
Talking about Modules and Delivery

Harley Davis Pierre Parquier

Ilog, S.A.

2, avenue Galhhi

94253 Gentil.ly, France

talk- support@ ilog. f r

Abstract

Adding a module system to LISP enhances program security

and efficiency, and help the programmer master the com-

plexity of large systems, thus facilitating application deliv-

ery. TALK’S module system is based on a simple compilation

model which takes macros into account and”provides a solid

basis for automatic module management tools. Higher-level

structuring entities — libraries and executable — group

modules into deliverable goods. The module system is se-

cure because it validates interfaces, efficient because it sep-

arates compilation dependencies from execution dependen-

cies, and useful because it offers a simple processing model,

automatic tools, and a graceful transition from development

to delivery.

1 Goals

This paper presents TALK’s module system, which is simple

to understand, smoothly integrates macros, and facilitates

application delivery. TAL1<[5]is a modern L1sP dialect which
extends the proposed ISLISP standard with a module sys-

tem, a metaobject protocol, a transparent binding with C

and C++[3] and an extensive set of libraries.

TheprinciprJ goal of TAL,K’s module system is easy and

efficient application delivery. Delivery is simplified by pro-

viding automatic module dependency tracking tools; deliv-

ered applications are made efficient by separating develop-

ment dependencies from runtime dependencies.

Other LISP module systems see their primary purpose as

being namespace control, providing little support for deliv-

ery. For example, [8], [2], and [9] allow binding renaming on

import, which is a feature used solely for namespace cent rol.

In the case of EuLisp [8], it is quite clearly stated that “the

module system exists to limit access to objects by name.”

Similarly, COMMONLISP’s packages serve as a large-grained

namespace control device. The TALK module system is not

primarily geared to managing namespaces, although it does

that as well. Instead, it is aimed at large scale program

structuring and application delivery, as well as the tradl-

tional module system gords of security.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial acfvantaqe, the ACM copyright notice and the
title of the publication and its date appear, and notice is-given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Nitsan S6niak

In contrast to the header file conventions used by C and

C++ programmers and the defs yst em faci.lit y available for

many LISPS, the TALK module system is an integrated part

of the language. Indeed, we consider it to be the back-

bone of the language. All language choices must consider

the implications for the module system. For instance, un-

like COMMON LISP, each defined entity in TALK must have a

single point of definition . This allows a static analysis of

the contents of a module, and therefore static linking and

automatic inter-module depedency analysis.

Unlike the module systems described in [8], [2], and [9],

the TALK module system has been driven from the begin-

ning by industrial user feedback. It has been under active

development and evolution for over seven years, first in the

form of the LE-LISP [1] module system and then in early

versions of TALK. The current system has been in active

use at industrial sites since April, 1993.

2 Overview

TALK provides a hierarchy of program units which map to

operating system file types. Each program unit is described

by a description jile. A description file contains a sequence of

keys and values describing the various attributes of the pro-

gram unit. The description file is used by the TALK compiler

to construct the object file for each type of program unit.

There are three types of program units:

1.

2.

3.

Modules contain sequences of definitions and top-level

forms. Modules are compiled by TALK’S compiler into

C source files, which are then compiled by the system’s

C compiler into standard object files.

-Libraries are collections of modules which constitute

a related, coherent subsystem. A library is created

by linking together its constituent modules using the

system’s standard linker into a shared library object

file. Because operating systems do not provide nested

shared libraries, libraries cannot be nested. In prac-

tice, this does not present a problem because libraries

are fairly large-grained and tend to be self-containedz.

Executable are collections of modules and libraries

which constitute a final application. An executable

1In commonLi5~, it is not generally possible to .9taticallY deter-

mine where a generic function is defined.

2 Other languages which provide nested libraries must implement
their own linking and loading solutlons for each port. This was
deemed undesirable for Talk, which aims fo= maximum interoperab]l-
ity with standard tools

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006..$3.50

113

is created by linking together its constituent modules

and libraries (collectively called link units) using the

standard system linker into an executable file in the

operating system’s standard a. out format.

