
Garbage Collection for Strongly-Typed Languages

using Run-time Type Reconstruction

Shail Aditya Christine H. Flood

MIT Laboratory for Computer Science

{shail,chf }@lcs .mit. edu

James E, Hicks

Motorola Cambridge Research Center

j aney@mcrc mot. com

Abstract

Garbage collectors perform two functions: live-object detec-

tion and dead-object reclamation. In this paper, we present
a new technique for live-object detection based on run-time
type reconstruction for a strongly-typed, polymorphic lan-
guage. This scheme uses compile-time type information to-

gether with the run-time tree of activation frames to de-
termine the exact type of every object participating in the
computation. These reconstructed types are then used to
identify and traverse the live heap objects during garbage
collection.

We describe an implementation of our scheme for the Id

parallel programming language compiled for the *T multi-
processor architecture. We present simulation studies that
compare the performance of type-reconstructing garbage col-

lection with conservative garbage collection and compiler-
directed storage reclamation.

1 Introduction

Dynamic memory management is an integral component
of modern programming languages such as C++, Common
Lisp, SML, and Haskell that support the notion of a glob-
ally shared heap of objects. It is possible to manage the
heap memory explicitly by means of explicit allocation and

deallocation calls, but usually it is more convenient to use
a separate garbage collector that reclaims storage once it is

no longer in use. In such cases, the overall performance of
the user program depends heavily on the choice of garbage
collection technique and its run-time performance.

Abstractly, a garbage collector performs two functions:
it distinguishes live objects from those that are garbage
(live-object detection), and it reclaims the storage allocated

to objects that are garbage (dead-object reclamation). For
live-object detection, the garbage collector must be able to
distinguish scalar objects from heap objects and determine
their sizes (object identification).

Conventional techniques for object identification [3, 5]
operate with a very simple memory model and make little or
no use of language and compiler-specific information. In this

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery, To copy otherwise, or to republish, requires a fee
andlor specific permission.

paper, we present a new technique for object identification
based on run-time “type reconstruction” for polymorphic

languages [1]. Our scheme bridges the gap between the com-
piler and the garbage collector by using compiler-generated,
polymorphic type information and the dynamic call tree of
activation frames to compute the exact run-time types of all

objects. These exact type are then used by the garbage col-
lector to identify and traverse the live objects residing on the
heap. We describe our implementation and compare its per-
formance with other storage management schemes, includ-
ing a conservative garbage collector that does not use any
type information [5] and a compiler-directed storage recla-
mation scheme that explicitly deallocates objects based on
static life-time analysis [9].

1.1 Motivation

A common technique for object identification is to tag every
object: a few bits (usually one or two) in every word are

used as a tag to distinguish scalar objects from pointers to
heap objects. Also, heap objects have headers that identify
their type and size. Keeping tag bits in every word reduces
the range of representable scalars and pointers in conven-
tional architectures, and the user application also pays the
additional cost of tag maintenance. In some systems such as
SML [3], scrdar values (usually floating point numbers) are

boxed in a heap data-structure to preserve their full range.
This incurs the additional cost of allocating the box and

accessing it indirectly.
If the semantics of a language necessitates a tagged or

boxed representation for objects, or if special hardware sup-
port for tags is available, then run-time type reconstruction
is probably not the right choice. For example, in the imple-
mentation of lazy languages such as Haskell [13], all objects
need to be boxed into closures unless they are known to
contribute towards the final result. These closures can eas-
ily identify themselves via their code pointers. Similarly, in
a dynamically-typed language like Lisp, type reconstruction
essentially reduces to continuous type maintenance because
there are no static type restrictions on run-time objects.
Again, this would be no cheaper than maintaining tags on
every object.

The primary motivation for a type-reconstruction-based
object identification scheme is to take advantage of the enor-
mous compile-time type information available in a statically-
typed language in optimizing its run-time performance. In
particular, it is possible in such a system to nse a tagless

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006..$3 .50

12

and unboxed representation for sczdar objects and eliminate
type headers for heap objects because all that type infor-
mation can be reconstructed when necessary. This not only
saves space and unnecessary heap allocations but also saves

time spent in tag maintenance. Although the cost of type
reconstruction may be significant, it needs to be paid only

when the garbage collection is requested. Therefore, such a

scheme may work very well for scientific applications where

numerical performance is of prime concern and garbage col-
lection is expected to happen infrequently and is used in con-

junction with explicit storage management. Keeping tagless
data also permits easy interoperability with conventional C
and Fortran libraries that do not support tags.

Full run-time type reconstruction also offers some unique
advantages that are not present in other untagged schemes
for object identification. Having the exact run-time types
of objects allows the garbage collector to examine and tra-
verse objects selectively. For example, the collector need
not search for heap pointers inside a large array of floating

Doint numbers. Similarlv. the scalar fields of a record mav
~e safely skipped. For ;cientific applications manipulating
large numeric arrays, this may constitute a substantial sav-

ing in identifying the set of all live objects.

It is also quite easy in this scheme to generate special-
ized traversal and marking functions for user-defined objects
and function activation frames that understand their type
and control structure. These functions selectively traverse
the fields that point to heap objects as determined by their
types, and mark those objects as live. Since these func-
tions are specialized to the type of a particular object, they
may be more efficient than interpreting the run-time recon-

structed types of the objects.

Finally, the overall framework for type-reconstruction-
based object traversal and marking easily extends to other

. .
apphcatlons such w displaying objects within a debugger,
object-oriented 1/0 etc. This framework serves as a gen-
eral paradigm for cooperation between the compiler and the
run-time system. We have already used this mechanism suc-
cessfully within the Id debugger for the Monsoon machine

for displaying arbitrary Id objects [1].

1.2 Related Work

Conservative and tagged mechanisms have been used exten-
sively in various garbage collection systems (see [15] for a

recent survey), but object identification based on type re-
construction for strongly-typed, polymorphic languages is a

relatively new idea. The basic concept for type reconstruc-

tion was suggested by Appel [2] and expanded by Goldberg
and Gloger [6, 7]. These schemes were sometimes unable to

compute the exact run-time type of objects embedded inside
polymorphic functions. Traversal and marking of such live
objects without complete type information remained a prob-
lem. On the other hand, our object identification scheme is
based on a complete run-time type reconstruction mecha-
nism which ensures that the exact types of all objects are
reconstructed even if those objects are created or embedded
within polymorphic functions [1].

Our work also relates to compiler-directed storage recla-
mation shown by Hicks [9] since that scheme also manages

dynamic storage in the context of a strongly-typed, poly-
morphic language without any run-time type-tags. In that

scheme, the compiler performs life-time analysis of objects
and automatically inserts explicit deallocation calls at ap-
propriate places in the program. The compile-time cost of

this analysis can be substantial since it uses abstract in-
terpret ation over the whole program, although ito run-time
cost is minimal. Also, sometimes this scheme is unable to
reclaim shared or cyclic data-structures. Thus, in general,

this technique has to be used in conjunction with a regular

garbage collector that picks up the remaining undetected

garbage.

