
The Survival of Lisp:
Either We Share, Or It Dies

Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway; Cambridge MA 02139

DickC@MERL.COM

Where I work, there are 12 researchers who
never use Lisp, 3 who use Lisp for perhaps half
of their programming and 3 who use Lisp for
most of their programming. Ahnost all of the
non-Lisp programming is in C. This amounts
to a ratio of almost 3 to 1 of C programming
versus Lisp programming.

This is only anecdotal evidence, but there
is no mistaking the nmch greater use of C the
world over. This is true for research and even
more so for other kinds of programming. As
yet, C is not making significant inroads into the
traditional terr i tory of Lisp, but C is growing
much more rapidly than Lisp everywhere else.

If you are a subscriber to Lisp Pointers, you
probably agree with me that Lisp provides a
bet ter environment for programming than C
and want to continue using Lisp. You might
think that you need not care about the rapid
growth of C, because it does not mat te r to you
what other people program in. However, you
must care.

If the momentum behind C continues to
grow, your ability to use Lisp could be in jeop-
ardy for two reasons. First, if the world be-
comes too dominated by C, you might be forced
to conform for portabi l i ty sake. Second and
more subtly, if Lisp becomes marginalized, the
support (commercial and otherwise) for main-
raining the Lisp programming enviromnent will
inevitably weaken. The time could come when
the updat ing of Lisp compilers etc. is no longer
rapid enough to keep up with the changes in
hardware and software Lisp programs have to
interoperate with. If this happens, you yourself

may choose to abandon Lisp.
For Lisp to prosper, lots and lots of people

have to choose to use Lisp. Why are people
often choosing C instead? There are a host of
reasons, some representing real advantages of
C over Lisp, and others being false but never-
theless strongly held imaginary advantages of
C over Lisp. Rather than go through a laundry
list of these issues, this paper focuses on what
I consider to be the most important single is-
sue. Fortunately, it is an issue with regard to
which you and I can have a significant impact
on supporting the future of Lisp.

Crit ical M a s s o f R e u s a b l e So f tware

When writing anything other than a toy sys-
tem, you have to give a great deal of consid-
eration to preexisting software. In particular,
there will typically be preexisting software that
already does much of what the new system is
supposed to do. To keep implementat ion costs
down, it is essential to reuse (parts of) such
preexisting software whenever possible.

In general, the only easy way to reuse pre-
existing software is to use the same program-
ruing language and enviromnent that the pre-
existing software uses. Therefore, the obvious
progrmnming language to choose when work-
ing in a given area is the language that is al-
ready used to implement the largest amount of
reusable software in that area. Unless you want
to write everything from scratch, you must pick
a language for which there is at least a reason-
able amount of reusable software available to
you.

23

The dynamics of this situation allow for
only two stable states. If a programming lan-
guage is little used in a given area, then there
will be little reusable software writ ten in that
language, and little motivation for new pro-
grammers to start using the language in that
area, which means that the reusable software
in the language that does exist is unlikely to be
properly maintained, which leads to even less
interest in the language, etc.

In contrast , if there is a critical mass of
reusable software writ ten in a given language
in a part icular area, then lots of programmers
will be a t t rac ted to using this language in the
area, which leads to an increase in the amount
of reusable software, which a t t racts even more
users, etc.

The key reason why Lisp has gotten as far
as it has is that there are areas (e.g. parts of AI)
where the bulk of preexisting reusable software
is writ ten in Lisp. The key challenge presented
by C is that there are many more areas where
the bulk of reusable software is writ ten in C.
Further, there are many more C programmers
adding to the sharable C software, than Lisp
programmers adding to the sharable Lisp soft-
ware.

It is hard to imagine that Lisp will ever be
able to challenge C in C's areas of strength.
Rather, we have to worry that the snowballing
juggernaut of C may one day overwhehn Lisp
in its areas of strength.

W h a t Y o u Can D o

The thesis of this article is that to pro-
tect Lisp in its current niches and to allow
any chance at M1 for growth into other areas,
we must above all else enhance the body of
reusable software available to Lisp program-
mers. This can be done in a number of specific
ways.

W ri te sharab le sof tware . The most ob-
vious thing to do is to add directly to the crit-
ical mass of reusable Lisp code. It can make a
big difference if Lisp programmers as a group
do a be t te r job of creating reusable code than
programmers in other languages.

