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Abstract

Optimizing compilers for higher-order languages need not

be terriblv comdex. The Droblems created bv non-local.. . . “

non-globrd variables can be eliminated by allocating all such

variables in the heap. Lambda lifting makes this practical

by eliminating all non-local variables except for those that

would have to be allocated in the heap anyway. The elimi-

nated non-local variables become local variables that can be

allocated in registers. Since calls to known procedures are

just gotos that pass arguments, lifted lambda expressions are

just assembly language labels that have been augmented by

a list of symbolic names for the registers that are live at that

label.

1 Introduction

Twobit is a compiler for Scheme in the tradition of Rabbit,

Orbit, and Gambit [23,16,9]. Unlike these previous com-

pilers, which advanced the state of the art in generating

efficient code, the main design goals for Twobit were sim-

plicity, portability, and reasonably fast compilation, while

generating code that is good enough for use in fairly high-

performance systems comparable to Chez Scheme, Standard

ML of New Jersev. and commercial imdementations of Com-

mon Lisp. The~e’ goals have been m’et. The fundamental

idea on which Twobit is built is that lambda expressions

can be viewed as assembly language labels, and the formal

Daramet ers of a lambda exmession can be viewed as an in-. .
variant that asserts the contents of general registers that are

live at that label.

None of the optimizations used in Twobit are new, but

their combined effectiveness has not been reported previ-

ously, nor has the use of single assignment analysis for first

order closure analysis. As explained in Section 14, the flow

equation used for lambda lifting in Twobit has some advan-

tages over the similar equations in [1], especially for a simple

compiler.

Twobit is biased toward RISC architectures. The pri-

mary goal of optimization in the front end is to reduce the

problem of generating good code to a matter of register al-

location and targeting. Currently the code generator is a

simple, conventional generator that allocates registers as a

stack and performs no register targeting apart from choos-

ing an optimal order of evaluation for the operands of a

procedure call (parallel assignment optimization). Twobit

is designed to reward more sophisticated register targeting,

and to make register allocation easy to express by adjusting

the formal parameter lists of lambda expressions. Its de-

sign achieves some of the benefits of an intermediate e form

based on continuation-passing style (CP S) without actually

reauirin~ a conversion to CPS [23.1.181.

‘Simp~icit y is achieved by a ‘front e~d whose two passes

culminate in wholesale lambda iiftingl [3,1]. This lambda

lifting is made possible by a cascade of simpler optimiza-

tion, of which the most important is a first order closure

analysis known as single assignment analysis. The output

of the front end is an intermediate e form in which lambda

expressions are marked to indicate whether they correspond

to assembly language labels (which represent both register

allocation and control), to register allocation (let), or to

closure allocation.

Portability is achieved by using a small, stylistically rigid

subset of IEEE/ANSI Scheme [15] as the intermediate form,

in which quoted data in command positions (where the value

is ignored) and stylistic variations convey additional infor-

mation to the code generator. This intermediate form can

be compiled correct~y by any Scheme compiler, but is de-

signed as input to a code generator that will use the encoded

information.

The current code generator generates assembly code for a

hypothetical MacScheme machine similar to that described

in [4], but register-based instead of stack-based. The Mac-

Scheme machine instructions have a semantics that was de-

signed for effective peephole optimization. Table-driven op-

timizing assemblers currently generate byte code for an in-

terpreter or machine code for the SPARC. Twobit has been

used to construct an implementation of Scheme2 known as

Larceny, which has been used for research into the effect of

programming style on the performance of Scheme programs

[11].

1Lambda I]fting M called closure-conversion In [1]

2 Larceny is a nearly complete Implementation of IEEE/ANSI
Scheme It is Incomplete mainly because of some bugs In the bignum
dlv,smn routine
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Grammar for output of passes 1, 2, and 3:

L> .-

1

D> -.

1?> --

/

I

/
I

1> --

R> --

F> --

(lambda (1-1 . ..)