1.3 System Setup

In order to make a reasonable performance comparison of
the type-reconstruction-based garbage collection with the
conservative and explicit deallocation schemes, we have im-
plemented them for the same source language, compiler, and
the target architecture. Our source language is Id, which is

a polymorphic, strongly-typed, implicitly parallel program-
ming language [11]. We are compiling Id for the *T multi-
processor architecture [12] and executing it on an emulator
for that machine.

We have chosen a very simple mark-and-sweep garbage
collection algorithm so that the cost of object identification

can be clearly identified during the mark phase. The wall
clock performance of the garbage collection algorithm is not
our major concern, we are primarily int crested in the relative
cost of type reconstruction and marking us. the cost of con-
servative marking. Explicit deallocation scheme serves as a
calibration point representing the essential cost of managing
the storage.

1.4 Outline

The outline of the rest of the paper is as follows. Sec-

tion 2 describes the language compilation framework and our
run-time model. Section 3 describes our compiler-directed

garbage collection scheme based on run-time type recon-
st ruction. In Section 4, we briefly describe the *T multi-
threaded architecture and our implementation of the various
storage management schemes on it. Section 5 discusses our
benchmarks and presents the performance results. Finally,
Section 6 presents the conclusions.

2 Compilation and Run-time Model

2.1 The Kernel Id Intermediate Language

We base our description on a functional, intermediate lan-

guage called Kernel Id which is shown in Figure 1. This
language supports a rich set of types including typical scalar
basetypes, general algebraic (sum-of-products) datatypes,
n-dimensional arrays, and curried function types. Records

and tuples are a special case of algebraic datatypes with a
single product disjunct. We also assume a rich set of primi-
tive functions for basetypes and array construction/selection,

as well as standard predefine algebraic datatypes such as
list and bool. The operational semantics of this language
has been given elsewhere in terms of graph rewriting rules
[41.
‘ ‘ The Id source language supports special syntactic con-
structs such as list and array comprehensions, complex pat-
tern matching, and nested function and type declarations
[11]. The Id source program is translated into a Kernel
Id program using standard front-end analyses and transfor-
mations such as comprehension-desugaring, scope-anaIysis,

type-checking, pattern-matching compilation, and lambda-
Iifting [4, 8, 14]. The lambda-lifting transformation is not

13

‘EXPRESSIONS

F,x, y, z... c Id entifier

SE c Simple Expression

PF” G Primitive Fn. with n arguments
Casem.T E m-way Case Dispatch for type T

E c Expression

Constant ::= Integer I Float
SE ::= Identifier I Constant

E ::= SE I PFn SE1 . ..SEn
I Casem.T SE (El . . . Ik)

I SE, SE, . . . SE~ I Block

Block ::= {[Statement;]* in SE}

Statement ::= Identifier = E

TYPES

T“ G Type-Identifier with n type arguments

ff, P E Type-Variable

r 6 Type
u c Type-Scheme

T ::= a I zrat I float I (ncl.array r)
1 (Tn rl . ..rn)lr. -+r,

a ::= Vcrl . . .CYn.r

PROGRAM

c:” G rn-th Constructor Identifier
with km arguments

Declaration ::= Fn-Decl I Type-Decl

Fn-Decl ::= de fFxl. ..x~=E
Type-Decl ::= type Tal. .. an=

Cl rl 1 ...rlkl

I ,,.

I Crn Tml .-. Tmkm

Program ::= [Declaration;]* E

Figure 1: The Kernel Id Intermediate Language.

essential for the purpose of this paper, but it helps to sim-
plify our description of the Kernel Id language.

2.2 Object Representations and the Memory Model

Kernel Id is an abstract intermediate form that does not take
a position on the underlying representation of objects. How-

ever, a concrete implementation of a language must specify
a representation of objects, which to a large extent, deter-
mines its run-time performance and the garbage collection
strategy. In this section, we describe the concrete represen-
tation of Id objects for our current implementation. This
representation is still independent of the target architec-
ture and only relies upon the assumption of a logically flat,
shared, global address space. Since our ultimate aim is to get
the best performance out of a compiler-directed object iden-
tification scheme, we avoid making any assumptions about
boxing and explicit tagging of objects as much as possible.
The only assumption necessary to support polymorphism
is that all scalar objects and pointers to heap objects fit a
single 64-bit word.

Examples of various Id object representations appear in
Figure 2. Scalar objects are by definition untagged and un-
boxed in Id. n-dimensional arrays are linearized in row-
major order into a flat data-structure that also keeps the

bounds in each dimension (/1, U1),.. ., (1~, u~) and a set of

Scalar: 6847 3.14 (Unboxed and Untagged)

Bounds Elements

2d_array: co cl 11 u 12U -.. 11 (Linearized)

Algebraic Type:
Product: type point = Pt int int;

(1 disjunct)
L 4

Ertumerated: type bool = False I True;

(All nullary disjuncts)

Implicit: type list *O = Nil

(1 non-nulla~ disjunct) o

Explia’t: tYPe token = Eof I

(>1 non-nullary disjuncts) 0

Function Closure:
def Fxl . ..xn=E.

o 1

I Cons *O

m
(list *O);

Tkl int I Tk2 float;

mm

(F xl. ..xk)

Activation Frame:
Size Args Locals

F
Ill

xl. ..xn . . .
I

Return Cont. A

Figure 2: Run-time Object Representations for Id.

linearization constants co, c~-1 that are used to com-

pute the linear offset into the array given a n-dimensional

index. For an algebraic datatype, depending on the total
number m and the arity km of its various dlsjuncts, we may
choose one of product, enumerated, implicit, or explicit rep-
resentation. In all cases except when there are more than
one non-nullary disjuncts present, we are able to choose an
unboxed and untagged representation for the datatype. In
particular, when there is exactly one non-nullary disjunct

present, as in the case of the list datatype, we assume that
heap pointers can be distinguished from a small fixed range
of integers (say, O-255), sufficient to represent all the nullary
disjuncts of the datatype and no explicit tag is necessary.
For some applications, this may save a lot of space and time.

There are two more kinds of objects that are created
and manipulated indirectly at run-time by Id programs.
These are junction closures and activation frames. In an im-

plementation without lambda-lifting and currying, function
closures keep the values of the free identifiers of a function
obtained from its lexical environment. In our implementa-

tion, all functions are already lambda-lifted, so the closures

carry just the curried arguments accumulated under par-
tial applications, We use the structure depicted in Figure 2
which permits sharing of intermediate closures.

An activation frame is a temporary storage area used by

an executing function as a scratch pad keeping its input ar-
guments and temporary intermediate values. “In Kernel Id,
the bound variables of a function constitute the intermediate

14

Trw of Activation Frames Global Heap of Shared Objects
(Sprsad across GompwatlonNodas) (SpreadaoroaaMemoryNecks)

,root,f:~,=~l

Figure 3: The Parallel Execution

‘m

Model for Id.

values that need to be kept within its activation frame for
future use. 1 The frame also keeps the return continuation,
consisting of the caller’s activation frame and the return in-
struction pointer. In a sequential system, activation frames
are usually allocated on a stack. In our parallel execution

model, the linear stack of activation frames generalizes to a
tree and is managed explicitly by the run-time system.