3 Compilation Model

3.1 Constructing Compilers

Languages in the Algol family, such as Ada [6] and Mod-

ula [4], have had a much easier time introducing modules

than languages in the LISP family. Why is this? Algol-type

languages are not syntactically extendable. Module systems

for these languages need only focus on controlling names of

execution entities such as functions and variables. Only one

kind of dependency between modules is necessary.

In LISP, the situation is different: LISP has macros writ-

ten in LISP. Macros are commonly seen as language ex-

tensions; a way to introduce new syntactic abstractions. If

we take seriously the view that macros are extensions to

the language processor, we are led to the conclusion that,

in principle, each compilation unit in LISP requires its own

compiler. In other words, to compile code in LISP, we must

first extend the basic compiler with the macros used by the

code, and then compile the code using the new, enhanced

compiler3. A naive implementation of this model would cre-

ate an entirely new compiler for each module.

This model is simple. In practice, however, LXSP is never

implement ed in this way. Instead, various mechanisms are

used to incrementally and dynamically extend the compiler.

In almost all cases, the programmer is responsible for main-

taining the compilation environment in a correct state, ei-

ther by manually loading macros or using mechanisms such

as eval -when which update the compilation environment

during compilation. It is our experience that LISP program-

mers have a difficult time understanding all the implications

of such mechanisms. Even more distressing, these mecha-

nisms must be managed manually because they are too com-

plex to automate. As a result, excess time is spent managing

compilation and execution dependencies; interfaces between

program units cannot be verified because they are not for-

malized; and inefficient programs are produced which con-

tain more code and data than they need.

In contrast with these manual mechanisms, each TALK

module description file contains a list of other modules (or

libraries) used to compile that module, and a list of modules

(or libraries) used to execute the module. Module compi-

lation involves first using the compilation modules to con-

struct the correct compilation environment, and then com-

piling each form in the module. To make the compila-

tion model as simple as possible, no forms in a module are

ever evaluated during compilation. No equivalents to the

eval-when or macrolet constructs are provided.

Compared with the compilation model used in most LISPS,

TALK’S simple processing model is closer to the abstract

model described above. The TALK model provides names-

pace security, since execution references are verified by the

compiler; and space-efficient compiled code, since a mod-

ule’s compilation environment is completely separated from

3 Indeed, since macros are also written using Lisp code, compil.
]ng a mscro Itself requmes the construction of a new compiler Lisp
compilation involves a tower of compilem — potentially infinite or
cmcular. In practice, this is avoided because the mltial set of macros
is coded without macros, or in another language — often an earher
generation of the same Lisp.

its execution environment. A further important benefit of

TALK’S simple model is that the management of compila-

tion and execution environments can be completely auto-

mated, reducing or eliminating the overhead of managing

module dependencies. Section 7 describes TALK’S analysis

tool, which transparently constructs a module’s compilation

and execution environments.

3.2 Compilation Process

Compiling a module involves three principal steps:

1.

2.

3.

To construct the abstract compiler needed by the mod-

ule, the unloaded portion of the module’s compilation

environment is loaded dynamically. This is more effi-

cient than actually constructing a new compiler pro-

gram. Dynamic loading is explained below.

The module’s source code is parsed, including macro-

expansion.

The comriler generates a . c file for the module and

calls the C co~piler to generate a .0.

Loading a compiled module also involves three principal

steps:

1. The module’s execution environment is recursively loaded.

2. The system’s dynamic linker loads the module’s object

file.

3. The module’s initialization function is called. This

function executes the module’s top-level forms and in-

st ails its definitions.

Like modules, libraries are also compiled and loaded.

Compihng a library means linking the .0 files of its con-

stituent modules into a shared library object file (usually

with a . so or . S1 extension.) Loading a library is the

same as loading a module, but a library’s initialization func-

tion simply calls all of the constituent modules’ initialization

functions in turn.

