
Sweet Harmony: The Talk/C++ Connection

Harley Davis Pierre Parquier Nitsan S6niak

Ilog, S.A.

2, avenue Galli6ni

94253 Gentilly, France

talk- support@ ilog. f r

Abstract

A tight, transparent, and portable integration between C++

and LISP is desirable and feasible. This paper describes the

C++ interface supplied with [6], a modern LISP dialect

which extends the proposed ISLISP standard with a module

system [3], a metaobject protocol, and an extensive set of

libraries. The interface parses C++ header files and gener-

ates C++ stub interface files, as welf as TALK modules which

implement proxy classes and TALK foreign function defini-

tions for C++ functions. The programmer then has nearly

complete access to the functionality of a C++ library.

1 Introduction

LISP and C++ [2] provide complementary services: C++ is

efficient, statically typed, relatively small, and widely used;

while LISP is dynamic, productive, flexible, and extensible.

Instead of battling for dominance, we should try to take ad-

vantage of each language, using each where appropriate and

joining the two together to rapidly produce efficient, work-

ing software. Such a strategy allows LISP to leverage off the

considerable efforts currently being invested in developing

large C++ libraries.

For example, distributed object systems are becoming

available in C++; by connecting to such systems directly

LISP can immediately gain the benefits of distribution. Sim-

ilarly, graphic libraries written in C++ provide high perfor-

mance. However, it is difficult to rapidly construct com-

plex graphic applications because of the long turnaround

involved in testing and experimenting with various possibil-

ities. LISP, as a dynamic language, is ideal for exploratory

programming. By making a C or C++ graphic library avail-

able in LISP, both high performance and high productivity

can be maintained.

The TALK/C++ connection is an attempt to bridge the

gap between these two languages. It goes much further than

typical LISP foreign function interfaces [9] by merging the

object models in LISP and C++. Specifically, it provides

the following facilities:

● C++ classes are mirrored by equivalent TALK classes.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantaqe, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy othetwise, or to republish, requires a fee
and/or specific permission.

C++ class data members are seen as slots in these

classes.

C++ class constructors are available to the TALK pro-

grammer. The TALK function delete deletes a C++

object by calling the appropriate destructor function

in C++.

Instances of these classes created in C++ are visible

in TALK as TALK objects correctly typed to the extent

that the C++ class provides type information.

Because mirrored C++ classes use an extension of

the TALK metaobject protocol, object inspection and

browsing tools automatically work for C++ objects.

(See [7] for an excellent overview of the capacities of a

metaobject protocol.)

C++ functions — normal, overloaded, and member —

are available to the TALK programmer as generic func-

tions which discriminate on the classes and number of

their arguments.

TALK functions can be passed as callbacks to the C++

library.

The entire interface to a C++ library can thus be made

available to the TALK programmer. Programming such a

library in TALK rather than in C++ can provide a number

of benefits:

Because of its interactive development environment,

TALK provides an ideal medhrm in which to prototype

applications using a C++ librarY.

TALK’S dynamic typing and automatic memory man-

agement relieve the programmer from worrying about
low-level details, meaning that programs are more likely

to be completed on time.

TALK provides a portable mechanism for creating higher-

level libraries and executable, saving the programmer

porting costs.

TALK’S powerful high-level class libraries provide a ready-

made toolset for common prograrnmin g abstractions

such as heterogeneous lists, vectors, hash tables, and

formatted i/o.

The TALK/C++ interface works best when extending or

using a relatively independent C++ library. Mixed-language

LISP 94- 6/94 Orlando, Florida USA
0 1994 ACM 0-89791 -643-3/94/0006..$3.50

121

programming at the application level is not currently well-

supported because of the difficulties of debugging such an

application.

The TALK/C++ interface provides three possible levels

of integration with a C++ library. In the best case, the

C++ library provides a dynamic typing scheme for its ma-

jor classes. Then the interface provides a completely non-

intrusive encapsulation of a C++ library. The programmer

does not need to modify the C++ library in order to gen-

erate its interface in TALK. If no dynamic typing scheme

exists, there are two options: First, the programmer can

modify the llbrary to use a simple dynamic typing scheme

provided by the interface. In this case, the binding is com-

plete but slightly intrusive. If the library cannot be mod-

ified, the final possibility is to generate an interface using

static typing, in which case the exact class of arguments

and return values for C++ functions must be specified. In

this worst case, the binding is non-intrusive but incomplete,

unless the C++ program has no derived classes.

