
The Best of Intentions

EQUAL Rights and Wrongs in Lisp

Operations in Lisp, Scheme, and other dynamically-typed
languages typically dispatch on representational type information
rather than intentional type information. Several broad classes of
bugs and confusions can be traced to improper attempts to
recover intentional type information from representation types.

I 've chosen here to discuss some Common Lisp built-in operators
that highlight the various issues. However, the problems cited here are quite general, and occur
routinely in other dynamically-typed languages as well as user programs. Fortunately, the solutions to
these problems are also conveniently available to designers, implementors, and programmers--without
throwing dynamic typing out the window. I've provided code to illustrate how these ideas can be
translated into practice without requiring any fundamental change to the underlying technology.

Coovine
- . v

"Why is there no generic COPY function?" Common Lisp programmers often ask this question.

This glossary entry from dpANS Common Lisp [CL93] provides some useful background information
and a brief rationale for the absence of a generic COPY function:

copy n .

1. (of a cons C) afresh cons with the same car and cdr as C.
2. (of a list L) afresh list with the same elements as L.. (Only the list structure is fresh; the

elements are the same.) See the function c o p y - 1 i s t .
3. (of an association list A with elements Ai) afresh list B with elements Bi, each of which is

n i l i fA i is n i l , or else a copy of the consAi. See the function c o p y - a l i s t .

4. (of a tree T) afresh tree with the same leaves as T. See the function c o p y - t r e e .
5. (of a random state R) afresh random state that, if used as an argument to the function

random would produce the same series of "random" values as R would produce.
6. (of a structure S) afresh structure that has the same type as S, and that has slot values, each

of which is the same as the corresponding slot value of S.
(Note that since the difference between a cons, a list, and a tree is a matter of "view" or
"intention," there can be no general-purpose function which, based solely on the type of an
object, can determine which of these distinct meanings is intended. The distinction rests solely
on the basis of the text description within this document. For example, phrases like "a copy of
the ~iven list" or "copse of the list x" imply, the second definition.)

Parenthetically Speaking expresses opinions and analysis about the Lisp family of languages. Except as explicitly indicated
otherwise, the opinions expressed are those of the author and do not necessarily reflect the official positions of any
organization or company with which the author is affiliated. Kent M. Pitman can be reached via the Internet as
KMP@Harlequin.COM, or by U.S. mail at Harlequin, Inc., Suite 904, One Cambridge Center, Cambridge, MA 02142 U.S.A.

Copyright © 1994, Kent M. Pitman. All fights reserved, except that permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed for direct commercial advantage, this copyright notice and its
date appear, and notice is given that copying is by permission of Kent M. Pitman.

36

Programmers want a genetic COPY function that somehow "does the right thing," but relying solely on
the representation type is insufficient to resolve intentional distinctions between conses, lists, alists, and
trees, so we wouldn't know whether to call COPY-CONS (if there were such a thing), COPY-LIST,
COPY-ALIST, or COPY-TREE.

Of course, we could just define that COPY-LIST is what's used, but that could (and probably would)
give the misleading impression that such a choice was "uniquely determined" or even "morally correct,"
instead of just arbitrarily chosen. Also, an arbitrary choice would leave users feeling funny about the
presence of an operator that can copy many--but not a l l - -~nds of objects.

Where does this leave us? Well, it doesn't mean the problem cannot be solved. It only means that
additional data flow must be provided to the running program in order for it to be able to divine the
programmer's intent. For example:

(DEFUN COPY (OBJECT &OPTIONAL (INTENTIONAL-TYPE (TYPE-OF OBJECT)))
(COPY-OBJECT OBJECT INTENTIONAL-TYPE))

(DEFGENERIC COPY-OBJECT (OBJECT INTENTIONAL-TYPE))
(DEFMETHOD COPY-OBJECT ((OBJECT CONS) (TYPE (EQL 'CONS)))

(CONS (CAR OBJECT) (CDR OBJECT)))
(DEFMETHOD COPY-OBJECT ((OBJECT LIST) (TYPE (EQL 'LIST)))

(COPY-LIST OBJECT))
(DEFMETHOD COPY-OBJECT ((OBJECT LIST) (TYPE (EQL 'ALIST)))

(COPY-ALIST OBJECT))
(DEFMETHOD COPY-OBJECT (OBJECT (TYPE (EQL 'CONS-TREE)))

(COPY-TREE OBJECT))

Equality
"If I can't have COPY, why can I have a genetic (ok, just polymorphic) EQUAL function?" Common
Lisp programmers should ask this question, but rarely do. I suppose most programmers are just happy
we've given them a tool of 'reasonable engineering quafity' so they can get work done, and are not
philosophically inclined to look such a proverbial gift horse in the mouth.