Since executable are standalone programs, so they can-

not be loaded. Only the compilation is defined, and only

one step is involved: Using the system linker, the .0 files

corresponding to the executable’s modules and the . so files

corresponding to the executable’s libraries are linked into an

a. out format executable object file.

4 Modules

4.1 Description

A module is composed of both a source file and a description

file. A module source file contains a sequence of definitions

and top-level forms which are executed when the module is

initialized, either due to dynamic loading or the launching

of an executable. Followin5 Ada, this initidiaation ia called

elaboration.

In addition to some bookkeeping information, module

description files use the following keys:

s export: The value is a list of defined entities exported

by the module.

114

;;; points source file

(defstructure <point> () (xy))

(defunmake-fimbulated-point (x y)

(allowing-fimbulation

(inverse (make-point x: (fimbulate x)

Y: (firnbulate y)))))

(defun inverse (p)

(rnake-pointx: (point-yp)

y: (point-x p)))

;:: points description file

type: module

description: “Point nodule”

package: myproject

export: ((class <point>)

(function make-point point-x point-y

make-fi.mbul ated-point)

(setf point-x point-y))

execution: (libiltrt fimbulate)

compilation: (libilteval fimbulatemac)

Figure 1: The points module: source and description

● execution: The value is a list of other module or

library names which export the definitions used to ex-

ecute the code in the module. This includes any func-

tions called in the module, classes instantiated by the

module, and global variables accessed in the module.

This list is called the module’s ezecution environment.

● compilation: The value is alist of other module or

library names which export the definitions which must

be loaded to compile the module. This includes any

macros and symbolic constants used in the module.

Classes can also be required if their slot accessors are to

beirdined. This list is called themodule’s compilation

environment.

Figure 1 shows a source file and its corresponding module

description file. In this example, we create a module named

points which defines a structure <point> and some associ-

atedfunctions, including thefunctionmake-f imbulated-point.

This function uses the macro allowing-fimbulation de-

fined inthemodule fimbulatemac and thefunction fimbulate

defined in the module fimbulate. We also define an auxil-

iary function inverse which is internal to the module points.

In the module description file, the module name f imbulat e

appears in points’execution: key, meaning that this mod-

ule is needed to execute points but not to compile it. We

also see that fimbulatemac appears in the compilation:

key. This means that the module finrbulatemacis needed

to compile points but not to execute it.

This clear distinction between the execution andcompi-

lation environments lets us generate minimal applications;

the transitive closure of a module with respect to execution

environments gives us all the modules needed for an appli-

cation. Those modules which are only in the compilation

environment are not included in the delivered application.

This process is completely natural and does not involve tree-

shaking or other manual, error-prone methods.

4.2 Definitions

Each definition in the module, introduced by the special

form define, haaaname anda type. Defining forms such

as defun, defglobal (which defines a globzd lexical vari-

able), and defclass are macros which expand into define,

The definition type determines the binding spacein which

the entity is bound, and is used to resolve inter-module ref-

erences. Of the entities defined in a module, a subset can

be exported for use in other modules.

TALK does not support per-module namespaces. That is,

an exported definition is globally visible. This global vkibil-

ity is both an advantage and a liability. It is an advantage

because itsimplifies interactive debugging and on-site appli-

cation maintenance; these aspects enhance TALK’S value as

adynamic language. Itis amiability because ofthe increased

potential for namespace pollution and name conflict. Aswe

shall see shortly, this problem is reduced by TALK’S package

system.

4.3 Macros

As explained above, macros pose a particular problem when

designing a LISP module system because they extend the

compiler itself and they have access to the full power of the

language to compute expansions.

TALK’S simple compilation model imposes a restrictive

rule on macro use: A macro cannot be used in the same

module in which it is defined. More generally, no module

can appear in the transitive closure of its own compilation

environment. For example, the following code is not allowed

within a single module in TALK:

(defrnacro my-macro . ..)

(defunfoo () (my-macro . ..))