AC++ object isrepresented bya handle in TALK. This

handle is a TALK object of the appropriate mirror TALK class

containing a pointer to the C++ object.

C-t+ objects are in general not amenable to garbage

collection by the TALK memory manager. They must be

allocated and deleted explicitly by the programmer, as in

C++, However, this can be done in TALK: Each class has

at least one constructor which calls the C++ operator new,

and the TALK generic function delete deletes a C++ object.

The handle objects themselves can be garbage collected —

but the programmer must be careful about keeping a handle

to a deleted C-t+ object. The consequences of using such

a handle are undefined, but are unlikely to be useful. We

considered the generalized use of handle finalizes to auto-

matically destroy C++ objects after handle collection, but

this solution was rejected as being incompatible with C++

semantics and thus too dangerous [5]. However, for certain

simple classes without side-effects, it is feasible to automate

the deletion process when the handle is collected.

2 Generating a Binding

A C++ library consists of a set of header files and a set

of object files. The C++ module parser is used to analyze

these header files and generate a TALK interface from such

a library:

1.

2.

3.

4.

The parser scans the header files to extract relevent in-

formation such as the names and inheritance of classes,

data member names and types, type definitions de-

clared using typedef, and the prototypes of operators

and functions.

The parser presents this information to the user, who

selects a subset of the interface to be made available

in TALK. The user must also clarify any ambiguities

and specify the dynamic typing scheme to be used for

the interface. The parser can also function automat-

ically to produce a complete first-cut interface using

reasonable defaults.

The parser then generates a TALK module containing

the appropriate declarations.

The compilation in TALK of this module generates a

stub file containing functions which create the C++

#include “IndexedCollect ion .h”

class OrderedCollection : public IndexedCollection {

public:

int size.; II fake slot for example

classType isA() const

{ returm OrderedCollectionClass; 1

char* classllameo const

{ return “OrderedCollection”; >

int includes (const Object*) const;

Object* remove (const Object*);

Object* forEach (funPtr, void* = O) const;

Object* at (int i) const;

// Constructor

OrderedCollection(int = BaseCollectionSize);

II Destructor

‘OrderedCollectiono { delete _vec; }

};

Figure 1: Atypical++ Header File.

5.

6.

2.1

classes, access the data members, and call the appro-

priate functions. All of these stubs are specified as

having linkage extern “C”. This file is compiled by

the local C++ compiler and associated with the TALK

module. The stub file generation is key to the ap-

proach; by using them, we avoid portability problems

associated with trying to second-guess C++ compilers’

object layout and name mangfing schemes.

The generated TALK module itself defines the mirror

TALK claases, which are instances of a special meta-

class, as well as foreign function definitions for the

generated stubs. In TALK, slot access is provided by

storing an anonymous reader and writer function for

each slot in the class object (see [1]). The metaclass

for C++ objectsin T.4LK supports anonymous foreign

functions which can be used as slot accessor functions.

The TALK interface module can be either linked with a

T.4LKhbrary or executable, or loaded dynamically on

most systems. Dynamic loading of C++ code presents

certain portability problems due to the possibtity in

C++ of defining top-level forms which must be exe-

cuted when the code is loaded.

Example

BeIowwe present an example inspired by the NIHclassli-

brary [4], a freely available C++ library implementing a

number ofSmallTalk-like classes. This example is provided

to give a flavor of the interface; this article does not docu-

ment the various macros in the interface in depth.

Figure l showspart oftheC++header file OrderedCollectior

Figure 2shows the automatically generat.ed TALK interface

code for this header tile, plus some handwritten code which

defines new functionality forthisclaasin TALK.

The TALK forms implementing the interface are designed

to match as closely as possible the C++ programstructure.