2.3 id Execution Model

Id is a non-strict, parallel language with an eager evaluation
strategy. This implies that an Id program must be com-
piled and executed in a multi-threaded fashion even on a
sequential processor. Parallel, multi-threaded architectures
like Monsoon or *T directly support this execution model
in hardware, while software multi-threading may be used
in sequential workstations or in more conventional parallel
architectures like the CM-5.

A program in Kernel Id consists of an expression query to
be evaluated within the scope of a set of top-level functions
and type declarations. The set of functions is compiled and
loaded into the program memory as code-blocks. The pro-

gram starts by allocating a root activation frame to evaluate
the top-level program query. The parallel execution model
then unfolds the computation into a tree of function acti-
vation frames distributed across the parallel machine (see
Figure 3). The frame memory on each processor is separate
from the globally shared heap so it is easy to identify the
dynamic tree of activation frames at any given point. When
the garbage collector is invoked, we aasume that all proces-

sor registers have been saved back into the activation frame.
Therefore, the tree of activation frames constitutes the root
set of objects that need to be traversed for the purpose of
identifying all reachable heap objects.

3 Garbage Collection using Type Reconstruction

The overall strategy for type-reconstruction-based garbage
collection is summarized below and described in the follow-
ing sections:

1An intelligent compiler back-end may be able to share some frame
slots based on live-variable analysis, but we are ignoring that issue
here for simplicity

1.

2.

3.

4.

At compile-time, we ensure that every object manipu-

lated by the user program (including function closures
and activation frames) is assigned a static, possibly poly-

morphic, datatype that accurately describes the struc-

ture of that object (Section 3.1).
When the garbage collector is invoked at run-time, first
we reconstruct the type of every activation frame present
within the current dynamic call tree. The reconstruction
mechanism instantiates the compile-time type descrip-
tion of each activation frame to its exact run-time type

using the algorithm described in [1] (Section 3.2).
During the mark phase of the garbage collector, the re-

constructed frame-slot types are used to mark the reach-
able heap objects as live. This may be done in two

ways: the reconstructed types may be directly inter-

preted to identify and traverse the heap objects, or the
compiler may automatically generate specialized traver-
sal and mark routines that are appropriately composed
at run-time in order to mark the live objects (Section 3.3).
Finally, the unmarked objects are reclaimed as garbage

by sweeping the entire heap.

3.1 Compiler Support for Object Identification

3.1.1 Visible and Invisible Datatypes

The scalar baaetypes, algebraic datatypes, and array types
in Kernel Id correspond to pure data-objects whose types
are directly visible at the source language level. There is a

direct, fixed mapping from the source types of these objects
to their internal representations as described in Section 2.2.
This mapping may be directly used in traversing these ob-
jects at run-time once their exact source type is determined.

On the other hand, arrow types (+) correspond to two

different run-time objects: function closures which behave
like data-objects that must be garbage collected, and ac-
tivation frames which are control-objects consisting of the
live object root set. Neither of these is modeled completely
by the source-level arrow type. This is because the visible

type signature of a function does not provide any clue re-
garding the types of the arguments hidden inside its closure,

nor does it provide any information about the local variables
kept within the function’s activation frame. To remedy this
situation, we define invisible dat at ypes for these objects that
provide an accurate description of their contents.

3.1.2 Modeling Function Closures

In order to simplify the type reconstruction analysis, we
model the closures corresponding to partial applications of
a function as disjuncts of an invisible algebraic datatype
that is automatically derived at compile-time from the cor-

responding function signature. This derivation is shown in
Figure 4. The various disjuncts of this hidden datatype
represent successive partial applications of the function and
identify the number and the types of the accumulated argu-
ments. This indirect model captures all the necessary type
information required to traverse the actual run-time repre-
sent ation of a function closure as shown in Figure 2. Given
a run-time closure object, we can map it to an algebraic

disjunct in this model by examining its function code-block
pointer and the remaining arity slot. Then, given the ex-
act algebraic type of the closure, the arguments contained
within the closure can be traversed using the argument types
of the mapped disjunct.

15

As an example, below we show a function eqlen that
compares the length of two lists. We also show its Hind-

ley/Milner visible source type and its automatically derived
hidden closure dat at ype:

Example 1:
def eqlen 11 12 = X eqlen :: ‘dff~.(list a) +

{ lenl = lengthll; ~ (list /3) + bool

len2 = length 12;

P = lenl == len2;

inp };

type eqlen.closure a ~ = X Hidden Closure Type

eqlen-apo

I eqlen-ap; (htcr);

f = eqlen (l:nil); % f :: V/3.(list @)--+ bool
%f ::V/3.(eqlen-closureint/3)

The constructor eqlen-apo models the closure represen-

tation of the eqlen function itself, while eqlen.apl rep-
resents the closure formed by a partial application of the

eqlen function to one argument. The example also shows
thesource type and the invisible type ofa partial application
of theeqlenfunction.z Note that the invisible type records

the fact that the hidden first argument within the closure is
a list of integers while this information is not present in the
source type.

There isnoneed to make a closure for eqlen with two
arguments since at that point its arity is fully satisfied and
the application gives rise to an activation frame instead of
a function closure.3 Finally, note that the invisible closure

datatypeis parameterized by allthe type-variables present
in the source type of the function. This is necessary in or-
der to model the exact run-time types of all the arguments
contained within the closure.

3.1.3 Modeling Activation Frames

Function activation frames are modeled using an automati-
cally derived, invisible datatype called the function typernap.
One typemap datatype is defined for each function defini-
tion in the program as shown in Figure 4. The typemap of

a function captures all the necessary compile-time informa-
tion to reconstruct the complete type of its activation frame

at run-time using the mechanism described in [1].
The typemap of a function is parameterized by the type-

variables present in the function’s type signature. The type-
map records the function’s signature, the types of its argu-
ments and its bound identifiers, and the compile-time type-
instances of all function application sites within the body of
the given function. The argument and the bound identifier
types model the corresponding frame slots of the function’s

activation frame, while the application site information is
used for type reconstruction. Once all the parameter type-
variables of a function’s typemap are properly instantiated
via type reconstruction, the typemap datatype provides the
exact run-time type of all objects accessible through each
argument and bound identifier slot of the corresponding ac-
tivation frame.

As an example, we show the typemap datatype for the
eqlen function given above:

2 U,, IS the infix cons constructor for lists.
3~oweVer,underdelayedor lazy evaluation, we maY need ‘0 keep

track of such thunks.

INVISIBLE DATATYPES

Jiven a Function Declaration:

de fFxl. ..x~=E
F::val . . . Cxm.7-l+ ... + rn + Tn+l

Define Function Closure Datatype:
type F.closure al . . . am =

F.apo
I F-apl m

. . .