Themacro my-macro must be placed in another module

which is listed in the compilation environment of the module

defining the function foo. This restriction also means that

forms such as macrolet which require compile-time form

evaluation are excluded from the language4.

Different solutions to this restriction have been suggested,

buteach breaks down or complicates the simple compilation

model which gives the module system its power:

● Can’t you just make two passes when parsinga module

to jind its macros and pre-load them before the real

analysis ?

The problem with this idea can be illustrated by noting

that macro expansion functions could call functions de-

fined inthe module itself. Therefore, itis not sufficient

to load just the macros; you must load essentially the

entire module — before parsing it. This is impossible.

Look at the following code:

(defmacro foo (arg) (foo-expander arg))

(defmacro bar (arg) ‘(list ,arg))

(defun foo-expander (arg) (bar arg))

(defunuse-foo () (foo . ..))

4Nested macros can nevertheless communicate via a special
form called dynamic-compiler-let which binds a dynamic variable in
the compilation environment to an unevaluated object during the
macroexpansion of a set of forms This fcwm poses no problems b%
cause it does not require evaluation during compilation

115

To load this module correctly, we have to rely on the

interpreter in the compilation environment as well as

the order of definitions in the module. We cannot cor-

rectly determine the true compilation and execution

environments of the module, and, in fact, either we

do not know what to compile or we end up with un-

needed code in the final application. In other words,

the extension to the compiler ends up being the entire

module — and the part of the module solely concerned

with extending the compiler ends up in the final pre-

gram.

Loading a module before compiling it could have unde-

sired side-effects in the compilation environment due

to redefinitions, initialisations, and so on. These are

the problems that eval-when deals with, but at the

cost of breaking down the simple processing model.

We prefer a simple, easily explained scheme in which

the compilation of a module never involves any exe-

cution of the forms in the module. In TALK’S system,

there is no need for an interpreter in the compilation

environment; this also clarifies the processing model

for the user.

● Why not s~mply forbid local macros from calling func-

tions in the same module?

This does not solve the essential problem, which is that

allowing macros in the same module in which they are

used does not sufficiently distinguish the module’s exe-

cution environment from its compilation environment.

Consider the following code fragment, which does not

use any functions at all:

(defmacro deffoo ()

‘ (defnracro foo () ()))

(deffoo)

(. . . (foo) . ..)

The form (foo) cannot be correctly parsed unless the

form (deffoo) is first evaluated. We find ourselves

once again in the unenviable situation of relying on

(partial) module loading during parsing, and thus com-

plicating the processing model. We consider this so-

lution to be worse than the problem it seeks to cor-

rect, and prefer the simpler and more exact solution

of simply disallowing the use of a macro in its defining

module.

In practice, this restriction poses few hardships. First,

most systems have relatively few macros compared to the

number of functions. Second, by placing macros outside

of the modules in which they are used, the size of the fi-

nal application is reduced. Third, small macros which are

not syntactic extensions could be replaced by inlined func-

tions, which do not pose the same problems since their “ex-

pansion” code is completely transparent to the compiler:

They do not require any language extension. This is why

irdined functions are acceptable in Algol-like languages such

as C++, while fuH-powered L1sP-style macros are not.

Some people have worried that this restriction will lead

to an infinite regress of module levels: Macros which gener-

ate macros need an extra level of modularity, and so on. It is

our perception that systems this complex will benefit from

type:

description:

nodules:

export:

execution:

library

“Fimbulated point system”

(points firnbulate)

((points

(class <point>)

(function make-point point-x point-y
make-fimbulat cd-point)

(setf point-x point-y))

(fimbulate

(function finrbulate)))

(li.biltrt)

Figure 2: The libfim library description file

the structuring imposed by the module system, and they

will be complicated enough that modularizing the code will

hardly bethernajor problem.

5 Libraries

5.1 Description

Libraries are collections of modules. They are implemented

as shared libraries, which means that multiple applications

using the library on a single machine share code in memory.