122

;;; Generated code

(cpp-include “IndexedCollection.h”)

(define-cpp-type <OrderedCollection>*

talk–class: <OrderedCollection>

cpp-type: “OrderedCollection”

interface: NihObject)

(define-cpp-type <Object>*

talk-class: <Object>

cpp–type: “Object”

interface: NihObject)

(define-cpp-function-type funPtr (<Object,>* void*)

void)

(define-cpp-class <OrderedCollection>

(<IndexedCollection>)

((size_ type: <integer>)

(includes (<Object>*) <integer>)

(remove (<Object>*) <Object>*)

(forEach (funPtr optional: voidx) <Object>*)

(at (<integer>) <Object>*))

constructor: (optional: <integer>))

;;; Handwritten code

(defcallback remove-callback funPtr (obj arg)

(printf “Removing IA from XA.\n” obj arg)

(->reraoveobj arg))

(defgeneric OrderedCollection-p (object))

(defmethod OrderedCollection-p

((object <OrderedCollection>))

t)

(defmethod OrderedCollection-p

((object <object>))

())

(defun empty-collection (obj)

;; OBJ is an OrderedCollection.

;; Remove all elements from an

; ; ordered collection.

(assert (OrderedCollection-p obj))

(->forEachobj #’remove-callback))

Figure 2: Generated TAI,K Interface File

The form define-cpp-type defines aforeign data type

interface for each C++ type. This k necessary because the

C++ notion of type does not correspond its notion of CIaSS;

types are declined by various modifiers. In this example, we

define a type named <OrderedCollection>* corr~ponding

tothe C++type OrderedCollection* —in other words, a

pointer to an instance of OrderedCollection. The module

parser generates one such define-cpp-type form for each

type encountered in the C++ header files. The parser also

generates types for each typedef encountered. This type is

then specified when declaring function argument and return

types, and is used by the stub generator to correctly deref-

erence pointers and do numeric conversion when necessary.

Because callbacks present asomewhat more complicated

problem, as we shall see later, types which are pointers to

functions are declared using the form

define-cpp-function-type. This allows such types to be

specified for callback functions written in TALK.

The form define-cpp-class defines aproxy TALK class

fora C++ class. The syntax of define-cpp-class isremi-

niscent ofdefclass, but allows the specification of member

functions in addition todata slots. Inthiscase, theslot size

is adata member while the other slots — irrcludes, remove,

forEach, and at — correspond to member functions. Mem-

berfunctions declare their argument types and return type;

each such type must be defined by define-cpp-type. Basic

types are predefine by the system; other types are gener-

ated by the parser. Proxy class declarations also contain sig-

nature declarations for constructor functions. While C++

constructors are called independently of memory allocation,

TALK Droxv constructors alwavs call new to allocate a new

instan~e in-the heap; TALK h~ no provision for heap allo-

cation of foreign data.

Finally, the form defoverloaded— not used inthisex-

ample — defines a top level overloaded function signature.

The handwritten code T,&LKfollowinz the automatically .
generated declarations shows a simple use of these declara-

tions. The TALK programmer can write normal functions,

generic functions, and methods which specialize on proxy

classes. A callback, specified by the form defcallback, al-

lows the programmer to write TALK functions which can

then be passed to C++ functions which take functions as

arguments. Because these functions are exactly typed in

C++, a callback definition must mention the function type

(defined by define-cpp-function-type) to which it con-

forms.

3 Issues

A number of orthogonal issues provide a challenge to a

complete and efficient interface in TALK to C++ libraries.

Among other issues, we can cite:

Naming: If the TALK interface to a C++ library is to be

transparent and simple to use, we need a set of simple

and universrd naming conventions for the TALK entities

generated by the interface. We must also avoid name

collisions with predefined or user-defined TALK names.

Typing: C++ provides no default dynamic typing mech-

anism. Some C++ libraries offer nodynarnic typing

at all. TALK has dynamic typing for all objects. In

addition, C++ types include several distinctions not

recognized in TALK— such as the distinction between

123

signed and unsigned integers as well as const pointers

and objects.

Representation: The representation of a C++ object is

decided upon by the compiler, and is not directly ac-

cessible; only the public class interface provides a portable

means of accessing and creating objects. TALK objects

have a particular representation and are strongly con-

nected to the memory manager.

