
Towards an OMG IDL Mapping for Common Lisp

Tom Mowbray
Kendall White

The MITRE Corporation
Workstation System Engineering Center

7525 Colshire Drive, MS Z253
McLean, VA 22102

(703)883-6000
FAX: (703)883 -3315

Internet: mowbray@mitre.org, Idwhite@mitre.org

Abstract

The Object Management Group (OMG*) is adopting a
set of standards for distributed computing, including
multiple programming language bindings to the
Interface Definition Language (OMG IDL). This paper
explains the need for an OMG IDL mapping to
Common Lisp, and shows some examples of such a
binding and its implementation, based upon the authors'
work on integrating Common Lisp applications using
OMG-compliant object request brokers.

Software Interonerabilitv between applications is a
capability increasingly demanded by end-users.
Application environments such as DDE/OLE, MacApp,
OpenDOC, NeXTSTEP/OPENSTEP, and Taligent
have shown the potential benefits and feasibility of
application frameworks for software interoperability.
Although the advantages of Common Lisp are desirable
for certain applications, its position in the marketplace
does not demand high priority support from most of the
major innovators of these application development
technologies.

Introduction Object Management Group

Several significant trends in computing technology are
complicating the task of Common Lisp programming.
Among these trends are the need to maximize
utilization of distributed resources, heterogeneous
computing, and software interoperability. These are
key issues that the OMG is addressing in its standards,
and this paper proposes a straightforward way for
Common Lisp to benefit from OMG initiatives.

The OMG is addressing these issues through a
consensus standards process, that has enlisted the
participation and support of virtually all the major
software and hardware platform vendors (Apple, DEC,
HP, IBM, ICL, Microsoft, Sun, etc.). The OMG has
identified as its mission, the need for consistent access
to services as explained in their architecture guide
[OMAG]:

Distributed Processing is increasingly important, given
that LAN networks are pervasive and WAN networks,
such as the Internet and the future National Information
Infrastructure, have increasing vis ibi l i ty and
importance. Technologies for distributed processing
(such as RPC and middleware) are difficult and
expensive to use, particularly when accessed through
foreign language bindings indirectly from Common
Lisp.

Heterogeneous ComDutin~ is commonplace in
application environments, such as end-user systems
with multiple operating systems and platforms.
Common Lisp has an important role in heterogeneous
environments for certain types of applications, and
there is a need for better mechanisms to integrate
Common Lisp seamlessly. Multiple programming
languages are often required for applications involving
Common Lisp. For Common Lisp developers,
heterogeneity is an important challenge that is
supported selectively by existing technologies.

~t
The following words and phrases are registered

trademarks of the Object Management Group Inc.:
OMG, Object Management, ORB, Object Request
Broker, OMG IDL, and CORBA.

What is missing is only a set of standard
interfaces for interoperable software
components. This is the mission of the OMG.

OMG uses two consensus processes for adopting
specifications. The established process uses a request
for proposal (RFP) that solicits specifications from
multiple submitters who can merge their proposals to
obtain consensus. This process can be completed in
about one year. A new fast track process is based upon
a single submission and a request for comment (RFC)
issuance. A fast track adoption could be completed
within 6 months. This compares to the 3 or more years
in a typical international standards process. Our
recommendations for the OMG adoption of a Common
Lisp mapping is presented in the conclusions section
below.

CORBA

The OMG has produced a standard called the Common
Object Request Broker Architecture (CORBA)
specif icat ion as its model for a dis tr ibuted
communication infrastructure. [CORBA] CORBA is a
standard for object request brokers (ORBs) that resolve
distributed processing and heterogeneity issues
transparently. CORBA-compliant ORB's hide the
distributed nature of the computing environment from

2

the programmer, such that requests are handled
consistently whether library caUs, local calls, or remote
invocations. The ORB is responsible for transparently
resolving differences between operating systems and
hardware representations when software communicates
across boundaries. ORBs can automatically activate
servers without client intervention. They also handle
requests reliably with an extensible exception handling
mechanism.

There are many productized implementations of
CORBA (from DEC, HP, IBM, Iona, NCR, etc.), as
well as major projects underway at SunSoft, HP, and
IBM to develop implementations bundled with their
operating systems. DEC and Microsoft are jointly
developing the Common Object Model, comprising
productized support for CORBA/OLE2 integration
across a dozen operating system platforms. A more
extensive introduction to CORBA is published in
IDPOM].

OMG IDL

A key component of CORBA is the Interface
Definition Language (OMG IDL). OMG IDL is a
syntax for formal specification of object-oriented
interfaces. Its principal benefit is its independence
from implementation. OMG IDL specifications are
programming language independent, operating system
independent, and physical process allocation
independent.

OMG IDL has been called a "standard to define other
standards," and it is being used for this purpose by the
on-going OMG activities and groups such as the X
Consortium, the OSF and the ISO ODP Trader working
group. OMG IDL benefits standards authors and
architecture designers because it can be mapped to
multiple language bindings.