(begin D . ..)
(quote (R F <decls> <dot>)
E)

(lambda (1-1 . . . . I-rest)
(begin D . ..)

(quote (R F <decls> <dot>))
E)

(define I L)

(quote X) ; constants

(begin I) ; variable references

L lambda expressions

(EO El . ..) ; calls
(set ! I E) assignments
(if EO El E2) ; conditionals

(begin EO El E2 . ..) ; sequent ial expressions
<identifier>

((I <references> <assignments> <calls>) . ..)
(I . ..)

Figure 1: The intermediate form.

2 Overview of Twobit

Twobit currently operates as a four-paxs compiler. An op-

tional fifth pass is planned but not yet implemented. The

planned passes are

1. Standardization of syntax.

2. Optimization.

3. Representation inference (not yet implemented).

4. Code generation.

5. Assembly.

These passes will be discussed in order, using a definition

of reverse as the main example:

(define reverse

(lambda (x)

(define (loop x y)

(if (null? x)

Y
(loop (cdr x) (cons (car x) y))))

(loopx ‘())))

In Scheme, any of the standard procedures can be re-

defined, which in combination with separate compilation

means that a compiler cannot generate inline code for calls

to +, car, et cetera. Twobit, like most Scheme compilers,

provides acompiler switch (titegrate-usual-procedures)

through which the programmer can promise not to redefine

a subset of the standard procedures. The examples in this

paper assume that switch is true, which is the default.

3 Pass 1: Standardization of syntax

Pass 1 expands macros, eliminates internal definitions, checks

syntax, andgives aunique name toeachlocal variable (alpha

conversion). In addition, Pass 1 creates for each local vari-

able a table R containing all references, assignments, and
procedure calls to that variable.

((lambda ()
(begin

(set! reverse

(lersbda (.x-2)
((lambda (.1ooP-3)

(begin

(Set! .100p-3
(lambda (.x-5 y-5)

(if (null? .x-5)
y-s

(.1ooP-3 (cdr .x-5)

(cons (car .x-5)
.y_5)))))

((lambda () (.1ooP-3 .x-2 ‘())))))
‘# !unspecified) ) )

‘reverse) ) )

Figure2: The output of Pass ].

Theoutputof Paes lisexpressed using therigidlystyl-

ized subset of Scheme shown in Figure 1. Note especially

that avariable misrepresented by the equivalent (begin x),

which gives to variable references a list structure that can

be shared and side effected. The following invariants hold

for the output of Pass 1:

●

●

●

●

●

●

There are no internal definitions.

Noidentifier containing an upper case letter is bound

any where.3

Noidentifier is bound in more than one place.

Each Rcontains one entry for every identifier bound

in the formal parameter list and the internal defini-

tion list that precede the R. Each entry contains a list

of pointers to all references to the identifier, a list of

pointers to all assignments to the identifier, and a list

of pointers to all calls to the identifier.

Except for constants, the expression does not share

structure with the original input or itself, except that

the references and assignments in R are guaranteed to

share structure with the expression. Thus the expres-

sion may beside effected, and side effects to references

or assignments obtained through R are guaranteed to

change the references or assignments pointed to by R.

F is garbage.

Theintermediate form is acyclic, anditsprinted form is

genuine Scheme code, but it is large because of the shared

structure and is hard to read because of all the clutter. Pass

1 converts the definition of reverse into an intermediate

form equivalent to the code shown in Figure 2, which was

prodnced by a make-readable procedure.

The#!unspecified notation in Figure 2, which stands

foracanonical unspecified value, wasprodnced bya partic-

ular implementation of the letrec macro. This notation is

not a standard part of Scheme and is not treated specially

by Twobit. Also, Scheme does not permit periods to be-

gin identifiers, but some such illegal prefix is advisable to

Sscheme is not case-sensitive. This paper assumes an implement~

tlon that standardizes variable names to lower case, which allows the
compiler to use upper case names for its own purpoaefi, The handling
of case is actuslly a parameter to the compiler
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prevent the renamed local variables from shadowing global

variables. The particular prefix used by Two bit is a param-

eter of the compiler.