U s e sharab le sof tware . It is equally im-
por tant to reuse other people's software when-
ever possible. This improves your product ivi ty
and gives valuable feedback to the authors of
the software you reuse.

D i s s e m i n a t e sharable so f tware . The
size of a body of reusable software should not
be measured simply in terms of some intrinsic
feature such as lines of code, or functionality,
but rather as the product of such an intrinsic
feature and the number of programmers who
are in a practical position to actually reuse it.
That is to say, a fantast ic piece of software that
nobody knows about has very little value, while
a simple piece of software that everybody knows
about can be very valuable.

We nmst take full advantage of the Lisp cul-
ture of sharing to knit the worldwide commu-
nity of Lisp programmers into a single sharing
entity. Our goal should be to minimize dupli-
cation and maximize reuse. The key to this is
effective methods for advertising and dissenfi-
nating reusable software, through online repos-
itories and publications such as Lisp Pointers.

When you write a reusable piece of software
you should find a way to make it widely avail-
able (for free or otherwise) and you should ad-
vertise this fact, i.e., publish something about
it either in print or in some electronic forum.

E n h a n c e L i s p / C in teroperabi l i ty . The
momentum behind C is too big to fight against
head on. We must combine the strengths of
C and Lisp, rather than just trying to make
Lisp best everywhere. Many positive steps have
already been taken in this direction, but more
needs to be done.

Any reasonable Lisp today has a foreign
function calling interface so Lisp programs can
call C programs and therefore take advantage of
reusable C software. However, these interfaces
could be bet ter , and it should be made just as
easy for C programs to call Lisp programs.

hnproving the Lisp/C interface in general is
not something that most of us can do. However,
we can all work to improve specific parts of the
interface between Lisp and the C/Unix world.
For example, there are a nmnber of admirable

24

interface packages which allow Lisp to interface
very well with particular outside systems.

One example of this is the CLX package
which supports efficient and convenient inter-
action between Lisp and X. Given the impor-
tance today of X as a standard interface, Lisp
would be in deep trouble without a package like
CLX. With CLX, much of the X world is readily
available to any Lisp programmer.

Unfortunately, the computer world around
Lisp is changing so rapidly that considerable ef-
fort is required just to maintain links to the out-
side things that are essential, let alone all the
things that are valuable. Whenever you make
such an interface, you should make it available
to others.

The following two sections relate two tales,
one of failure and one of success. The first tale
illustrates the magnitude of the dangers Lisp
faces. The second tale shows one of the ways
we can maximize Lisp's survivability.

T h e B r i e f G l o r y of Symbol ics

The MIT AI Lab, with work then contin-
uing most actively at Symbolics inc., created
what I consider to be the best programming
enviromnent ever produced--a powerful single
user workstation, where Lisp was not only the
implementation language for applications, but
the implementation language for the operating
system as well. This meant that you could do
everything and anything with Lisp alone. On
top of this was built a great suite of program-
ming tools.

Unfortunately, what was initially the crown
jewel of the Symbolics Lisp nlachine--a special
purpose Lisp-only system supported by special
purpose hardware--turned into a millstone that
sank it. The key problem was that the Symbol-
ics Lisp machine was incompatible with every-
thing. Therefore, the people at Symbolics had
to race to write software and design hardware
that kept up with every advance in the rest of
the computer industry.

In the software arena, they had to keep up
with advances in operating systems, window
systems, programming tools, object oriented

programming, and much much more. All in
all, they did an amazing job of this, but while
they were leading the pack in a number of ar-
eas, they were breathlessly trying to keep up in
many others, and losing in still more.

In the hardware arena, they had to try to
keep up with the explosive advances in CPU
power per dollar as general purpose scientific
workstations began to appear. They made some
progress, but were left far behind by the rapid
advance of general purpose PdSC processors.

When the price per MIP of Symbolics ma-
chines was only twice that of general purpose
scientific workstations, I continued to use Sym-
bolics machines. However, when it got to the
point where I could buy a new and more pow-
erful non-Symbolics machine for less cost than
an additional six months of maintenance for my
Symbolics machine, I switched to a different
kind of machine.

There are two morals to this tale. First,
Symbolics put itself in the situation where it
had to keep up with everything else in the world
without being able to reuse anything anybody
else did. You cannot do this for long and sur-
vive.