OMG IDL specifications are compiled directly into
application program interfaces (API). For example, an
OMG IDL specification can be compiled into a C
header file which contains all the type definitions,
constants, and function prototypes defined indirectly in
IDL. Similarly, OMG IDL could be compiled into Ada
specification code, C++ classes, Common Lisp
definitions, and so forth. This paper describes an OMG
IDL mapping for Common Lisp.

OMG IDL specifications are equally applicable to
Common Lisp as they are to any other language, given
the existence of an OMG IDL mapping to Common
Lisp. The OMG IDL mapping to the C programming
language was adopted as part of CORBA. Standard
bindings for C++, and Smalltalk are active in the OMG
process. Ada and OO Cobol mapping standardization
efforts will begin soon.

Example OMG IDL mapping to Common Lisp

The authors have defined a preliminary specification
for an OMG IDL mapping to Common Lisp. We used
the Common Lisp standard with CLOS extensions as
our language guidelines to ensure portability between
Lisp implementations. [STEELE][CLOS] We also
considered previous work on Common Lisp bindings
to ORB-like facilities. These previous projects include
NEC's Dynamic Invocation Interface for C and CLOS,
BBN's CRONUS, and Xerox's ILU [NEC] [CRONUS]
[ILU]. The significance of this specification is
primarily as a guideline and leverage to Common Lisp
vendors who wish to pursue the OMG process.

Developers can use this specification to layer OMG
IDL interfaces to Common Lisp on top of language
bindings, RPC calls, and ORB interfaces. The authors
are using this binding with a commercial CORBA-
compliant ORB by layering these interfaces on top of
the C language binding. OSF has provided an example
of how OMG IDL specifications map into their DCE
RPC environment in [DCEIDL].

An OMG IDL compiler is responsible for creating
several outputs based upon an input IDL specification.
The first output is a set of orient-side API definitions in
Common Lisp. These definitions provides the client's
API to user defined interface classes in IDL. A second
compiler output is the client-side stub functions that
implement the client-side APIs and deriver messages to
the ORB. The third output is object implementation
skeletons that the server needs for its interface to the
ORB. By convention, a standard language binding
focuses on the first output (the client-side definitions)
leaving the ORB-dependent details to the ORB
implementors. A portable ORB-independent
implementation approach is described in the next
section. (see Implementation Approach)

OMG IDL provides a set of data structure definition
constructs similar to C++. In our example OMG IDL
mapping to Common Lisp, we have mapped data
structure types in a straightforward way. As our first
example, consider the definition of a structure type in
OMG IDL:

// OMG IDL
struct examplel {

long fieldl;
float field2; };

The mapping into Common Lisp comprises this
definition:

; Common Lisp

(defstruct examplel

(fieldl 0 :type long)

(field2 0.0 :type float))

We used a corresponding approach for most data types.
Basic types in OMG IDL map into comparable basic
types in Common Lisp, IDL array types map into

Common Lisp arrays, strings map into strings, and so
forth.

The interface construct in OMG IDL is the principal
mechanism for defining object encapsulations. A
simple example follows, comprising an interface
example2 with a single operation opl and a user
defined parameter argl:

// OMG IDL
interface example2 {

void opl(in long argl); };

The mapping into Common Lisp comprises these
definitions:

; Conu~on Lisp

(defclass example2 () ())

(defmethod opl (

(o example2)

argl)

(declare (integer argl))

(example2-opl-stub o argl)

In example 2, we see that the IDL interface is mapped
into a Common Lisp class. The class example2 has a
method definition o p l with a parameter pattern list that
includes a typed object class parameter (which was
implicit in IDL) followed by the user defined parameter
argl.

The following example, builds upon the previous
example by using inheritance. A new interface
e x a m p l e 3 is defined as a subtype of interface
examplel. The subtype inherits the operation opl
definition from e x a m p l e l and adds an additional
operation op2:

// OMG IDL
interface example3:example2

void op2(in long arg2,
out long arg3,
out float arg4); };

The mapping into Common Lisp comprises these
definitions:

; Common Lisp

(defclass example3 (examplel) ())

(defmethod opl (

(o example3)

argl)

(declare (integer argl))

(example3-opl-stub o argl))

(defmethod op2 (

(o example3)

arg2)

(declare (integer arg2))

(example3-op3-stub o arg2))

The arguments arg3 and arg4 are output parameters
that can be accessed through a multiple-values-
bind in Common Lisp.

The remaining features o f the example mapping are
documented in our specification. Retrieval instructions
are included in the conclusions section.

Implementat ion Approach

The implementation of the OMG IDL mapping to
Common Lisp can be highly leveraged upon existing
work.

The OMG is distributing a public domain shareware
OMG IDL compiler toolkit. It is being distributed via
FTP from omg.org, contact request@omg.org for
details. This toolkit has a working version of all phases
of OMG IDL compilation except c, ode generation. In
order to apply it to Common Lisp, an additional code
generator needs to be written to generate the Common
Lisp definitions and stub functions that call the ORB.

A strategy for the ORB integration layer is to use an
existing standard mapping that multiple ORB products
support. For example, the C binding is stable and has
been implemented by several ORB products.