In addition, most operating systems provide rapid dynamic

linking facilities for shared libraries.

Like modules, libraries must be elaborated before they

can be used. Elaborating a library consists of elaborating

each of its constituent modules in a predefine order.

Alihrary description has the following primary keys:

●

●

●

modules: The value of this key is an ordered list of

module names which constitute the lilorary. The or-

der of modules in this list determines the order in

which the modules will be elaborated when the library

is loaded or initialized as part of an executable.

export: The value of this keyis simplya union of the

exports ofeachof the constituent modules. It is needed

to deliver the Library separately from its modules.

execution: The value of this kev is the union of the

values of the execution: key of each of the link units,

removing the link units themselves.

Figure 2 shows a sample library which contains two of the

modules from our previous example: points and fimbulate.

Together, these two modules form a complete, deliverable

point fimbulation subsystem which some enterprising young

cad hopes to sell to the masses.

5.2 Namespaces and Packages

Because TALK uses global namespaces for each type of entity,

alibrary’s exports must be the exact union of the exports of

its modules. No additional name hiding can be done at the

library level. However, often amodrde exports an internal

function to be used only byother modules inthelibra.ry.

For example, module ml defines and exports the following

unsafe, internal function:

(defun unsafe-foo (x) . ..)

116

Module m2 defines a safe, documented version of foo:

(defun foo (x)

(assert . ..)

(unsafe-foo x))

Unfortunately, unsafe-foo, as an exported function, has

globrd visibility and dangerously pollutes the global function

namespace. To solve this problem, TALK has a package sys-

tem which is entirely orthogonal to the module system.

A TALK symbol is composed of both a name and a pack-

age. Syntactically, a fully packaged symbol is prefixed by its

package and a dot. Additionally, each module has a package

into which symbols beginning with just a dot are read. For

example, the symbol f oo. bar has the package f oo and the

name bar. The same symbol appearing in a module specify-

ing f oo as its read package could simply be written as . bar.

The symbol bar without a dot is an unpackaged symbol.

Extensive namespace pollution can be easily avoided by

using a simple packaging convention, supported by the pro-

gramming environment:

● Each project defines a unique package used by all of

its modules.

● Unpackaged symbols form the interface to the project

and are documented.

● Packaged symbols are internal to the project and are

not documented.

Using this system, our problematic case could simply be

treated by naming our troublesome function . unsaf e-f oo

rather than unsafe-foo. Users of this project would be

forewarned that they should not use symbols in the project’s

package.

This simplistic solution will not satisfy purists who insist

on complete hiding and absolute security. However, it has

import ant advantages. First, it is simple to implement and

understand. Second, by providing access to undocumented

definitions, debugging and on-site maintenance are greatly

simplified. These are import ant benefits of a dynamic lan-

guage; we should be loathe to give them up in LISP.

6 Executable

6.1 Description

An executable is a deliverable program unit representing a

turnkey application. The TALK development environment

itself is delivered as an executable, and programs developed

by users are also delivered as executable.

An executable contains an ordered list of modules and

libraries which are elaborated to initialize the application.

The last module typically contains a top-level form which

runs the application by starting a top-level loop or perform-

ing a calculation and leaving. This module corresponds to

the main function in a C program.

Figure 3 shows a typical executable description file for

an executable which includes the 1 ibf im fimbulated point

library described above. When built, this executable ini-

tializes the libraries libiltrt (which implements the ba-

sic TALK dat at ypes), 1 ibilt eval (which includes the inter-

preter and the basic TALK macros), libf im, and the st an-

dard TALK module iltrune. This standard module starts

up a top-level loop, so the interpreter library is needed.

type: executable

description: “The fimbulated point application”

units: (libi.ltrt libilteval libfim iltrune)

Figure 3: The fimexec executable description file

Closed applications do not need the interpreter, substan-

tially reducing their size. Although this application includes

an interpreter, it does not include the compiler and devel-

opment environment; no module in this application h~~ an

execution dependency on them, so they are naturally ex-

cluded by never being included in the first place.