I I’-apn_, r, . . . ~n-l;

Let (.zl:: al)... (z, :: u,) be the Bound Identifiers of E.
Let (~1 :: Tfl) . . . (~1 :: ~~1) be the type-instances of all
function application sites within E.

Define Function Typemap Datatype:

type F-typenap al . . . an =
{record

(g:: T;l; . . . + r. + r~+l) % Fn. Signature
:: !! Argument Types

. . .

(Zn :: Tn)

(z, :: u,) % Bound Identifier Types
. . .

(Zk :: Uk)

(fl :: Tfl) !! Application Site Types
. . .

(ft :: rf,) };

Figure 4: Automatic Derivation of Invisible Datat ypes.

Example 2:
type eqlen-typemap a 13 =

{record

(eqlen :: (lista)+ (list@+ bool)
(11 :, (lidcl))
(12 :: (lidp))
(lenl :: id)
(len2 :: Erat)
(p :: bool)

(lengthl :: (Ma) + irlt)
(lengthz :: (M p)+ lnt)};

Note that the two application sites of the length function
are separately recorded with their own compile-time type-
inst antes.

3.2 Compiler-directed Type Reconstruction

Compiler-directed type reconstruction requires some coop-

eration between the compiler and the run-time system. In
the preceding section, we described the compiler support
necessary to facilitate run-time type reconstruction. In this
section, we describe the run-time data-structures and the re-
construction algorithm. A more detailed description of the
algorithm may be found in [1].

3.2.1 Run-Time Type Encodings

Run-time type reconstruction requires an encoding of the
datatypes that may be computed and instantiated during
reconstruction. Each dat~pe Tn is encoded into a corre-

sponding type descriptor Tn that contains all the necessary
compiler information about its arity, internal field structure,

16

ENCODING SCHEMA C

t Given a TvDe Tn. d efine I
C[T”] =“ ~ncode~, where

def encoder (xl, z~) = pack(~, Zl, z~)

Given a polymorphic type-variable cr; , define

C[~,] = encode-Ta,, where

def encode-T~, () = ~

Figure 5: Run-time Encodings for Dat atypes.

and its representation. Conceptually, for each polymorphic
datatype T“ with n type parameters, we define a corre-

sponding encoding function encoder that takes n encoded
arguments and packs them along with the encoded type de-
scriptor ~ into a single type data-structure. Such an encod-
ing schema C is shown in Figure 5. These functions may be

used to create encodings of type-instances computed during
type reconstruction. The bound type variables ~; of a poly-

morphic type-scheme Vcrl . . . cr~. r are encoded as special pa-—
rameterless datatypes ~, because they do not participate

in type reconstruction.4
In~ractice, our compiler generates static type descrip-

tors T“ for all the user-defined algebraic datatypes within
the program and for the automatically derived closure and
typemap datatypes corresponding to every function in the
program. These static descriptors are linked together with
the program and are used during type reconstruction. Run-
time types are encoded as a flat array of static type de-
scriptors using back-pointers to preserve sharing. This rep-
resent ation permits very efficient copying, unification, and
instantiation operations on encoded types. The packing and
unpacking of these encoded types is carried out on the fly
wit hin the run-time system, therefore no separate encoding
functions are actually necessary.

3.2.2 Run-Time Type Reconstruction

When the type reconstruction of an activation frame is re-

quested at run-time, we check whether the corresponding
function is polymorphic and therefore may need some ad-

ditional type context in order to properly instantiate its
typemap. If not, then the compiler-generated encoding of
the function’s typemap already contains all the type infor-

mation necessary to traverse the corresponding activation
frame and no more work is necessary.

If the current function is polymorphic, then its parent
activation frame is identified using the return continuation

and is recursively type reconstructed. This recursive process
continues towards the root of the dynamic cdl tree until a

non-polymorphic function or the root frame is reached. At
the root, the types of all the user-supplied arguments com-

pletely determine the type context for instantiating the root
typemap. On unwinding the recursion back to the orig-
inal activation frame, the return continuation in the cur-
rent frame identifies its particular application site recorded
within the parent’s typemap. Now, the fully reconstructed

application site type from the parent’s t ypemap is matched
against the current function’s type signature to determine
the exact type-instances of its polymorphic type parameters.

4This i5 because the exact run-time type of an ob.iect with a closed

polymorphic type (e.g., nil !: Va. (hst a)) IS that polymorphic type
Itself, see [1] for details,

This instantiates the typemap of the current function which
can then be used to traverse its activation frame.

Note that the entire typemap for an activation frame is
instantiated at once and is remembered subsequently. There-

fore, no activation frame needs to be reconstructed more
than once even if it has several branches below it. Thus,

the overall complexity of reconstructing every frame in the

dynamic call tree is proportional to the total number of ac-
tivation frames present in the tree.5

The only problem with the above scheme is that some-
times the type-instance of an application site may not be
sufficient to instantiate all the type parameters of a func-

tion’s typemap or its hidden closure type. As an example,
consider the following situation involving the eql en function
shown earlier:

Example 3:
eqlen :: Vcrf?. (iist a) + (listp)+ bool

f = eqlen (l:nil) ; xf :: V,B.(list /?) + bool

X Instantiation {a ++ int}
. . .
p = f (“foo” :nil) ; % Instantiation {/3 w string}

At the first application site, the function eqlen is par-
tially applied to create a closure f. Neither the source type,
nor the subsequent type-instance of this closure at the sec-
ond application site reflect the hidden type instantiation
{cr + int}. Without this information, the exact type of

the elements of the list hidden inside the closure f can not
be reconstructed. In such a situation, Goldberg and Gloger

[7] argue that since those elements are never accessed by the
function eqlen, they need not be traversed and marked as
live. Only the spine of the list is marked as live. Unfortu-
nately, if this list is shared among other activation frames its
elements may still be live and may not be garbage collected.

Managing partially marked, shared objects is a difficult
and unsolved problem [7]. Instead, our scheme guarantees
full type reconstruction at every object reference so that an

object can be marked completely the first time around. In
the above example, our reconstruction mechanism encodes

the hidden type instantiation explicitly at the first applica-
tion site and passes it to the eqlen function as an additional

parameter [1]. This encoded type-hint is directly used to
reconstruct the invisible type of the closure f and to instan-
tiate eqlen’s typemap. This is the only situation where an
explicit, compiler-generated encoded type needs to be prop-
agated at run-time to ensure full type reconstruction.

3.3 Object Traversal and Marking

In this section, we describe our scheme for object traversal

and marking after complete type reconstruction has been
performed. We present two mechanisms:

Interpreted Marking – In this mechanism, the encoded
types generated by type reconstruction are directly used
to guide the traversal and marking of the heap objects.

Compiled Marking – In this mechanism, the compiler
automatically generates marking functions for each data-
type in the program based solely on the static type infor-

mation. These functions are appropriately composed at
run-time using the reconstructed types and then directly

applied to the corresponding objects.