Pass 1 was designed as an extension of an efficient al-

gorithm for hygienic macro expansion [6,7], but the current

implement at ion still uses non-hygienic macros.

4 Pass 2: Optimization

Most optimization occurs in Pass 2, whose structure is well

explained by the Pass 2 procedure that optimizes lambda

expressions:

(define (simplify-lambda exp notepad)

(notepad-lambda-add! notepad exp)

(single-assignment-analysis exp)

(ass~gnment-elimination exp)

(let ((clefs (lambda.defs exp))

(body (lsmbda.body exp))
(newnotepad (make-notspad exp)))

(for-each (lambda (clef)

(simplify-lambda (def.rhs clef)

newnotepad))

clefs)

(lambda.body-set! exp

(simplify body newnotepad))

(lambda.F-set! exp

(notepad-free-variables nermotepad))

(larubda-lifting exp (notepad.paent notepad))

exp) )

The notepad is a data structure used to pass inherited

attributes and to record synthesized attributes, such as the

set of lambda expressions that are nested within the enclos-

ing lambda expression.

Single assignment analysis identifies any formal param-

eters that are assigned exactly once, at the head of the

lambda body, to the result of a lambda expression, and are

called as often as they are referenced. Such parameters are

actually the names of local procedures whose call points are

all visible to the compiler. There is no need to create a

closure for such procedures, since the environment in which

they are declared will be accessible from the environment

in effect at each place where they are called. This fact is

recorded by transforming

(lambda (... I . ..)

(beginD . ..)

(quote (... (I <references>

((set! IL))
<calls>)

. ..))

(begin (set! I L) El ..,))

into

(lambda (... IGNORED . ..)

(begin (define 1 L) D . ..)

(quote (... ~~o;eferences> () <calls>)

(begin El . ..))

in which the single assignment has become an internsl def-

inition. For example, the assignment to loop in Figure 2

becomes an internal definition in the output from Pass 2

(Figure 3).

Since the single assignment probably resulted from the

elimination of an internal definition during Pass 1, it may

seem that nothing has been accomplished. The key is that

an internal definition in the output of Pass 2 records in-

formation gained by a simple closure analysis, whereas an

internal definition intheoriginal code may define a variable

whose value is not a procedure, a variable whose value is

changed by assignments, or a procedure that must be rep-

resented as a closure because it escapes.

A variable defined by an internal definition in the out-

put of Pass 2 is a known local procedure. In Twobit, single

assignment analysis also checks to make sure every call to

a known local procedure passes the correct number of argu-

ments. If the known local procedure has a rest parameter.

the rest parameter is replaced by an ordinary parameter and

the excess arguments in each call to that known procedure

are replaced by appropriate calls to CDNS (in upper case be-

cause it refers to the standard cons procedure, not to the

value of the cons variable when the callis evaluated).

After single assignment analysis, assignment elimination

finds any remaining local variables that appear on the left

hand side ofan assignment. If any such variables 11 . . .

are found, then the body of the lambda expression being

optimized is replaced by a let of the form

((lambda (VI . ..) . ..) (MAKE-CELL II) . ..).

in which allreferences tosuchvariables arereplaced by calls

to CELL-REF, and all assignments by calls to CELL-SET!. The

MAKE-CELL procedure allocates heap storage for the variable.

which isessentiaUy replaced byapointer to that storage. As-

signment elimination makes all local variables immutable as

in Standard ML, so they can be copied freely, which greatly

simplifies the lambda lifting that will conclude Pass 2.

Following assignment elimination, each known local pro-

cedureis optimized recursively, asisthe body of the lambda

expression being optimized. Several simple but important

local source transformations come into play here. Twobit

currently performs eight different transformations on if ex-

pressions, three different transformations on let expressions

(procedure calls whose operator is an explicit lambda expres-

sion), flattening ofnested begin expressions, and removalof

constants and variable references that are evaluated only for

effect. These local source transformations are essentially the

same as in Rabbit [23].