Arguments: C++ supports call-by-value and call-by-reference

argument passing styles. Using call-by-value has the

unfortunate effect of copying the value during argu-

ment passing, and can thus be very inefficient for even

small objects. Therefore, most C++ programs use ei-

ther call-by-reference or call-by-value for object point-

ers rather than objects themselves. The TALK inter-

face must be able to support both argument passing

styles.

Callbacks: C++ libraries — especially graphics libraries

— allow the programmer to dynamically specify ac-

tions through the use of callbacks, passing C++ func-

tions as arguments. TALK functions are not called us-

ing the same protocol as C++ functions, and require

data manipulation when passed foreign objects.

Operators: C++ libraries are defined not only in terms

of classes, slots (members), and functions, but also in

terms of overloaded operators. For a complete integra-

tion with C++, the interface must provide some way

to access these operators.

In this section, we will describe each of these problems in

detail, and the approach used in the TALK/C++ interface

to deal with them.

3.1 Naming

To simplify the use of the TALK interface to a C++ library,

we need a set of naming conventions. We have chosen the

following rules:

● The name of the TALK surrogate for a C++ class al-

ways haa the same name as that class in C++, with

angle brackets added. This is necessary because all

TALK class names are enclosed in angle brackets.

● Top level C++ functions are represented by special

TALK generic functions of the class

<overloaded-function>. TALK overloaded functions

discriminate on the number of arguments passed aa

well as the class of the arguments, simplifying the

treatment of C++ overloading.

● All C++ member functions are represented in TALK

by special generic functions (of the class

<rneruber-funct ion>) with the same name as the C++

function, prefixed by the sequence ->. The arrow pre-

fix was chosen to avoid any conflict with predefine

or user-defined TALK function names, and to remind

users of the C++ arrow operator which accesses ob-

ject pointer members. TALK member functions follow

C++ semantics by looking up an overloaded function

in the scope of the class of their first argument.

3.2 Typing

Because dynamic typing is useful for many applications,

such as persistence, many C++ libraries provide some sort

of ad hoc dynamic typing feature. Indeed, this is so widespread

that the C++ standardization committee has approved a

standard dynamic typing mechanism known as RTTI (Run

Time Type Identification). However, few compilers as yet

implement this standard, and even fewer libraries can use
it.

TALK objects are systematically dynamically typed. The

function class-of can be applied to any TALK object to

discover its type. If we are to provide C++ objects in TALK,

these objects must be dynamically typed. Each time that

TALK sees a C++ object, it must be able to determine the

TALK class corresponding to the object so that its identity

can be determined and class-of (and hence all dynamic

typing operations) can be applied to the object.

Almost all of the ad hoc dynamic typing schemes for

various C++ libraries share a common trait: Given a C++

object belonging to a dynamically-typed class, it is possi-

ble to obtain a unique string naming the class. Sometimes

it is necessary to go through a class object in order to ob-

tain the string, but the important point is that the string

is obtainable. It is thus possible to write a small procedure

for each such dynamic typing system which takes a C++

object and returns the name of its class. By defining this

function as having extern “C” linkage in C++ and using

the foreign function interface in TALK, we can thus provide

a TALK typing function for each C++ dynamic typing sys-

tem. It ie then straightforward to produce a table mapping

from the class name returned by C++ for an object to a

TALK class corresponding to the C++ class.

For example, in the NIH class library, such a function

would have the following definition in C++ and TALK:

Ii In C++

extern “C” {

const char const* NihTypeOf (Object* obj)

{ return obj->classlJameo ; }

3

; ; ; In Talk

(defextern NihTypeOf (ptr) ptr)

The foreign function interface system must know how to

type the arguments and return value of foreign functions, as

well as the slots of C++ classes. Therefore, the declaration

of a new C++ dynamic typing scheme in TALK involves

adding a new argument/return value converter to the foreign

function interface system. For the NIH class library, this

declaration would be:

(clef ine-cpp-lnterf ace NihOb j ect typer: Ni.hTypeOf)

As demonstrated in the example above, the interface

NihOb j ect could then be used in C++ foreign function and

class declarations to indicate that an argument, return value,

or slot is a pointer to an NIH objectl.