5Each ~econ5truction step manipulates Hindley/hIilner tYPes of

the original program which in the worst case could be very large [1 O],
but such cases rarely occur in practice.

17

MARKING SCHEMA M

Given a Type T“ , define

M [Tn]’~ mark~, where

1. @ is a BaseType (int I float):
def mark.T () = Xv.()

2. T1 is an ArrayType (nd-ar-ray a):

def mark.nd-array (z) =
As. { Mark(a);

~:i:t):.il, $J~;n) = bounds(a);
. . .

for i. + 1. to u.
Zraterpret[M]

(Compo.?:yya i-+2} a)
Cl[i I,..., “

3. Tn is an Algebraic DataType (Tn al . . . an):

def mark-T-(zl, z~) =
Az. { Mark(z);

Case-T x
c1 xl . ..~k. =

{ Znterpret[M]
(Cornpose[~

. . .

Znterpret[M]
(COrnpose[q

I . . .

icmzl... xkm}...}

Given a polymorphic type-variable a,, define

M[~,] = mark-Tai, where
def mark-T~, () = Az.()

Figure 6: Generating Mark Functions for Dat atypes.

Both mechanisms are sDecified as a set of mark functions,
one for each basetype, array type, and algebraic datatype
present in the program. The algebraic datatype could be
a user-defined dat at ype (Figure 1) or an invisible dat at ype

defined by the compiler for function closures and activation

frames (Figure 4).

3.3.1 Interpreted Marking

The Interpreted Marking Schema M for a type T“ is shown
in Figure 6. In this schema, for each type Tn with n type pa-
rameters al . . . an, we define a mark function mark.T that is
parameterized by n corresponding encoded type arguments

21. . . ZW. At run-time, this function is supplied with the ex-
act encoded type instantiation of its type parameters, say

~... Z, which produces an appropriate marking function
for an object with type (Tn rl . r~).

The internal structure of the mark functions closely fol-
lows the structure of their corresponding datatypes. All
our base types are scalars, so the mark functions for them

do nothing. The mark function for arrays and algebraic
datatypes first mark the object itself and then proceed to
mark their internal components. This is achieved by first
building their exact run-time type encoding by appropri-
ately composing the encoding functions given by Figure 5,
and then recursively interpreting that encoding. Finally, the

polymorphic, bound type-variables of a type-scheme are also

TYPE-BASED TRANSLATION

Given a Compilation Schema 7?,

and a Translation Environment p,, define

Compose[’R] P, a = f%(a)
Corrapose[7Z] P. (Tn rl . . . r~) =

(RJq) (Compo9e[’R] P. r,,..., Compose[R] p, rfi)
Compose[R] P, Val . . . crn.r =

ComPoseu7?] p, (r[~, /a,])

TYPE-CODE INTERPRETATION

Given a Compilation Schema R, define

Znterpret[’??] T =
{Case head(~)

~={zl, zn = arguments(T);

in(%?[T~JJ) (xl, z”) }

~g}r...
.,.

Figure 7: Type-based Translation and Interpretation.

mapped to dummy mark functions because polymorphic ob-
jecis- cent ain no information.

The general mechanism of type-based function composi-
tion (Compose[7?] P. r) for an arbitrary schema Z (such as

the encoding schema C or the mark schema M) is shown in
Figure 7. This process translates a given type T into a com-

position of schema functions specified by Z under a trans-
lation environment p, that maps free type variables of r to
schema-dependent values. In our present case, (Compose[C]
{cr, + Z,} r) generates a function composition that com-

putes the type encoding of the exact run-time type instan-
tiation of the static type r.

Similarly, the mechanism of interpreting the type encod-
ings (Traterpret[’R] T) can also be generalized for an arbitrary
schema R as shown in Figure 7. This process unpacks the
encoded type and invokes the schema function for the ap-
propriate type descriptor passing it the rest of the encoded
type arguments. In our present case, (Znterpret[M] T z)
traverses and marks the object x according to its exact run-
time type encoding T by recursively instantiating and invok-

ing the mark functions associated with the type descriptors
in r.

In our current implementation, the type-code interpreta-
tion mechanism of Figure 7 is built into the run-time system.

It directly executes the marking specification of Figure 6

corresponding to each class of datatypes given a run-time
object x and its reconstructed run-time type encoding 7.
No separate marking functions are generated.

The interpretive marking process starts up by examining
the frame-slots of every activation frame using the argument
and the bound identifier types from its reconstructed type-

map. This process is optimized based on the actual repre-
sentation chosen for a particular class of datatypes as shown
in Figure 2. For example, the marking function for linearized
arrays computes the total size of the array and marks each
of its elements in a single loop. In caae of algebraic types,
nullary disj uncts under enumerated or implicit representa-
tion are never marked, a product disjunct is always marked,

and a tag dispatch is made for explicitly tagged disj uncts.
Finally, the hidden arguments inside function closures are
traversed and marked according to their reconstructed hid-

18

den closure types.

3.3.2 Compiled Marking

Rather than interpreting type encodings aa in our inter-

preted marking schema, it is also possible to generate com-
piled marking functions for each datatype that know how to

traverse the object directly without any type interpretation.
In this Compiled Marking Schema M’, for each datatype

T“ the compiler automatically generates a mark function
mark’.T that is parameterized by n mark function arguments

~1 ..” ~~ instead of encoded type arguments.
This alternate marking schema A-4’ can be directly ob-

tained from our interpreted marking schema A-f shown in
Figure 6 by replacing the recursive call for interpretation:

Znterpret[M] (Cotrapose[C] {a, I+ z, } r)

by a type-based function composition:

(Compose[M’] {~i I+ $i} ~)

This transformation expresses the fact that building the ex-
act run-time type encoding of an object and then interpret-
ing it to guide the traversal and marking is functionally
equivalent to directly traversing it using a compiled marking
function that knows the structure of that object. Note that
marking functions so generated do not contain any type-

code interpretation. Their execution directly results into
the appropriate traversal and marking of the given object.

The compiled marking process is initiated by converting
the reconstructed typemap of each activation frame into a

composition of compiler-generated marking functions. This
translation is similar to the type-based function composition
shown in Figure 7 except that it operates on type encodings

rather than static types. The resulting function composi-
tion may be directly executed to mark all objects reachable
from the activation frame. The compiled marking schema is
currently unimplemented.

4 Implementation of Id on *T

*T is a parallel, distributed-memory machine [1 2]. The
*T architecture extends a basic RISC instruction set with
low-overhead, user-mode communication and synchroniza-

tion primitives. In th~ paper, we use a simulator for a
machine based on the 8811oMP processor. The 88110MP is

Motorola’s superscalar RISC processor extended with an on-
chip message and synchronization unit (MS U). On this ma-
chine, messages consist of 4 to 24 32-bit words. A full-sized
message may be composed from data present in general-
purpose registers and sent in 6 instructions.

*T runs a Unix-like operating system. A parallel job
running on *T consists of a separate process, or player, on
each processor. These players have independent virtual ad-

dress spaces, but may refer to a global 64-bk address space
through the MSU by using split-phase transactions.