One transformation on let expressions is especially im-

portant. When single assignment analysis detects a known

local procedure, it replaces the parameter that was assigned

once by the special parameter IGNORED, and assignment elim-

ination replaces any parameters that are neither referenced

nor assigned by the special parameter IGNORED. One local

source transformation therefore replaces

((lambda (IGNoMD 12 . ..) <body>) E1E2 . ..)

by

(begin El ((lambda (12 . ..) <body>) E2 . ..))

except the transformation applies to any IGNORED parame-

ter, notjust the first. If Elis a constant, which itis likely to

be if the IGNORED parameter resulted from single assignment

analysis, then the transformed let will just become another

let that binds fewer variables. Eventually there may not

be any variables left, in which case the original let will be

transformed into its body after any internal definitions are

lifted to an enclosing lambda expression.
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After the known 10CS.I procedures and the body of a

lambda expression have been optimized, the free variables

that were encountered are recorded as the free variables of

the lambda expression.

Finally it is possible to lift the internal definitions of

known local procedures to the enclosing lambda expression.

For example, the internal definition of . loop-3 in

((lambda ()

(begin (set! reverse

(lambda (.x.2)

(define .loop.3

(lambda (.x-5 .Y-5)
(if (null? .x_5)

. y-5

(.loop_3 (Cdr .X-5)

(cons (car .x_5)

y-5)))))

(loop-3 .x_2 ‘())))

‘reverse)))

is lifted to the outer lambda expression as in Figure 3.

Although thereverse example makes lambda lifting ap-
pear easy, it is actually the most complex optimization per-
formed by Twobit. The problem isthatone of the known

local procedures may be lifted past a parameter that occurs

free inthelocal procedure being lifted. If so, then that pa-

rameter must be added as an extra parameter to the local

procedure, and all calls toit must be changed to pass that

extra parameter. Consider

((lambda ()

(begin (set! foo

(lambda (nx y)

(define (f n)

(if (zero? n)

(define (gn)

(if (zero? n)

(f n)))

‘foo)))

x (g (- n l))))

y (f (-n l))))

Iffwereliftedto theouterlambda expression, itwould have

to takeg and x as extra parameters. That meansg would

have to supply g and x as extra arguments when it calls f:

((lambda ()

(define (f g xn)

(if (zero?n) x (g (-n l))))

(begin (set! foo

(lambda (nx y)

(define (gn)

(if (zero? n)

Y
(fgx (-n I))))

(f g x n)))

~foo)))

Notice that g now escapes its scope, negating the earlier

closure analysis. Worse yet, if g were lifted to the outer

lambda expression, it would have to take an extra param-

eter y. That means f would have to supply y as an extra

argument when itcallsg. Butf is now outside the scopeof
y!

The solution is to lift each group of known local pro-

cedures as a unit, after performing a flow analysis to de-

termine precisely which parameters must be added to each

procedure. Let V be the set of parameters for the lambda

((lsmbda ()

(define .1ooP-3

(lambda (.x-5 .y.5)

(if (null? .x_S)
y-s

(.1ooP-3 (cdr .x-5)
(cons (car .x-5) y-5)))))

(begin (set! reverse

(lambda (.x-2) (.1ooP-3 .x-2 ‘())))
‘reverse)))

Figure3: The output of Pass2.

expression at whose head agroupof known local procedures

is defined, let ~1, . . . be the names of those procedures, and

let F, bethevariables that occur freeinthebodyof j,. The

set of variables A? that need to added as parameters to f,

is defined by the recursive flow equations

A,=(F,mV)U(U{Aj 1~, callsj’j})

These equations are solved in Twobit by supplying suitable

arguments to the procedure shown in Figure 4.

