthogonal to issues of storage management. 

The lack of sharing and explicit copying was not as expensive as we had expected. The explicit copying, compiled 
rule Boyer is 1.02X faster than the unshared non-linear compiled Boyer, is only 1.004X slower than the shared, 
reference-counted Boyer, and is only 1.31X slower than the fastest shared, non-linear Boyer, which does no storage 
reclamation at all. There are several reasons for this efficiency in the strict linear (unshared) version. First, the 
standard Boyer does not preserve sharing, anyway. Second, the static, a priori knowledge that a cell is unshared means 
that when it is dissolved, the cell can be immediately recycled without any checking. Third, linearity allows for 
reallocation of a recycled cell by the rule compiler without it ever appearing on the freelist. Fourth, recycling dunng 
dissolution means that most cells are recycled by mutator traversal rather than requiring a separate collector traversal. 
Thus, data structures must be heavily shared before explicit copying becomes inefficient. 

Of course, sharing can be remarkably efficient for Boyer, since a hash cons table implementation of Boyer uses only 
146 cells to represent the intermediate result of rewriting, compared with 48,139 cells 4 for an unshared representation 
[Baker92]! However, our current results show that the sharing which is important for this compression is obtained by 
exploiting "may share" information (exploited by scons and hash consing) rather than "must share" information 
(traditional non-linear sharing) which utilizes 6,337 cells--almost an order of magnitude smaller than 49,747, but 1.6 
orders of magnitude more than 146. It therefore appears that the scheme suggested in [Baker92LLL] which uses both 
reference-counted linearity and hash consing may be an optimum point for Boyer-like symbolic computations. 

Our tests do not settle the question about which kind of storage management is best for Boyer. They do seem to 
indicate that unless reference counts can dramatically reduce cache misses, reference counting will need hardware help 
in order to be competitive with other techniques. We could not measure the "high water mark" storage requirements 
for the non-linear versions which rely on pacing garbage collection for cell reclamation, but we believe that linear and 
reference-counted versions show substantial reductions in the high water mark compared with non-linear versions. 

Most traditional Lisp optimizations have focussed on minimizing execution time for both a computation and its 
garbage collector. With modern RISC architectures having one- and two-level caches, however, minimizing time 
requires minimizing space, because an "off-chip" access can cost upwards of 100 times as much as an on-chip access. 
The linear style does seem to minimize storage requirements, and should produce fewer cache misses. Our timings 
could not reflect this, however, since our experiments were performed on an architecture without a cache. 
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A SHORT TUTORIAL ON "LINEAR" LISP 

Linear Lisp is a style of Lisp in which every bound name is referenced exactly once. Thus, each parameter of a 
function is used just once, as is each name introduced via other binding constructs such as l e t ,  l e t * ,  etc. A linear 
language requires work from the programmer to make explicit any copying or deletion, but he is paid back by better 
error checking during compilation and better utilization of resources (time, space) at run-time. Unlike Pascal, Ada, C, 
and other languages providing explicit deletion, however, a linear language cannot have dangling references. 

The iden t i ty  function is already linear, but f ive must dispose of its argument before returning the value 5: 

(defun identity (x) x) 

(defun five (x) (kill x) 5) ; a true Linear Lisp would use "x" instead of "(kill x)" 

The kill function, which returns no values, provides an appropriate "boundary condition" for the parameter x. The 
appearance of k i l l  in f ive signifies non-linearity. (See Appendix for a definition of ki l l ) .  

The square function requires two occurrences of its argument, and is therefore also non-linear. A second copy can be 
obtained by use of the dup function, which accepts one argument and returns two values--i.e., two copies of its 
argument. (See Appendix for a definition Ofdup). The square function follows: 
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(defun square (x) 

(let* ((x x-prime (dup x))) ; Use Dylan-style syntax for multiple values [Shalit92]. 
(* x x-prime) ) ) 

Conditional expressions such as i f -expressions require a bit of  sophistication. Since only one "arm" of  the 
conditional will be executed, we  relax the "one-occurrence" linearity condition to allow a reference in both arms. 5 
One should immediately see that linearity implies that an occurrence in one arm if and only if there is an occurrence 
in the other arm. (This condition is similar to that for typestates [Strom83]). 

The boolean expression part of  an if-expression requires more sophistication. Strict linearity requires that any name 
used in the boolean part of  an if-expression be counted as an occurrence. However, many predicates are "shallow", in 
that they examine only a small (i.e., shallow) portion of  their arguments (e.g., nu l l ,  zerop),  and therefore a modified 
policy is required. We have not yet found the best syntax to solve this problem, but provisionally use several new 
i f -like expressions: i f - at om, i f -  n u i l ,  i f -  z e r op, etc. These i f-like expres sions require that the boolean part be a 
simple name, which does not count towards the "occur-once" linearity condition. This modified rule allows for a 
shallow condition to be tested, and then the name can be reused within the arms of  the conditional. 6 

We require a mechanism to linearly extract both components of  a Lisp cons cell, since a use of  (car xl precludes the 
use of  (cdr x l ,  and vice versa, due to the requirement for a single occurrence of  x. We therefore introduce a 
"destructudng let" operation d l e t * ,  which takes a series of  binding pairs and a body, and binds the names in the 
binding pairs before executing the body. Each binding pair consists of  a pattern and an expression; the expression is 
evaluated to a value, and the result is matched to the pattern, which consists of  list structure with embedded names. 
The list structure must match to the value, and the names are then bound to the portions of  the list structure as if the 
pattern had been unified with the value. Linearity requires that a name appear only once within a particular pattern. 
Linearity also requires that each name bound by a d l e t *  binding pair must occur either within an expression in a 
succeeding binding pair, or within the body of  the d l e t *  itself. Using these constructs, we can now program the 
append and factorial (fact) functions: 

(defun lappend (x y) 
(if-null x (progn (kill x) y) 

(dlet* (((carx . cdrx) x)) 
(cons carx (lappend cdrx y))))) 

(defun fact (n) 
(if-zerop n (progn (kill n) i) 

(let* ((n n-prime (dup n))) 
(* n (fact (i- n-prime)))))) 

APPENDIX 
(defun kill (x) 

(if-atom x (kill-atom x) 
(dlet* (((carx . cdrx) x)) 

(kill carx) (kill cdrx) 

(defun dup (x) 
(if-atom x (dup-atom x) 

(dlet* (((carx . cdrx) x)) 
(let* ((carx carx-prime 

(values 

; append for "linear" lists. 
; trivial kill 

; disassociate top-level cons. 
this cons will be optimized to reuse input cell x. 

; Return no values. 

(values)))) 

; Return 2 values. 

; trivial kill. 
; Dylan-style multiple-value syntax. 

(dup carx)) (cdrx cdrx-prime (dup cdrx))) 
(cons carx cdrx) (cons carx-prime cdrx-prime)))))) ; reuse input cell. 

5Any use of  parallel or speculative execution of  the arms of  the conditional would require strict linearity, however. 

6Although this rule seems a bit messy, it is equivalent to having the shallow predicate return two values: the 
predicate itself and its unmodified argument. This policy is completely consistent with linear semantics. 
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