In the rest of this section, we present some details of the
implementation of Id on *T and of performing distributed

garbage collection on this machine.

4.1 Microthread Scheduling on *T

The 881 10MP MSU provides hardware support for schedul-
ing microthread.s. A microthread is a compiler-defined thread,

described by an instruction pointer (1P) and a frame pointer
(FP). A microthread, by definition, executes to completion
once it has been invoked. It may send messages or fork other
microthreads that are deposited in a stack of ready-to-run

microt breads.
Messages alwavs contain a microthread descrirAor as the

first two ~ords of”payload. Normally, messages ale handled

by invoking the microthread described within the message,
so these microthreads are termed message handlers.

A microthread’s last operation is to schedule the next mi-

crothread of the highest priority. The MSU provides a sched
instruction that ret urns the 1P, FP of the next microthread
to be run in a 64-bit register pair. The highest priority mi-
crothread is selected from a simple priority queue consisting
of incoming message handlers, the microthread stack, and
several microthread registers. Message handlers have higher

priority than computation microthreads.

4.2 Layout of Memory

The memory of an Id process on *T is divided into six ar-
eas that are themselves distributed or replicated across the
nodes:

MEMORY AREA TYPE
Code I rerdicatedu

The code and static data areas are replicated — each
node gets a copy of the whole program and all of its con-
stants. Each node also has a stack that is used for calling

into C procedures from Id. The Id run-time system is im-
plemented in C and may also use the C stack.

The frame area contains the activation frames for each
Id procedure that is invoked. When a procedure is invoked,
the run-time system chooses a processor on which to allocate
the frame, then sends a message to that processor, which
allocates a frame in its own frame area.

The heap area contains all of the heap-allocated Id ob-
jects. In our implementation of Id on *T, all scalar objects

and pointers to heap objects are 64 bits in size. Furthermore,
these pointers are always aligned on 8-byte boundaries when

stored in memory. Each 64-bit word in the heap has an asso-
ciated 2-bit presence value in the presence-bit area. These

presence bits are used to implement Id’s non-strict array,
I-structure, and M-structure operations.

Our compiler and run-time system never store a pointer
to the interior of an object in a frame-slot or another Id

object. Therefore, a pointer found within a frame or a heap
object always points to the head of the active area of the
object. The active area of the object is actually preceded
in memory by some information managed by the run-time
system including the object’s size (used for deallocation) and
the time when it was allocated (in instruction cycles — for

statistics collection).

4.3 Garbage Collection on *T

Garbage collection on *T can be initiated either by request
from the Id program or by the run-time system when one
of the processors finds out that it is running out of heap
storage. Our current policy is to initiate garbage collection

19

when the allocated storage on a node reaches a specified
fraction (say, 0.75) ofits total storage.

Since theheap is shared globally, allprocessors must par-
ticipate in a global garbage collection. Therefore, when one

processor decides to do garbage collection, all other proces-
sors are informed about it. Currently, we have implemented
a simple stop-and-collect garbage collection scheme.

First, the processors drain all messages out of the net-
work because the messages may carry live pointers to heap

objects. As messages are drained from the network, their
handlers are invoked. Our message handlers can modify

memory locations or fork other microthreads, but they can-

not send messages. We can handle all messages and eventu-
ally reach quiescence, as long as we do not run any threads

scheduled by the message handlers. Since we invoke mes-
sage handlers as the network drains, there are no queues of
messages to consider as part of the root-set during garbage
collection.

Once the network is drained, all processors synchronize
and then initiate the mark phase. In this phase, all live and
reachable objects are marked according to one of the ob-
ject identification techniques starting from the distributed
root set of activation frames currently in use. This process

requires global communication among processors to mark
objects distributed across the machine. After global mark-
ing is completed on all nodes, the processors synchronize
again and then each processor begins a local sweep phase.
A final synchronization is performed after sweeping iscom-
pleted on all nodes, and then the Id threads are allowed to
resume computation.

4.3.1 Type-Reconstructed Garbage Collection

The mark phase of the Type-Reconstructed Garbage Col-

lection (TRGC) follows the compiler-directed object iden-
tification scheme described in the last section. Currently,
we have only implemented the interpreted marking scheme

with full type reconstruction. During the mark phase, the

frame memory of each processor is traversed locally to find
the activation frames that belong to the current dynamic

call tree. Each activation frame that is currently in use is
type-reconstructed and then its contents are searched for

heap objects to be marked using their reconstructed types.
The type-reconstruction of a frame may be overlapped with
marking of objects in another frame, so the overall cost of
type-reconstructed marking is a combination of the two.

4.3.2 Conservative Garbage Collection

The mark phase of the Conservative Garbage Collection
(CGC) [5] requires no source type information. Conser-
vative garbage collectors use a simple, conservative test to
determine whether a value in a frame or a heap object is

a pointer to another object. Since pointers are identified
conservatively, CGC may assume that there are live refer-
ences to an object when there are none, therefore some ob-
jects may remain uncollected. Also, CGC cannot compact
or copy objects because conservatively identified pointers
cannot be updated. Finally, CGC has no knowledge of the
source types, therefore it must examine every slot of every
reachable object and no short-circuiting based on scalar-type
information is Dossible.

In our syst~m, the conservative pointer test is imple-
mented as follows. CGC tests each 64-bit value to see if it is
aligned to a 64-bit boundary and if it points within the heap

area. Then, it checks to see if the value points to the head of
a heap object. This is a very simple test because in our com-

pilation model, actual pointers never point to the interior of
objects. Furthermore, the run-time system marks the head
of each allocated object with a special presence-bit pattern.
Therefore, CGC simply checks for this pattern at the head
of the current value. If this test succeeds then the value is
considered to be a pointer and the object is marked. This
test may mark some objects that are not actually reachable
because a value in memory happens to look like a pointer to

that object. However, the test is guaranteed to mark only
actual heap objects.

4.3.3 Compiler- Directed Storage Reclamation

For comparison purposes, we have also implemented the ex-
plicit, compiler-directed storage reclamation scheme (CDSR)
[9] within the same compiler and run-time system frame-
work. In this scheme, no separate garbage collection needs
to be performed: the compiler inserts code to deallocate an
object when it can determine the object to be garbage. This

analysis has a substantial compile-time cost and also a small
run-time synchronization cost that is somewhat difficult to

separate from the cost of the Id application. Also, the static
analysis may not be able to reclaim all the garbage that

is generated by the program. So, we present this scheme
only to compare its relative storage management efficiency

to that of the garbage collected schemes. It is also possi-
ble to simultaneously use the explicit storage management
scheme to get most of the large objects along with a garbage
collector that catches the smaller, harder to analyze objects.
We believe that a mixed approach would yield better per-
formance than either scheme on its own.

5 Performance

We are interested in two aspects of the performance of the

type-reconstructed garbage collection (TRGC): how long it
takes to garbage collect, and how much garbage it reclaims.
We compared several programs running with TRGC, con-

servative garbage collection (CGC), and compiler-directed
storage reclamation (CDS R).