If A, = V, then Twobit adds the extra parameters to

the beginning of the parameter list, sorted so that, for a call

to ~, from the body of the lambda expression that declares

~,, these parameters will already reside in the correct regis-

ters. This often eliminates register shuffling altogether. If

A, #V, then theorder should be chosen to minimize regis-

ter shuffling, but Twobit currently does nothing particularly

intelligent in this case. It may at times be desirable to add

dummy parameters so that, for example, the real arguments

are passedin registersr6, rl, andr3 instead ofrl, r2, and

r3.

Itisalways possible to lift allknown local procedures to

the outermost lambda expression. This is not always desir-

able, however, because the formal parameters that must be

added represent extra registers that must be saved across

a non-tail-recursive call. There are many factors that the

compiler could take into account when deciding whether to

lift agroupofknown local procedures. Currently Twobit al-

ways lifts unless the body of the lambda expression contains

a lambda expression for which a closure must be created

anyway. This has worked surprisingly well in practice.

The output of Pass 2 is expressed using the same subset

of Scheme used to express the output of Pass 1 (Figure 1).

The following invariants hold for the output of Paas 2:

● There are no assignments except to global variables.

● If Iis declared by an internal definition, then the right

hand side of the internal definition is a lambda expres-

sion and I is referenced only in the procedure position

of a call.

● For each lambda expression, the associated F is a list

ofallthe identifiers that occur free in the body of that

lambda expression, and possibly a few extra identi-

fiers that were once free but have been removed by

optimization.

● Variables named IGNORED are neither referenced nor

assigned.
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Given a vector of starting approximations,

a vector of functions that compute a next

approximation as a function of the vector of

approximate ions, snd sn equality predicate,

returns a vector of fixed points.

When the code generator is rewritten, the third and fourth

reasons to create a closure will be eliminated, and a stack

frame will be used instead. The second reason will remain,

as there are several reasons why stack frames generally can-

not be used to hold variables that occur free in known local

procedures:

lefine (compute-f ixedpoint v functions equiv?)

(define (loop i flag)

(if (negative? i)

(if flag

(loop (- (vector-length v) 1) #f)

v)

(let ((next-i ((vector-ref functions i) v)))

(if (equiv? next-i (vector-ref v i))

(loop (- i 1) flag)

(begin (vector-set ! v i next-i)

(loop (- i 1) W))))))

(loop (- (vector-length v) 1) #f))

Figure 4: A general routine for solving flow equations.

5 Pass 3: Representation inference

This optional pass, which is not implemented, will infer rep-

resentations using a flow algorithm based on conjunctive

types. The main goal of this pass is to resolve dynamically

overloaded operators statically and to eliminate run-time

type checking without compromising safety.

6 Pass 4: Code generation

This pass is being rewritten to reuse continuation frames

across more than one procedure call, as described in Section

9. The current generator keeps all variables in registers or in

the heap, using a stack cache only for continuations needed

by non-tail-recursive calls and as a place to spill registers.

Registers are spilled on the fly by allocating a new stack

frame for the spilled registers. This was a major design

error, for reasons explained in Section 8.

The remainder of this section describes the current code

generator.

The code generator generates assembly code for a hy-

pothetical MacScheme machine. The MacScheme machine

architecture uses a single representation, a closure, for both

procedures and heap-allocated environments. There are four

circumstances in which code is generated to create a closure,

of which only the first corresponds to creating a procedure

rather than a heap-allocated environment. A closure is cre-

ated:

1.

2.

3.

4.

for any lambda expression that is neither the right

hand side of an internal definition nor the operator

of a procedure call (let);

upon entry to any lambda expression that has internal

definitions, unless the body is also a lambda expression

(this is explained below);

upon entry to any lambda expression that takes more

than a certain number of parameters (because this

means there are few registers available, which makes

spilling likely, and the spill code generated by the cur-

rent generator is quite poor);

when there are not enough registers available to allo-

cate the variables declared by a let.

o

●

●

The known local procedure may be referred to within

some lambda expression that escapes.

The use of a stack frame to hold the free variables of

a recursive procedure interferes with tail recursion, as

explained in [12]. See Section 10.

The call-with-current-continuation may be im-

plemented in such a way that stack frames can be

moved dynamically, which makes non-local addressing

problematic.