The design issues here are pretty much the same as they are for COPY. If COPY can't be done properly,
then neither can EQUAL. And, in fact, that's the case. There is no uniquely determined equality
function for complex structures--there are only arbitrary ones.

EQUAL and EQUALP are just two of an arbitrary number of possible equality operations that could have
been provided by the language. Indeed, many of the dialects which contributed to the design of
Common Lisp had functions called EQUAL which had sfightly varying semantics. No particular
definition was definitively better than another. Arbitrary choices were made to resolve the differences.

To avoid an arbitrary choice, it would be necessary to express some intentional information about how
to descend the tree and how to compare the leaves. The following code illustrates one possibility.

;; ; The name EQUIVALENT is used here instead of EQUAL to avoid a need
; ; ; to shadow the Common Lisp built-in function EQUAL.
(DEFUN EQUIVALENT (X Y &OPTIONAL (INTENTIONAL-TYPE (TYPE-OF Y)))

(EQUIVALENT-OBJECTS X Y INTENTIONAL-TYPE))
(DEFGENERIC EQUIVALENT-OBJECTS (X Y INTENTIONAL-TYPE))
(DEFMETHOD EQUIVALENT-OBJECTS ((X CONS) (Y CONS) (TYPE (EQL

(AND (EQ (CAR X) (CAR Y)) (EQ (CDR X) (CDR Y))))
(DEFMETHOD EQUIVALENT-OBJECTS ((X LIST) (Y LIST) (TYPE (EQL

(AND (= (LENGTH X) (LENGTH Y))
(EVERY #'EQL X Y)))

(DEFMETHOD EQUIVALENT-OBJECTS ((X LIST) (Y LIST) (TYPE (EQL
(AND (= (LENGTH X) (LENGTH Y))

(EVERY #'(LAMBDA (X Y) (EQUIVALENT X Y 'CONS)) X Y)))
(DEFMETHOD EQUIVALENT-OBJECTS (X Y (TYPE (EQL 'CONS-TREE)))

(EQUAL X Y))

'CONS)))

'LIST)))

'ALIST)))

37

This example shows truth values under our new EQUIVALENT predicate after various kinds of copying
using our new COPY function:

(LET* ((A (GENSYM "A")) (B (GENSYM "B"))

(CONS (LIST A B))

(LIST (LIST CONS CONS))

(TYPES '(CONS LIST ALIST CONS-TREE))

(LISTS (CONS LIST (MAPCAR #' (LAMBDA (TYPE) (COPY
(PAIRS (LOOP FOR Pl ON LISTS

APPEND (LOOP FOR P2 ON (CDR Pl)

COLLECT (LIST (CAR Pl)
(LOOP FOR TYPE IN TYPES

COLLECT (CONS TYPE (LOOP FOR (X Y) IN PAIRS

COLLECT (EQUIVALENT X Y TYPE)))))

LIST TYPE)) TYPES)))

(CAR P2))))))

((CONS T NIL NIL NIL NIL NIL NIL NIL NIL NIL)

(LIST T T NIL NIL T NIL NIL NIL NIL NIL)

(ALIST T T T NIL T T NIL T NIL NIL)

(CONS-TREE T T T T T T T T T T))

An interesting sidelight on the equality issue is that the functions provided by Common Lisp are not
chosen in a completely arbitrary way. The following impfications hold:

(EQ X Y) ~ (EQL X Y) ~ (EQUAL X Y) ~ (EQUALP X Y)

Similarly, in the replacement functionality we've proposed here:
(EQUIVALENT X Y 'CONS)

(EQUIVALENT X Y 'LIST)

(EQUIVALENT X Y 'ALIST)

(EQUIVALENT X Y 'CONS-TREE)

The fact that these functions have been chosen to have a sort of inclusion relationship does not imply
that equality is a one-dimensional quantity, with predicates varying in no more interesting way than
being more or less conservative. For example, the following predicates are not comparable:

(DEFUN EQUIVI (X Y)