The previous discussion applies to C++ libraries which

implement some sort of dynamic typing. There remains the

case of libraries which do not support such typing for some

1For ~rgu~ents and return values which are not pointers, see the

discussion below on passing by reference.

124

or all of their classes. We would like to make these classes

too accessible in TALK, even if it means functioning in a

degraded mode. The TALK/C++ interface provides two so-

lutions for such cases.

1. If the library source code can be modified by the user,

we provide a C++ base class and declaration macro

which implement a cheap dynamic typing system. The

cost is one virtual function, and the need to put the

declaration macro in the definition of each C++ class

which is to be accessible from TALK.

2. It is possible to use the TALK/C++ interface with a

purely statically typed system. In this case, foreign

function arguments, return types, and data member

types must be declared with the exact TALK class these

values will receive in TALK. If the corresponding C++

classes form a hierarchy, this will often mean that C++

objects seen in TALK will only be known to TALK as an

instance of a base class. This is because, in this case,

TALK has no way of determining the exact class of the

C++ object, and must assign the object a prespecified

TALK class. If the C++ classes do not form a hierar-

chy, the statically typed mode is in fact nearly as good

as the dynamically typed mode; the only disadvantage

is that C++ objects are blindly assigned their TALK

types and so debugging becomes somewhat harder in

case of mismatch between formal parameter type and

actual argument type.

3.3 Representation

C++ objects have a hidden representation. C++ compilers

are relatively free to use memory resources in whatever way

is most appropriate for a given C1WS2. This is why we need to

generate stub functions which provide a portable if slightly

expensive means of accessing objects.

TALK objects are allocated by the TALK memory man-

ager, and have a special layout in memory which allows the

memory manager to recognize them as TALK objects. We

therefore choose to allocate a handle object for each C++

object encountered by TALK. This handle is a proxy TALK

object created with a single field pointing to the actual C++

object. When the C++ object is passed from C++ to TALK,

TALK looks up the pointer and its type in a weak hash table

of handles. If no existing handle is found for the object, one

is created with the appropriate type and stored in the table.

The type of the handle is determined using the typing pro-

cedure defined for the interface specified for the argument or

member involved in the transfer from C++ to TALK. When

the object is passed from TALK to C++, the handle is deref-

erenced and the actual C++ pointer is passed to the C++

function. When calling between TALK functions, the handle

is passed directly.

The handle approach does not allow TALK’S garbage col-

lector to safely collect C++ objects. Since C++ allows

pointers to the interior of objects and pointer mangling,

TALK cannot safely deallocate objects allocated by C++.

Additionally, C++ destructor functions may not necessar-

ily be called at arbitrary times. Therefore, just as in a C++

2 Although there are some restrictions on data member ordering,
these are not sufficient to provide portable low-level access to C-i--t-
objects

program, the deallocation of C++ objects must be man-

aged by the programmer or by C++’s stack management.

Handles, on the other hand, can be collected. Collecting

a handle does not delete its associated C++ object. It is

therefore possible to have two different handles for the same

C++ object, but not at the same time.

In any case, the TALK programmer sees what are appar-

ently full-fledged TALK objects. All object-based tools func-

tion with these objects: inspectors, editors, class browsers,

and so on work without modification. The TALK metaobject

protocol provides a transparent reflective layer insulating

the tool developer from different object representations. Be-

cause the generic function mechanism is completely separate

from object representation issues, methods can be defined in

TALK for C++ objects. The inheritance of the mirror TALK

classes follows that of C++.

Some C++ types are not represented by handles. In-

tegral types are represented by TALK small integers and

bignums, and enums are represented by symbols ~~-ith a spe-

cial foreign type (defined by defenunr). The exact treatment

of these objects is outside the scope of this paper.

3.4 Argument Passing Style

Although C++ provides it, most C++ programs do not pass

objects directly with call-by-value since the copying involved

may be quite expensive. The TALK/C++ interface does not

support call-by-value with objects because objects passed

this way do not retain their identity over time, and, in any

case, this style is little-used. However, the interface does

support both call-by-value for pointers to objects and call-

by-reference.