In preparing a uniform execution platform, we naturally
had to accommodate the requirements of each storage man-
agement scheme within the same run-time system. This
resulted in a system that was not tuned to any particu-
lar storage management scheme. For instance, a copying
garbage collector could not be used for TRGC since CGC
would not work in that setup. Thus, the results we obtained
cannot be treated as an absolute measure of performance for

any particular scheme. On the other hand, they provide a

good measure of relative Performance of the ob iect identi-.
~cation mechanisms stud~ed and also characterize systems
where more than one storage management strategy is used.

5.1 Benchmarking Setup

We used four different benchmarks. Quicksort is the
standard recursive algorithm for sorting N list elements pa-
rametrized by a polymorphic comparison predicate. Parafins
generates and counts the number of distinct paraffin isomers

of up to IV carbon atoms. Garnteb is a Monte Carlo simu-
lation of N photons impinging on a carbon rod divided into
two cells. Finally, Waoe~ront consists of 10 iterations of a

20

100001 . ,...,.”

8000

6000

Quicksort

--- TRGC Total
-E- CGC Total
-a- CDSR Total
- +- TRGC RTS
--- CGC RTS 25CS
- -a- CDSR RTS

4000-

2 GCS
2000- -- ●

-= ==-- ---
______ ---

0
40 60 80 lbo

List Size
10000-

Gamteb 2 GCS

8000-

6ooo -

4000-

. ..=== ==~=””””---”---”----n
o ,

4-0

Paglcles

Figure 8: Total

8’0 160

lUWU -

8000-

6ooo-

4000-

3 GCS

/ P

// R

Carbon Atoms
1000O

1
Wavefront 5 GCS

P
8000-

6o00-
5G

4000-

20CSI-

0
10 20 30 40

Matrix Size

Cost and Run-time System Cost for the Benchmarks.

successive over-relaxation kernel of a N x N matrix contain-
ing floating-point data.

For each of the programs we tested, we ran three versions:
TRGC, CGC, and CDSR. The TRGC version is the program
running with type-reconstructing garbage collection. The
CGC version is running with conservative garbage collec-
tion, and the CDSR is the automatically annotated version
running with no garbage collection. Both garbage collectors
use the mark and sweep algorithm, and use the same imple-
mentation of sweeping and inter-processor synchronization.

Using a simple GC algorithm allowed us to separate the ba-
sic heap management cost (allocation and deallocation) from

the overall cost of garbage collection. Thus, the cost of ob-
ject traversal and marking of TRGC and CGC can be truly
ascribed to their respective object identification strategies.

In all three cases, actual heap storage management and
statistics collection is performed by the same Id run-time
system. Although statistics gathering is mildly intrusive, it
constitutes a tiny fraction of total cycles executed. Online
statistics processing (resampling profiles) is not counted.

5.2 Benchmark Runs and Discussion

We simulated several problem sizes for a single processor
with each program and storage management scheme. The

TRGC and CGC runs were made with sufficient storage to
avoid thrashing. Each garbage collected run also performed
a final GC at the end of the run to reclaim all the uncollected
garbage.

The total instruction cycles and the cycles spent in the
run-time system and garbage collection for all the runs are

shown in Figure 8.6 The numbers appearing on top of the
curves are the number of garbage collections performed by
TRGC and CGC for that run. Both TRGC and CGC did
the same number of garbage collections in all runs. Garbage

collection was switched off for CDSR runs. These curves give
an idea of the growth of run-time system cost of the various

schemes as a function of problem size and as a fraction of
the total cost.

5.2.1 Time Analysis

Several trends are apparent from Figure 8. The CDSR
scheme consistently has the lowest run-time cost since it

does not perform any garbage collection and only incurs
the basic heap and frame management cost (allocation and

deaiIocation). The fraction of time spent in the run-time
system varies widely depending upon the nature of the ap-

GMore detailed numbers are available from the authom. We could

not present all the raw numbers here for lack of space.

21

4000

g3000
z

~
:2000
0

1000

0

E?S37YPS-RSO.
U Sweep
@j Merk-Object
EWMerk-Frame
WHeap-Mgmt.
=Frame-Mgmt.

Quicksort 100 Paraffins 13 Gamteb 100 Wavefront 411x40

Figure 9: Run-time System Cost Breakup.

plication and the cost and the number of garbage collections
performed. For example, Paraffins allocates a lot of small-
sized data-structures keeping them live until the very end.
Thus, each mark phase has to do a lot of work. Similarly,
Quicksort rapidly unfolds into a tree of activation frames
each of which holds onto a substantial amount of storage,

so the cost of marking is high there as well. On the other
hand, for Gamteb, the size of the live heap is quite small so
the garbage collected schemes incur very little overhead.

Comparing the relative run-time costs of TRGC and the
CGC, we find that for Quicksort and Paraffins TRGC does
much worse than CGC while for Wavefront it performs much
better. This wide variation can be explained by looking at
the normalized run-time cost breakup shown in Figure 9 for
the largest sized runs. We break the run-time system cost
into basic frame and heap management cost, type recon-
struction cost, the cost of marking frames and objects, and

sweeping cost.
For both Quicksort and Paraffins, TRGC spends a sig-

nificant amount of time in the type reconstruction phase.
This is due to the fact that they both contain polymorphic
functions so the type reconstruction mechanism has to gen-
erate and propagate the exact run-time type instantiation
down from the root to each frame in the dynamic call tree.
This reconstruction cost is much less visible in Gamteb and
Wavefront that are not polymorphic and largely consist of

first-order functions. Furthermore, the run-time types are
represented as C data-structures and are currently managed
using conventional raalloc and free system calls. This cost

can be substantially reduced by using a specialized version
of rrralloc.

The marking cost of TRGC is also about 1.5- 2.2 times
higher than that of CGC in case of Quicksort of 10 elements

and Paraffins of 13 carbon at ems. Our current implemen-
tation interprets the type structures at run-time in order
to traverse and mark the corresponding run-time objects.
This interpretation overhead could be eliminated by using

the compiled marking schema as described in Section 3.3.2
where the compiler generates a specialized marking routine

for each source type parameterized over its polymorphic
variables, Furthermore, these routines can be inlined to

produce highly optimized traversal and marking functions
for each user-defined function activation frame.

In the case of Wavefront, TRGC takes much less time
than CGC, and very little more time than CDSR, where no

marking at all took place (see Figure 8). For Wavefront of
40x 40, the marking cost of CGC is 25 times higher than that

of TRGC. TRGC did so well because it could determine that
the arrays contained only scalar data by inspecting their run-
time type. Therefore, it only marked the arrays themselves
and did not scan for pointers inside them, as CGC did. This
scanning cost depends on the total size of the arrays and
was responsible for the quadratic growth in run-time cost
for CGC in Figure 8, However, sweeping took the same

amount of time for both TRGC and CGC (see Figure 9).
The wavefront example shows that in an ideal situation,

the time to mark the heap for TRGC is proportional to the

total number of live object references, rather than the total
amount of live storage as it is for CGC. TRGC can use the

reconstructed type information to avoid scanning elements
of scalar arrays and scalar fields within records and algebraic
types.