7 Analysis Tool

7.1 Overview

The module system as described above is a complete, func-

tional system. However, because it involves the management

of description files which are tedious to maintain, it is not by

itself a practical system for medium or large sized applica-

tions. Indeed, if the programmer must manually maintain

these files, all of the advantages accrued by the system’s

structure are lost because the development cycle is much

slower than with current practice.

Therefore, TALK also includes an analysis tool to auto-

matically and transparently maintain description fdes for the

programmer. Because TALK’S basic module system is sim-

ple, straightforward, and complete, the analysis operation

provides guaranteed safety and efficiency: If no interface

mismatches are detected by the analysis tool, the final ap-

plication will not contain any missing implementation com-

ponents. In addition, the analysis tool will automatically

create a nearly minimal application, in which the compila-

tion and development environment, including the compiler

itself, are not needed.

Because the analysis tool is not strictly necessary for the

overall functioning of the system, it is considered an environ-

ment feature rather than part of the language. Nevertheless,

in practice users only work with program units via this tool,

and rarely, if ever, manually modify the actual description

files. We have found that the analysis tool not only elimi-

nates the structural burden imposed by the module system,

but, compared to other LISP systems, actually speeds de-

velopment, especially near the end of the development cycle

when delivery preparation begins. In fact, because the pro-

gram uses the formal structures of the module system from

the beginning of development, final delivery is almost imme-

diate. This painless delivery is the ultimate goal of TALK’S

module system.

To transparently maintain the description files, we de-

fine an analysis operation which is applicable to each type

of program unit. The implementation of this operation is

linked to the compiler by a set of standard conditions sig-

naled by the compiler indicating the references detected in

the module. The analysis tool provides condition handlers

which find the correct exporting program units and update

the program unit description files accordingly. By relying

on the condition system to transmit information between

the compiler and the analysis tool, TALK maintains a clean

separation between the baaic language processor and the

environment in which the language is used. This allows the

117

environment to be replaced and updated independently from

the language as new ideas and methods fortheenvironrnent

are developed.

7.2 Module Analysis

Initially, the user need only write the source code for a mod-

ule. The first time the module is analyzed, a description file

is created containing the appropriate initial information.

The analysis operation for a module performs the follow-

ing steps:

1.

‘2.

3.

7.3

The compiler makes a pass over the module source

code, detecting and signaling all external definition ref-

erences, including function calls, macros used, classes

referenced (via method definition or subclassing, for

example). The compiler also signals all the entities

defined in the module and whether they are used lo-

cally.

The analysis tool looks for program units exporting

unresolved references. Any definitions not found are

resignaled with the source code locations of the refer-

ences.

Based on this information, the analysis tool updates

the module’s execution and compilation environment.

In addition, the analysis tool updates the module’s

exports by exporting any unused or unpackaged defi-

nitions from the module and removing any undefined

exports.

Library Analysis

Initially, the user need only specify the modules in a library.

The analysis tool does everything else.

A library does not contain source code, so the analysis

of a library does not call upon the compiler. However, the

following steps are taken to ensure that the library’s descrip-

tion file is correct:

1. The library’s execution environment and exports are

computed by taking the union of the execution envi-

ronment and exports of each of the library’s modules.

2. The modules are sorted using a stable topological sort

based on the in-ezecutton-environment-o~ relation to

find a vafid initialization order for the library.

7.4 Executable Analysis

To create an executable, the user need only indicate the

startup module and any of the project’s libraries and mod-

ules not referenced directly by the startup module5. Every-

thing else is computed automatically.

The analysis of an executable involves the following steps:

1. The analysis tool computes the transitive closure of the

executable’s link units with respect to their execution

environments to find alf of the modules and libraries

which must be linked with the executable.

2. The executable’s program units are sorted using a sta-

ble topological sort to find a valid initialization order.