Like most other LISPS, TALK itself supports only call-by-

value for object pointers and some immediate values. There

is no notion of call-by-reference. Therefore, all C++ objects

which are seen by TALK are seen as pointers. This means

that call-by-reference arguments and return types must be

referenced and dereferenced appropriately. This is done in

the generated stub function. For example, the following

C++ foreign function declaration, in which the single ar-

gument is passed by reference, generates the stub function

shown below:

II C++ call-by-reference function

Color* call_ by_ref (Pointk r) { return r. Coloro : }

; ; ; Generated Talk declaration

(define-cpp-type <Point>&

talk-class: <Point>

cpp-type: “Point”

style: k)

(de fine-cpp-type <color>*
talk-class: <Color>

cpp-type: “Color”

style: *)

(defoverloaded call_by_ref (<Point>&) <Color>*)

/. Generated stub */

extern “C” {

3HoWever, it is ~os~ible tO imagme collecting objects when the

programmer explicitly gives Talk the right to do SO, and when the
objects are allocated by the Talk interface-to the C++ constructor.

125

extern Color *Ilt-call-by-ref(Point *vO)

{ return call_by_ref(*vO); }

3

The ampersand character in the style: keyword for

the type definition for <point>& indicates that arguments

declaring this type usecall-by-reference, andsothestubgen-

erator knows to generate the dereferencing operator in the

stub. When the TALK function call~y-ref is called with

an instance of <point> (always a pointer to such an instance

in TALK), the pointer is passed to the stub Ilt.call-byxef,

which dereferences the pointer and calls the original C++

function cal13y_ref.

3.5 Signature Ambiguity

There are a number of cases where it is possible to over-

load a C++ function with signatures that are ambiguous

for TALK, because TALK, having amuch simpler object and

typing model than C++, simply cannot reproduce dynami-

cally all of the information necessary for distinguishing be-

tween overloaded function signatures. In all of these cases,

the module parser can either present the user with a choice,

or take a default resolution. Here are some of the ambiguous

cases:

C++ functions may be overloaded with both pointer

and reference signature for the same class. TALK proxy

objects are always pointers; there is no dynamic notion

of a reference. By default, the pointer version is there-

fore preferred.

C++ distinguishes between const and non-const val-

ues and pointers. TALK does not make such a distinc-

tion. When a C++ function is overloaded on both

const and non-const types, the module parser prefers

the const version because it is safer.

C++ has a multitude of numeric tvDes. each of which. . .
can be further modified by signedness. TALK has only

characters, small integers (3o or 61 bits), bignums, and

boxed doubles. When a C++ function is overloaded

on several integral types, the parser prefers the signed

long version since it most closely matches a native

TALK type. For float types, double is preferred since

it most closely matches a native TALK type. Other

numeric types are ordered for preference by the size of

their range, always preferring the signed version above

the unsigned version.

These heuristics are not always sufficient for the parser to

choose a best signature. For example, consider the following

declaration:

void bar(long, short) ;

void bar(short, long) ;

In this and similar cases, the parser merely chooses the

first signature and signals a warning. The user can modify

the parser’s choice if the other signature is more useful.

3.6 Callbacks

Many C++ libraries use callbacks in order to allow the pro-

grammer to specify action to be taken in certain situations.

Callbacks correspond to the LISP notion of closures or func-

tional objects, although, unlike LISP functions, they may

not close over variables. To provide a complete interface to

a C++ library, we must be able to program such callback

procedures in TALK. Exported TALK functions have a differ-

ent calling protocol than C++ functions; it is not sufficient

merely to pass a pointer to the TALK function’s code.

In particular, TALK functions expect two extra argu-

ments: The functional object itself, which in TALK contains

the function’s captured lexical environment, and the number

of arguments to allow the function to dynamically test the

number of arguments and implement optional and multiple

arguments. We therefore arrange to pass an intermediate

stub C++ function as the callback function. This stub takes

the arguments expected by the callback’s prototype, and

then calls the TALK function passing the functional object

and correct number of arguments. In TALK, the arguments

to the callback must be handled correctly if they are foreign

data. When calling a C++ function which accepts a call-

back argument, the programmer must pass a pointer to the

stub function. To generate a stub function for a TALK func-

tion, the defining form defcallback must be used instead

of defun.