The current code generator performs only a few opti-

mization, nearly all of which are trivial. Let optimization

simply allocates registers for the variables declared by a let.

Procedure integration generates irdine code for calls to a set

of integrable procedures defined by a table in the compiler.

To some integrable procedures there may correspond an im-

mediate form of a MacScheme machine instruction that im-

plements the procedure; this immediate form will be gen-

erated if the corresponding operand is a suitable constant.

The code generator also implements a very special case of

common subexpresgion elimination if an operand is a vari-

able that already resides in a register, then no code will be

generated for that operand.

The most interesting optimization performed by the code

generator is parallel assignment optimization, which attempts

to find an order of evaluation for the operands of a proce-

dure call that allows all of the operands to be evaluated

directly into the registers that will be used to pass the ar-

guments. This optimization is performed by constructing a

dependency graph in which register z depends on register J

if and only if register j contains a free variable of the ith

operand. A topological sort of this dependency graph yields

an optimal order of evaluation. Twobit currently gives up

and resorts to wholesale register shuffling if the graph con-

tains a cycle, but it would be better to remove one of the

registers involved in the cycle and to continue the sort.

Parallel assignment optimization works very nicely with

the register allocation performed by the front end during

lambda lifting. Taken together, lambda lifting and parallel

assignment constitute an effective strategy for global register

allocation in Scheme-like languages. Despite the crudeness

of Twobit’s current heuristics for register allocation and par-

allel assignment, parameters that are added during lambda

lifting usually reside in the target registers when the lifted

procedure is called. The design of Twobit, in particular its

view of lambda expressions as assembly language labels aug-

mented by register contents, will reward substantial efforts

to improve its heuristics for register allocation.

7 Pass 5: Assembly

The output from the code generator is assembly code for

the MacScheme machine, a general register plus accumula-

tor architecture that was specifically designed for peephole

optimization and translation into real machine languages. A

table-driven optimizing assembler currently generates byte
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000000 b5000100 lambda ‘000028,0, (#t)

000004

000007

OOOOOa

Oooooc
000010
000011
000013
000016
000017
000018

000019
0000ib

0000ld

0000le
Oooolf

000021
000022

000028

000028
00002C
00002e
oooo2f
000030

5bOO04

5COO04

10

lf
4ea6ff f f
cl
5e19
bf 0002

C2
10
cl

5elb
62a8
e2

c1

5elc

el

baffeb

4ea8ffff
5001
a2
e2
b?OOOcOl

setglbl reverse

const reverse
return

nop
. entry
reg 1
Opl null?
branchf ‘000018
reg 2
return
reg 1
Opl car
0p2 c0ns,2
setreg 2

reg 1
Opl Cdr

setreg 1

branch “000010

. entry

=gs= 1
const ()
setreg 2
jump 1 ,$OOOC

loop
x

branch if false

Y

x

next y

x

next x

tail-recursive

reverse

jump to loop

Figure 5: MacScheme machine code for reverse.

code for an interpreter, and a similar table-driven assembler

in Larceny generates SPARC machine code.4

Figure 5 shows the disassembled byte code for reverse.

The first two instructions create a closure and store it in

the global variable reverse. The entry point for reverse is
at address 000028. The closure for the currently executing

procedure is always kept in general register O, so register
O will contain the closure for reverse when control passes
to this entry point. Since closures double as environment ts,
general register O is also the environment register through

which any non-local and non-global variables would be ac-

cessed, though in this case there are none.

The argument to reverse is passed in general register 1,

and an argument count is passed in the accumulator, which

is called the result register. After checking to make sure
exactly one argument was passed, the const instruction at

address 2e loads result with the empty list, which is then

moved to general register 2. The next instruction jumps
to the entry point for the known local procedure loop. As
indicated by its first operand, the jump instruction follows
one link of the environment chain before taking the jump,
which places the closure for loop in general register O.