(COND ((AND (STRINGP X) STRINGP Y (STRING-EQUAL X Y)) ;Liberal

((AND (NUMBERP X) NUMBERP Y (EQL X Y)) ;Conservative
(T (EQL X Y))))

(DEFUN EQUIV2 (X Y)

(COND ((AND (STRINGP X) STRINGP Y (STRING= X Y)) ;Conservative
((AND (NUMBERP X) NUMBERP Y (= X Y)) ;Liberal

(T (EQL X Y))))

(EQUIVI "Foo FO0") -~ T (EQUIV2 "Foo FO0") --~ NIL

(EQUIVi 1 1.0) -~ NIL (EQUIV2 1 1.0) -9 T

While it's useful that there is an inclusion relationship among the particular equality predicates offered
by Common Lisp, the orderliness of this relationship contributes to a mistaken impression among some
programmers that the equafity testing done by EQUAL and EQUALP is somehow more special than many
similar predicates we could have provided but did not. This is evidenced in occasional bug reports that
vendors receive, arguing that an incorrect choice has "clearly" been made for how objects of a given
type are compared, rather than acknowledging that the choice is really quite arbitrary. When urged to
write their own equality predicate to suit their particular needs, they sometimes react as if we are putting
them off, rather than realizing that any function they could write is just as valid as any one the language
provides. Were the language changed to accommodate such bug reports, different users would probably
complain. EQUAL and EQUALP are not in Common Lisp because they are uniquely dictated by
science--rather, these functions are present out of a sense of tradition and conceptual (although in some
cases not functional) compatibility with older dialects.

38

Coercion
Another place where intentional type information is qui~ valuable is in coercion. The Common Lisp
functions STRING and COERCE blamndy illustram the prob~m:

(STRING 'NIL) --~ "NIL" (COERCE 'NIL 'STRING) --~

The issue here is thN COERCE coemes sequence types to other sequence types, but does not coeme
symbols to strings; STRING, by con~ast, accep~ only symbols, strings, and characters as arguments.
These somewhat arbitrary type restrictions on He arguments provide enough inmntional type
information ~ dictate the behavior in the NIL case.

(STRING 'FO0) -~ "FOO" (COERCE '(#iF #\0 #\0) 'STRING) -9 "FO0"
(STRING 'NIL) --~ "NIL" (COERCE ' () 'STRING) -~

An arbi~ary design decision was made that COERCE would view NIL as an empty Hst, but STRING
would view it as a symbol. The problem could be solved by a single function in a general way if
COERCE wok arguments specifying not only He target ~pe but He intentional type of the argument, as
in the following example:

;;; We use the name CONVERT here to avoid name conflict with CL's COERCE.
(DEFGENERIC CONVERT (X FROM-INTENTIONAL-TYPE TO-INTENTIONAL-TYPE))
(DEFMETHOD CONVERT ((OBJECT SYMBOL) (FROM (EQL 'SYMBOL)) (TO (EQL 'STRING)))

(STRING OBJECT))
(DEFMETHOD CONVERT ((OBJECT LIST) (FROM (EQL 'LIST)) (TO (EQL 'STRING)))

(COERCE OBJECT 'STRING))

(CONVERT 'NIL 'SYMBOL 'STRING) --~ "NIL"
(CONVERT 'NIL 'LIST 'STRING) --~

A related problem arose with the function INT-CHAR, which was removed between the publication of
Common Lisp: The Language [CL84] and dpANS Common Lisp [CL93], primarily because the mapping
~om integers to characters is not uniquely determined and it was felt that typical uses of INT-CHAR
were suspect in potable code because the intege~to-character mapping performed by INT-CHAR is
implementation-defined, and the in~ntional type information of He in~ger was not manifest. Explicit
represent~ion of intentional types would have solved His problem as well, as illustrated here:

;;; For brevity, these examples do not bounds-check their argument integers.
(DEFMETHOD CONVERT ((I INTEGER) (FROM (EQL 'ASCII-CODE)) (TO (EQL 'CHARACTER)))

(AREF *ASCII-CODE-TABLE* I))

(DEFMETHOD CONVERT ((I INTEGER) (FROM (EQL 'EBCDIC-CODE)) (TO (EQL 'CHARACTER)))
(AREF *EBCDIC-CODE-TABLE* I))