3.7 Operators

While operators are called differently than functions in C++.

they are fundamentally functions. The TALK/C++ interface

provides access to them via their C++ function names, in

which the word operator is prefixed to the operator name.

For example, the operator + can be accessed in TALK us-

ing the function operator+. Since many of these operators

correspond to TALK generic arithmetic operations, methods

can be defined for the TALK proxy classes on these opera-

tions which simplifies the use of the operators. For example,

given an overloaded C++ definition for+ for a class My Class.

the following TALK code will access this definition using the

TALK function +:

; ; ; Generated code

(clef ine-cpp-class <My Class> . ..)

(de foverloaded operator+ (<My Class>& <My Class>&)

<My Class>&)

;;; Handwritten code

(defmethodblnary+ ((argl
(arg2

(operator+ argl arg2))

(+ (My Class) (My Class))

4 Future Work and Current

<Myclass>)

<MyClass>))

Status

Almost all major LISP implementations include a foreign

function interface. The TALK/C+ +interface goes much fur-

ther than these interfaces because it automatically provides

nearly complete access to a C++ library at both the func-

tion and data levels. Perhaps the closest approach is that

of esh, described in [8], which generates a close binding be-

tween a C library and a Scheme implementation. However,

the problem is considerably more difficult for C++ because

of the object-oriented nature of C++ and the not inconsid-

erable syntactic and semantic complexity of C++ compared

to c.

Currently, the C++ connection does not handle tem-

plates or multiple inheritance. Additionally, exception han-

126

dling works rather poorly when LISP function calls are in-

terlaced with C++ function calls.

The T,4LK/C++ interface is included with thecommer-

cial product ILOG TALK 3.o. It has been used to automat-

ically generate an interface to ILOG DBLINK, a portable

database interface, and ILOG VIEWS, a complete graphics

library with over 300 classes and 5000 method signatures.

5 Conclusion

Lisp and C++ both have strength sand weaknesses. What

C++ gains in efficiency and static checking, it loses in flexi-

bility and programmer productivity; with LISP, the situation

is inverted. Both languages have their place in a large ap-

plication, and it should be possible to use both effectively.

In addition, as dynamic languages gain in popularity, it will

be necessary to deal with a certain amount of legacy code.

It would be excessive to expect C++ to provide an interface

to the various LISPS. Therefore, it is up to the LISP commu-

nity to find solutions. The TALK/C++ connection provides

a non-intrusive encapsulation for C++ libraries, giving the

TALK programmer complete access to the functionality of a

C++ library in the comfort of a LISP environment.

References

[I] Bretthauer, H., Kopp, J., Davis, H. E., and Playford,

K.J. Balancing the EuLisp Metaobject Protocol. Lisp

and Syrnbohc Computation, 6(1/2):119–138, 1993.

[2] WG21/N0355 Standards Committee, editor. Working

Paper for Draft Proposed International Standard for In-

formation Systems — Programming Language C++. In-

ternational Standards Organization, 1993.

[3] Harley Davis, Pierre Parquier, and Nitsan S6niak. Talk-

ing about Modules and Delivery. In ACM Conference

on Lisp and l%nctional Programmmg. ACM SIGPLAN,

ACM Press, 1994.

[4] Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plex-

ico. Data Abstraction and Object-Oriented Programming

in C++. John Wiley and Sons, 1990.

[5] Barry Hayes. Finalization in the Collector Interface. In

International Workshop on Memory Management, pages

277–298. ACM SIGPLAN, Springer-Verlag, 1992.

[6] Hog. Ilog TaJk Reference Manual, 1994.

[7] Gregor Kiczales, Jim de Rivi&res, and Daniel Bobrow.

The Art of the Metaobject Protocol. MIT Press, 1991.

[8] John R. Rose and Hans Muller. Integrating the Scheme

and C Languages. In ACM Conference on Lisp and

Functional Programming, pages 247-259. ACM SIG-

PLAN, ACM Press, 1992.

[9] Harlan Sexton. Foreign Functions and Common Lisp.

Lisp Pointers, 1(5):11-26, 1988.

127