Conclus ions

The benefits of OMG adoption of a OMG IDL
mapping to Common Lisp include:
• reduction of risk for commercialization and end-user
support for the OMG IDL mapping to Common Lisp
• extended capabilities of Common Lisp

- support for distributed processing using ORB's
- heterogeneous multiplafform transparency through
ORB %

- multiple foreign language bindings (all consistent)
• foreign language bindings consistent between Lisp

environments
• consistent interfaces to ORB's and other CORBA

compliant software components
• mapping does not change Common Lisp or CLOS
language specifications

The next step is for one or more commercial sources of
Common Lisp to pursue the OMG process. This
includes obtaining an OMG Corporate Membership (a
modest dues payment), and initiating the OMG process
either through an RFP or an RFC.

The fast track RFC process has some advantages and a
risk. It's faster than an RFP process and it can be
initiated at any time; whereas an RFP requires more
resources and must be timed with respect to the task
force's schedule. The risk is that the RFC can be
withdrawn by the OMG if it receives "significant
comment" during the comment period.

H o w to Obta in the Draft Specl f lc lat ion

The authors have drafted an OMG IDL mapping to
Conunon Lisp specification, summarized above, which

4

we would like to release for general comment. This
specification can be obtained from the OMG server by
sending the email message:

gee docs/94-3-11.ps
to the Internet address: server@omg, org

Acknowledgments

We appreciate the help and input from Jim Veiteh and
Stuart Elliot at Franz, Neil Feinberg and Scott McKay
at Harlequin, Cameron Kemper and Jay Mellman at
Lucid, Steve Strassman at Apple, Bill Janssen at Xerox,
and MITRE contributors including: Diane Mularz, Ron
Zahavi, Melony Katz, Webster Anderson, Kurt Louis,
Wes Hanun, Greg Whittaker, Jeff Graber, Paul Silvey,
Tana Reagan, Malcolm McRoberts, Martha Farinacci,
Vic Giddings, Richard Tucker, Chris Elsaesser, Hans
Tallis, Scott Musman, and Raphael Malveau.

Bibliography

[CBOS] TJ Mowbray and T Brando. Interoperability
and CORBA-based open systems, Object
Magazine, October 1993.

[CLOS] Sonya E. Keene, Object-Oriented
Programming in Common Lisp: A
Programmer's Guide to CLOS, Addison-
Wesley, New York, 1989.

[CORBA] Object Management Group. Common Object
Request Broker Architecture And
Specification, D o c u m e n t 9 1 . 1 2 . 1 ,
Framingham, MA, 1991.

[COSS] Object Management Group. Common Object
Services Specification, Volume I,
Framingham, MA, 1993.

[CRONUS] BBN Systems and Technologies, CRONUS
Programmer's Reference Manual (Lisp),
Release 3.0, Cambridge, MA, 1992.

[DCEIDL] DEC, HP, HyperDesk, IBM, NEC, and
OSF. Joint submission on interoperability and
initialization, OMG TC Document 93-3-5,
March 7, 1994.

[DISCUS] J. Fleisher and TJ Mowbray, Integrating
tools and data sources using the DISCUS
Framework, Proceedings of the AFCEA-
ITEMS Conference, Washington DC, 1993.

[DOE] TJ Mowbray. Distributed Objects Everywhere:
An early assessment, Object Magazine,
January 1994.

[DPOM] TJ Mowbray and R. Zahavi, Distributed
process ing with object management ,
ConneXions--Tlae Interoperability Report,
Interop Corporation, December 1993.

[ILU] Bill Janssen and Mike Spreitzer, Using ILU with
Common Lisp, Technical Report, Xerox
Corporation, January 1994.

[NEC] NEC, NEC CORBA Sample Implementation,
Document 93-4-28, Object Management
Group, Framingham, MA, 1993.

[OMAG] Object Management Group. Object
Management Architecture Guide, Document
92.11.1, Framingham, MA, 1992.

[STEELE] Guy L. Steele Jr, Common Lisp: The
Language, Second Edition, Digital Press,
Digital Equipment Corporation, USA, 1990.

Authors

Tom Mowbray, PhD is a Lead Scientist in the MITRE
Workstation System Engineering Center in MITRE-
Washington. He is the architect of the DISCUS
Framework, an OMG IDL-compliant software
architecture which is being reused on several testbeds
both inside and outside of MITRE. [DISCUS] He has
written an OMG IDL compiler, and has training and
experience on several CORBA-compliant ORB's
including: SunSoft's DOE, HyperDesk's HD-DOMS,
and DEC's ObjectBroker. [DOE][CBOS] He is also
MITRE's principal representative to the OMG and
Chairperson of the OMG Common Facilities Task
Force, a group responsible for all vertical market and
specialty area framework specifications.

Kendall White is a Member of Technical Staff in the
MITRE Workstation System Engineering Center at
MITRE-Washington. He is the lead developer and
integrator of Common Lisp with CORBA. His other
responsibilities include developing client/server
interfaces between C and Smalltalk, and Object-
Oriented Database schemas. He is also an organizer of
object technology workshops and panels at the TOOLS
USA and OOPSLA conferences.