At address 10 the loop procedure tests its first argument
x, branching to address 18 if x is not the empty list. If

x is the empty list, however, then the result register is

loaded with the value of y from general register 2 and control
returns to the current continuation.

The tail-recursive call to loop begins at address 18. Par-

allel assignment optimization has determined that it is bet-

ter to evaluate the second argument first, so the cax of x is

computed into the result register by instructions at 18-19.

The instruction at lb conses that result onto the value of

y from general register 2, and the setreg instruction at ld

moves the resulting pair into general register 2. Instructions

4Therc ia no good remon why there m-e two separate a.memblem.

The person who wrote the second assembler has regretted it since,

le-21 then evaluate the cdr of x into general register 1. The

call is completed by branching to the first instruction in the

body of the loop procedure.
For the SPARC, the Larceny assembler performs peep-

hole optimization and fills branch delay slots. Most branch

delay slots are filled quite easily by moving the target of the
branch into the delay slot, adding 4 to the target address
of the branch, and changing the branch into an annulled
branch (indicated by the . a suffix) so that the delay slot
will be executed only it the branch is taken. Figure 6 shows

the disassembled SPARC code for the known local procedure
loop, with comments showing the MacScheme machine in-

structions from which the SPARC code was generated. For
example,

80 subicc $r. regl 10 $r. gO ; reg 1; opl null?

SUBtracts the Immediate operand 10 from the value in the

MacScheme machine’s general register 1 and discards the

result by sending it to the SPARC’S global register O, which

is hardwired to zero, because the purpose of this instruction
is to set the Condition Codes. Since 10 is Larceny’s repre-
sentation for the empty list, this single SPARC instruction
corresponds to the first two MacScheme machine instruc-,
tions in the body of loop.

At first glance it ap-pears that instructions are out of

order in

92 ldi $r. stkp O $r. 07 ; return

96 jmpli. $r.07 8 $r. gO

100 orr $r. reg2 $r. gO $r.result ; reg 2

The first instruction fetches the return address from the

stack cache, and the second instruction jumps to that ad-

dress plus 8. The third instruction ORS the value in the

MacScheme machine’s general Register 2 with zero, effec-
tively copying it to the MacScheme machine’s result regis-
ter. Larceny ’sassembler has moved this instruction into the
delay slot for the jmpli instruction that returns from loop.
These examples illustrate the effectiveness of peephole opti-

mization on MacScheme machine assembly code.
The $r. mi.llicode notation stands for a SPARC register

that points to a jump table oflow-level routines for storage
allocation, exception handling, and so forth.

Optimizing Scheme compilers are traditionally tested by

examining the code they generate for a tight, empty loop.

Larceny keeps a countdown timer inaregister, checking for
interrupts when the counter reaches zero, which adds one

cycle to most loops. For example, the loop expressed by

(let ((x 1)
(y 2)
(tight-loop 3)
(z 4))

(set! tight-loop

(lambda (a b c) (tight-loop a b c)))

(tight-loop x y z))

compiles into

100 subicc $r. timer 1 $r. timer
104 bne. a 104

108 subicc $r. timer 1 $r. timer

Here the instruction that decrements the countdown timer
has been copied into the branch delay slot, resulting in the
tightest loop possible for the SPARC architecture: two cy-
cles.
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80

84
88
92

96
100

104
108
112

116
120
124

128
132
136

140
144

148
152
156

160
164
168

172
176
180

184
188

192
198
200

204

subicc

bne. a

nop
ldi

jmpli
orr

and i
xoricc
be. a
ldi
jmpli
add i

ldi
0rr
jmpli

ori
sti

st i
addi
0rr

and i
xoricc
be. a

ldi
jmpli

addi

ldi
snbicc
bne. a
subicc

jmpli
addi

$r. regl 10 $r. go

104

$r. stkp O $r.07

$r. o? 8 $r. gO

$r. reg2 $r. go $r. result

$r. rsgl 7 $r. tmpO
$r. trupo 1 $r. go
132

$r. regl -1 $r. result
$r.millicode 80 $r.07
$r.07 -24 $r.07

$r. regl -1 $r. result
$r. resvlt $r. gO $r. argreg2

$r. millicode 16 $r.07
$r. go 8 $r. result
$r. resriit O $r. argreg2

$r. result 4 $r. reg2

$r. result 1 $r. result
$r. result. $r. gO $r. reg2
$r. regl 7 $r. tmpO
$r. tmpO 1 $r. gO
188