5Th1s IS necessary If the startup module just starts a toplevel loop.
In completely closed appllcatlons, the startup module typically refer.
ences the entire project vla chains of function calls

8 Other Issues

8.1 Method References

Generic function references pose a problem for the analysis

tool. When a generic function is calfed in a module, it is

easy to detect and install a reference to the generic function

definition itself. However, the methods for the generic func-

tion may be spread out over several modules. Consider the

following code in four separate modules:

In module MI: (defgeneric foo (x))

In module rIr2: (defmethod foo ((x <list>)) . ..)

In module m3: (defmethod f oo ((x <string>)) . ..)

In module m4: . . . (foo x) . . .

It is clear that the module m4 needs to import ml. How-

ever, it is not clear which, if any, of the modules m2 and m3

are needed. If both of these methods were imported into

m4, the application might end up including many spurious

modules. The problem becomes more serious when we con-

sider very general generic functions such as prin-obj ect or

initialize-instance for which methods may be defined

for nearly every class.

Instead of using complicated and unstable type inferenc-

ing, or some other solution difficult to implement and un-

derstand, TALK adopts a practical approach to this problem

which has proven more than sufficient in practice: Users are

encouraged, to follow a simple convention in the placement of

their method definitions. Methods should be defined either

in the same module which defines the generic function, or in

the module which defines one of the discriminating classes

for the method. In this way, a static reference to the generic

function or the discriminating class will correctly ensure that

the appropriate method is imported. Generic functions are

statically referenced by calling them or referring to them

using the special form function. Cla5ses are statically ref-

erenced either by using them as superclasses, specializes,

or by calling one of their constructors or accessors, or by

referring to them using the special form class.

For other cases of dynamic or invisible references, fea-

tures can be defined and statically referenced using the macros

deffeature and feature. The use of features allows the

analysis tool to correctly generate an execution environment.

8.2 Elaboration Order

The elaboration order problem is that of finding a correct

order of initiaLization for modules in a library or executable.

The problem arises because TALK allows modules to contain

top-level forms and cross-references for execution. In fact,

this problem is not limited to LISP; see [7] for a discussion

of the elaboration problem problem in Ada. The following

code fragment in two modules illustrates the problem:

In module ml:

(defun foo () (bar))

In module m2:

(defurr bar () . ..)

(foo)

In this code fragment, the analysis tool detects a refer-

ence from ml to m2, and from m2 to ml; each module ap-

pears in the other’s execution environment. Based purely

on this information, no unique initiafization order can be

118

Unit I Type I Code Size

libiltcrt. so Ilibrarv 229.376

libiltrt. so librar~ 835:584

libilteval. so library 811,008

libiltdev. so library 868.352

it alk execu~able 40:960

libc. so I system library I 442,368

Figure 4: Sizes of standard TALK program units and libc

for comparison on Sun OS 4.1

determined between MI and m2. However, only the order

(ml, m2) is valid because foo must be installed before it is

called. If ml and m2 are in the same library or executable,

a simple topological sort will not always come up with the

right answer.

For this reason, TALK uses a stable topological sort in

the analysis of a library or executable. The analysis tools

detects and signals any newly-discovered cycles in the exe-

cution dependencies. The programmer corrects the error by

switching the order of modules in the library or executable

description. Due to the stability of the topological sort,

subsequent analyses will preserve this order to break such

cycles.

Alternatives to this simple approach include distinguish-

ing between execution dependencies and elaboration depen-

dencies. However, determining the exact, minimal set of

elaboration dependencies is equivalent to the halting prob-

lem. Instead of adopting a complex, heuristic approach, we

decided to go with the simple solution described above, and

see how bad the problem was in practice. Since the intro-

duction of this system in April of 1993, none of our users

has yet run across the problem in practice.

9 Efficiency

By separating a module’s dependencies into distinct compi-

lation ai~d execution environments, and by using standard

shared library technology, TALK’S module system reduces fi-

naJ runtime requirements. TALK itself is delivered as four

libraries:

●

●

●

●

libiltcrt: This library contains the core TALK run-

time features such as the memory manager.

libiltrt: This library contains the basic TALK run-

time modules including the fundamental datatypes and

the object system.

libilteval: This library contains the interpreter and

the basic TALK compilation modules.

libiltdev: This librarv contains the comder. the. .
analysis tool, and the other development environment

tools.