5.2.2 Space Analysis

In terms of space usage, both TRGC and CGC perform iden-
tically. CGC is able to reclaim all the garbage because of

our restrictive compilation model and support from the run-
time system (see Section 4.3.2). The performance of CDSR
varies wit h the application. For Gamteb and Wavefront,
CDSR is able to insert deallocation commands to reclaim

all the garbage automatically. Therefore, these benchmarks
are able to run under CDSR without leaking any storage.

The garbage collected versions for these benchmarks had
to be given 2-10 times the storage used by CDSR to avoid
thrashing. On the other hand, for Paraffins and Quicksort,
CDSR is able to reclaim only 10-20% of the total garbage,
therefore the TRGC and CGC versions are able to run in
same or less storage than the CDSR version without thrash-
ing.

6 Conclusions

In this paper, we have described a scheme for garbage col-
lection of Id programs using run-time type reconstruction
(TRGC). We described the compiler and run-time mecha-
nisms required to reconstruct the exact types of all run-time
objects. We also described an interpreted and a compiled

marking schema for traversing and marking live run-time
objects using the reconst rutted type information. We have
implemented the interpreted marking schema on a simula-
tor for the *T architecture and compared its performance

with conservative garbage collection (CGC) and compiler-
directed storage reclamation (CDSR) on several benchmarks.

Our results show that in general, TRGC does more work
in marking the live objects than CGC, unless it can avoid

scanning large, scalar, array-like objects using type informa-
tion. The type reconstruction overhead increases with the
amount of polymorphism and higher-order functions (clo-
sures) used in the program, although the cost of reconstruc-

tion is small compared to the cost of marking live objects

with type interpretation. The cost of interpreted marking
itself should get reduced considerably using the compiled
marking schema instead of type interpretation.

22

TRGC has the additional advantage that other storage
reclamation schemes may be used, such as compaction or
copying. These may not be used with CGC because they
require the update of live pointers, and CGC cannot guar-

antee that what it uses as a pointer is not really a scalar
value, On the other hand, TRGC requires initialization of

polymorphic and pointer data with vrdid values and cannot

cope with stale data as CGC can.

CDSR consistently does better than either of the garbage
collection schemes in terms of time spent in the run-time sys-
tem. This is as expected, although sometimes it is not able
to collect all the garbage and therefore requires more mem-

ory than strictly necessary. CDSR also takes much longer
to compile, sometimes increasing compile-time by a factor
of 10.

On the whole, type reconstruction and type-reconstruction-
based garbage collection seem to be a promising area of re-
search with a lot of scope for compiler optimization and
run-time performance improvement. This initial study has
shown that type reconstruction based garbage collection is

certainly feasible and can be competitive with other storage
management strategies under the right mix of applications.

6.1 Future Work

There are several dimensions in which further investigation
would be useful. We already plan to implement the com-

piled marking schema and compare its performance with
our current interpreted marking schema. We expect to see
a substantial improvement in performance using specialized
marking functions. We also plan to investigate mixed stor-

age management schemes that combine garbage collection
with explicit storage reclamation within the same run-time

environment.

Although our system has been designed and implemented
for a multi-processor architecture, we have currently made
a study for only a single processor. We would like to see
how TRGC scales under a multi-processor environment and

quantify the inter-processor communication overhead for type
reconstruction.

It would be very interesting to compare the performance
of TRGC with an explicitly tagged object identification scheme

implemented within the same framework. It would be inter-
esting to know if TRGC offers any concrete advantages over
that technique.

Finally, it would be useful to implement a compacting
garbage collector based on type reconstruction with a very
simple allocation scheme (bumping a pointer) and compare
its heap management overhead with that of the CGC and
CDSR that require a more sophisticated storage manage-
ment scheme (free lists).

7 Acknowledgments

The authors would like to thank Prof. Arvind, Mike Ernst,
David Moon and the anonymous referees for their insightful
comments and suggestions.

The research described in this paper was funded in part
by the Advanced Research Projects Agency of the Depart-

ment of Defense under Office of Naval Research cent ract
NOO014-89-J-1988.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Shail Aditya and Alejandro Care. Compiler-directed

Type Reconstruction for Polymorphic Languages. In

Proceedings of the ACM Conference on Functional
Programming Languages and Computer Architecturej

Copenhagen, Denmark, pages 74-82, June 1993.

Andrew W. Appel. Runtime tags aren’t necessary. Lisp
and S~mboJic Computation, 2(2):153–163, June 1989.

Andrew W. Appel. A runtime system. Lisp and Sgm-
bolic Computation, 3(4):343-380, November 1990.

Zena M. Ariola and Arvind. A syntactic approach to
program transformations. In Proceedings of the A C14
SIGPLAN Symposium on Partial Evaluation and Se-
mantics Based Program Manipulation, June 1991.

H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. So@are: Practice and Ex-

perience, 18:807-820, September 1988.

Benjamin Goldberg. Tag-free garbage collection for

strongly typed programming languages. In SIGPLA N
‘9I Conference on Programming Language Design and
Implementation, pages 165-176, June 1991.

Benjamin Goldberg and Michael Gloger. Polymorphic
Type Reconstruction for Garbage Collection without
Tags. In Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 53–65, 1992.

Shail Aditya Gupta. An Incremental Type Inference
System for the Programming Language Id. Master’s

thesis, MIT, Laboratory for Computer Science, Septem-
ber 1990. Available as Technical Report MIT/LCS/TR-
488.

James E. Hicks. Experiences with compiler-directed
storage reclamation. In Conference on Functional Pro-

gramming Languages and Computer Architecture, 1993.

Harry G. Mairson. Deciding ML Typability is Complete
for Deterministic Exponential Time. In Proceedings oj
the 17th ACM Symposium on Principles of Program-
ming Languages, pages 382–401, January 1990.

Rishiyur S. Nikhil. Id 90.1 reference manual. CSG
Memo 284-2, MIT Laboratory for Computer Science,
Cambridge, MA 02139, September 1990.

G. M. Papadopoulos, G, A. Boughton, R. Greiner, and
M. J. Beckerle. *T: Integrated building blocks for par-
allel computing. In Proceedings of Supercomputing ’93,

1993.

Simon L. PeytonJones. Implementing lazy functional

languages on stock hardware: the Spineless Tag-
less G-machine. Journal of Functional Programming,
2(2):127-202, April 1992.

Kenneth R. Traub. A compiler for the MIT Tagged-
Token Dataflow Architecture. Technical Report TR-
370, MIT Laboratory for Computer Science, Cam-
bridge, MA 02139, August 1986.

Paul R. Wilson. Uniprocessor Garbage Collection Tech-
niques. In Proceedings of the International Workshop

on liemory Management, St. i$falo, France, pages 1–42.
Springer-Verlag, September 1992. LNCS 637.

23