The second moral is that my switch away
from a Symbolics machine was not prompted by
any dissatisfaction with Symbolics' Lisp (I wish
I could still use it today), but rather by the need
to take advantage of something else (cheap and
powerful workstations). One is forced to make
such compronfises all the time. Unless we keep
Lisp at the forefront of technology, we could all
be forced to abandon it one day.

P r i m e T i m e Freeware for A I

Over the year,sa principal means of dissemi-
nating reusable Lisp software has been through
various anonymous FTP sites. The most com-
prehensive collection is probably in the CMU
AI repository at Carnegie Mellon University,
organized by Mark Kantrowitz.

Mark has been a very active contributor
of reusable Lisp software for many years, pro-
ducing the FrameWork generic frame system, a
portable implementation of logical pathnames,
a package for using Unix sockets from Lisp, a

25

portable implementat ion of Defsystem, and a
portable execution profiling tool, among many
other things.

Beyond this, he has been active in dissem-
inating the work of others. Mark is the edi-
tor of a number of Frequently Asked Questions
(FAQ) postings at CMU. In 1992, he took it
upon himself to organize a central repository of
freely available Lisp utilities at CMU and ex-
tended this into the AI reposi tory in 1993.

In the Summer of 1994, most of the contents
of the AI reposi tory were released by Prime
Time Freeware inc. in the form of a pair if
CD-ROMs and a companion volume describing
their contents. The CD-ROMs and the book
were edited by Kantrowitz and are titled Prime
Time Freeware for AI [1].

When uncompressed, the CD-ROMs con-
tain 5 gigabytes of da ta consisting of 1367 en-
tries contr ibuted by more than 900 authors. 1
A grea~t many of the entries are Lisp programs,
but there are also entries containing text and
progro~ms in other languages such as Scheme
and Prolog.

The 220 page book is primarily an index
into the CD-ROMs. However, it also contains
background and how-to information. One could
argue that the book is not strictly necessary, be-
cause all the information is on the CD-ROMs,
but the book provides a very convenient inter-
face to the high-level information.

Looking through the listing of the items on
the CD-ROMs, it is clear that the CD-ROMs
are chock full of really useful things, both large
and small. It is not overstating the case to say
that the CD-ROMs put thousands of man years
of effort h'om many of the best Lisp program-
mers around at your finger tips. The only pos-
sible down side is that there are so many things
to investigate and choose between, that one has
to be selective in order to avoid spending an un-
reasonable amount of time trying things out.

1This includes four of my systems: the XP pretty
printer (Lisp Pointers, 5(2):27-34, 4/92), the Series it-
eration package (Lisp Pointers, 3(1):7-28, 3/90), the
Cover test case coverage tool (Lisp Pointers, 4(4):33-
43, 10/91), and the RT regression tester (Lisp Pointers,
4(2):47-53, 6/91).

The final good news is that at $60 (less than
5 cents per entry) Prime Time Freeware for
AI is amazingly cheap. It is the intention of
Prime Time Freeware to issue regular updates
to Prime Time Freeware for AI at comparable
prices.

I believe that efficient means for dissemi-
nating reusable Lisp software such as the Prime
T ime Freeware for AI series are essential for the
long term health of lisp. I intend to contr ibute
to and purchase these volumes, and I encour-
age you all to do the same. For more infor-
mation about the CMU AI reposi tory and how
to contr ibute to it and the Prime Thne Free-
ware for AI series contact Mark Kantrowitz at
< AI.Repository@cs.cmu.edu >.

We Are the Future o f Lisp

Lisp isn't something "out there',' that some-
body else is responsible for. Ra~ther, we the
users of Lisp are what makes Lisp strong. As
long as we are a vibrant community that pro-
duces lots of reusable code that we can build
on to compound our efforts, Lisp will hold its
own. If beyond this, we find good ways to join
with C/Unix , rather than wishing they would
go away, Lisp may yet grow in influence. How-
ever, if we as individuals turn inward and ne-
glect to support the rest of the Lisp conmmnity,
Lisp will eventually fade into the obscuri ty of
historical footnotes, with not a tear being shed
but our own.

R e f e r e n c e s

[1] Kantrowitz M. (editor), Prhne Time
Freeware for AI, Issue 1-1, Prime Time
Freeware, 370 Altair Way, Suite 150,
Sunnyvale CA 940S6, 408-433-9662,
<ptf@cfcl .com>, 1994.

26