Figure 4 shows the code sizes of these libraries for Sun-

0S 4.1, as well as the size of the basic TALK executable

italk. For comparison, it also shows the code size of the

standard C runtime library 1 ibc, which includes very few

datatypes and no interpreter or development environment.

The comparable TALK libraries, libiltcrt and libiltrt,
are together a little more than twice as large as the C library.

10 Conclusion

The design of the TALK module system described here has

been heavily influenced by user feedback from earlier ver-

sions. Previous versions required manual management of

module interface files; this was deemed too unwieldy by

users and slowed development time. Furthermore, previ-

ous versions had complex sets of inter-module dependencies

to manage module interaction at several levels. The con-

trols, while allowing superior optimization potential, were

found to be confusing and difficult to master. Simplicity

was deemed more important than fine-grained control. In

response to this feedback, the new module system allows

completely automatic module management and only dis-

tinguishes the two essential inter-module dependency links:

compilation time versus execution time. User feedback for

the current version has been uniformly positive; users derive

the benefits of the module system without sacrificing rapid

development or efficiency. We believe that automation and

sirnplicit,y are the keys to the success of TALK’s module sys-

tem.

The TALK module system is based on a simple mod-

ule compilation model which allows us to build up higher

level functionahty step by step, each step relying on the

solidity of the step below. The analysis tool provides au-

tomatic, transparent security by validating and maintain-

ing inter-module dependency links. The system provides

efficiency by clearly distinguishing between compilation and

execution dependencies; compilation units are simply not in-

cluded in deliverable libraries and executable because there

are no runtime references to compilation units in runtime

units. Higher-level structuring units let us provide deliv-

erable goods which can be constructed very simply. The

use of standard operating system tools and file types means

that these deliverable goods are easily integrated into the

final operating environment and automatically benefit from

improvements in the basic tools.

References

[1]

[2]

[3]

[4]

[5]

[6]

J6r6me Chailloux, Mattieu Devin, and Jean-Marie Hul-

lot. Le-Lisp: A portable and efficient Lisp system. In

ACM Conference on Lisp and Functional Programming,

pages 113-122. ACM SIGPLAN, ACM Press, 1984.

Pavel Curtis and James Rauen. A Modrde System

for Scheme. In ACM Conference on Lisp and Func-

tional Programming, pages 13–19. ACM SIGPLAN,

ACM Press, June 1990.

Harley Davis, Pierre Parquier, and Nitsan S&iak. Sweet

Harmony: The Talk/C++ Connection. In ACM Confer-

ence on Lisp and Functional Programming. ACM SIG-

PLAN, ACM Press, 1994.

Luca Cardelli et al. Modula-3 Report (revised). Techni-

cal Report 52, Digit aJ Equipment Corporation Systems

Research Center, 1989.

Ilog. Ilog Talk Reference Manual, 1994.

American National Standards Institute, Inc. The pro-

gramming langugage Ada reference manuaJ. In G. Goos

and J. Hartmanis, editors, Lecture Notes in Computer

Science. Springer-Verlag, 1983.

119

[7] Leslie C. Lander, Sandeep Mitra, Nitin Singhvi, and

Thomas F, Piatowski. The Elaboration Order Problem

of Ada. Software Practice and IAperience, 22(5) :391–

417, 1992.

[8] Padget, J. A., Nuyens, G., and Bretthauer, H. An

overview of EuLisp. Lisp and Symbolic Computation,

6(1/2):9-98, 1993.

[9] Sho-Huan Simon Tung. Interactive Modular Program-

ming in Scheme. In ACM Conference on Lwp and

Functional Programming, pages 86-95. ACM SIGPLAN,

ACM Press, 1992.

120