(DEFMETHOD CONVERT ((I INTEGER) (FROM (EQL 'SAIL-CODE)) (TO (EQL 'CHARACTER)))
;; This character encoding originated long ago at the Stanford AI Lab.
(AREF *SAIL-CODE-TABLE* I))

(CONVERT #x41
(CONVERT #xCl

(CONVERT #x08
(CONVERT #x08

Inout and Oumut

'ASCII-CODE 'CHARACTER) --~ #\A
'EBCDIC-CODE 'CHARACTER) --~ #\A

'ASCII-CODE 'CHARACTER) --~ #\BS
'SAIL-CODE 'CHARACTER) --~ #\l

An example of a programming system that does make good use of intentional type information is the
Common Lisp Interface Manager [CLIM92].

CLIM has a model of both input and output which is built around the idea of intentional types. Input
and output requests can be accompanied by "presentation types" that contains the intentional type
information necessary to accept (i.e., parse) or present (i.e., unparse or display) an object in a manner
more refined than representational type information would permit. This is especially important for input
since there are a wide variety of possible representations into which the same string could be mapped.

39

(ACCEPT-FROM-STRING ' STRING "3.2") -~ "3.2"

(ACCEPT-FROM-STRING ' NUMBER "3.2") --~ 3.2

(ACCEPT-FROM-STRING ' KEYWORD "3.2") "-~ : 1 3.2 1

(ACCEPT-FROM-STRING ' PATHNAME "3.2 ") --~ #P"MY-HOST: 3.2"

Note that the presence of this CLIM functionality does not compromise access to pre-existing
functionality involving the standard Lisp parser (i.e., READ), as in:

(READ-FROM-STRING "3.2") --~ 3.2

Instead, CLIM provides such functionality through one of the many explicitly provided "presentation
type" options, as in:

(ACCEPT-FROM-STRING ' EXPRESSION "3.2") --+ 3.2

Translating between Internal and External Re_oresentations

In fact, input and output are just a specific instance of the more general issue of translating between
internal and external representations of any kind. Other instances might occur in binary file I/O, in
network protocols, in foreign function interfaces, and even in some cross-module exchanges within the
same address space. Simplified, stylized, compacted, or otherwise specialized representations may be
quite useful, but are really only fully powerful if the information that they convey can be inverted to
produce an object of the same quality as the original.

Conclusions

In a language with strong static typing, the intentional type of the object would be evident at compile
time, and the same representational type could be used for multiple intentional types. The main problem
with this approach is that it gives up dynamic typing, which Lisp users have come to expect and enjoy.

If static type information is optional, it is difficult for language designers to reliably express how
operators behave in the hybrid environment that results.

To avoid the need to throw dynamic typing out the window, we have proposed that the information
which in some languages would be reliably available at compile time be passed as explicit data. Where
such data is provided as a literal constant, the same compilation techniques as used by static languages
would still apply. Where such data is not available to the compiler, the information would still be
reliably and explainably available at runtime.

We have seen how this technique would lead to a more intuitive feel in a number of commonly used
operators, as well as a possible reduction in the overall number of operators required.

These improvements are achieved by avoiding the complicated and messy business of trying to guess the
user's intentions about data from its chosen representation, and instead asking the programmer to
express this information explicitly.

"If you have two bits of information to represent, use two bits to represent it.]
Neither coincidence nor convenience justifies overloading a single bit." I - - Pitman's Two-Bit Rule

Acknowledgments
Innumerable legions of my co-workers at Harlequin rushed to help me search out the EBCDIC character code for capital A; I
shall be forever indebted to these fine and dedicated individuals. John Aspinall and Scott McKay provided advice about the
CLIM examples. Chris Stacy and Rebecca Spainhower read early drafts of this document and provided useful feedback.

References
[CL84] Guy L. Steele Jr., Common Lisp: The Language, Digital Press (Burfington, MA), 1984.

[CL93] Kent Pitman and Kathy Chapman (editors), draft proposed American National Standard for Information Systems--
Programming Language--Common Lisp, X3J13 document 93-102, 1993. Available by anonymous FTP from
" / pub / c i / dpANS 2 " on PARCFTP. Xerox. COM.

[CLIM92] Scott McKay and Bill York, Common Lisp Interface Manager Release 2.0 Specification. Available by anonymous
FFP from "/pub/clim" on Cambridge .Apple. COM.

40