$r. regl 3 $r. regl
$r.millicode 80 $r.07

$r.07 -24 $r.07

$r. regl 3 $r. regl
$r. timer 1 $r. timer
84
$r. regl 10 $r. go

$r.rnillicode 168 $r.07
$r.07 -128 $r.07

reg 1; opl null?

branchf 104

ret urn

reg 2
BEGI!i: reg 1; opl car

(tag check)
(skip and load if ok)

(exception: not a pair)

END: reg 1; opl car

BEGII?: 0p2 cons,2

(allocate 8 bytes)

(store CAR)

(store CDR)

END: 0p2 cons,2 (tag PTR)
setreg 2

BEGIH: regl; opl cdr; setreg 1

EMD : regl; opl cdr; setreg 1

BEGIil: branch 80

(timer expired)
EUD: branch 80

Figure 6: SPARC machine code for loop (local to reverse).

8 First class continuations

Scheme’s call-with-current-continuation procedure im-
plies that most continuations have potentially unlimited ex-
tent, which means they cannot simply be stack-allocated.
Larceny uses the incremental stack/heap strategy to deal
with first class continuations. This strategy has precisely

the same performance as conventional stack allocation when
call-with-curcent-conf irmation is not used [5]. We say

that theincremental stack/heap strategy has zero overhead.

Zero overhead is achieved by allocating continuation frames

in a stack cache, and by keeping a dummy continuation

frame at the bottom of the stack cache. When a proce-

durereturns into the dummy frame, which can happen only

after the stack cache has been cleared,5 the return address
in the dummy frame gives control to a stack cache underflow
handler that copies one continuation frame from the heap
into the stack cache, and then returns through the copied
frame.

For this to work, every continuation frame must cor-
respond to some procedure call. For example, this zero-
overhead strategy would be upset by a code generator that

allocates a separate stack frame to hold registers that must

be spilled. Twobit’s original code generator did this.

If a spill frame is allocated that does not correspond to a

procedure call, and this allocation is followed by the alloca-

5The stack cache is cleared when a continuation becomes a first

class object. In Larceny the stack cache can also be cleared by a stack

cache overflow, task switch, or garbage collection These other causes

reflect design choices, however, as it is not really necessary for any of

them to clear the stack cache.

tion of a continuation frame for a non-tail-recursive call, and
the stack cache is flushed during that call, then the under-
flow handler will copy the continuation frame into the stack

cache following the call but will not copy the spill frame.
When the continuation frame is popped following the re-

turn, the stack cache will become empty and the spill frame
will be unaddressable.

Several solutions are available. Instructions could be
generated to check for an empty stack cache whenever reg-

isters need to be restored from a spill frame, which is rare.

Instructions could be generated to check for an empty stack

cache whenever frames are popped, but in Larceny this solu-

tion would cost four extra cycles on every non-tail-recursive
procedure call. The best solution is to avoid the creation
of separate spill frames, which is the solution we will adopt
when we rewrite the code generator in order to reuse con-
tinuation frames for more than one non-tail-recursive call.

9 Reuse of continuation frames

Reuse of continuation frames is important for procedures
like doubly recursive fib that contain more than one non-
tail-recursive call. Reuse is made more difficult by the fact
that we do not want to allocate a continuation frame on

entry to fib because it is important to keep the base cases

for a recursion as simple as possible. The continuation frame

should be allocated only if needed. In other words, the frame
should be allocated as late as possible to make sure it is
actually needed, but it should also be allocated as early
as possible to ensure that it is shared by all the non-tail-
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E --> (quote K)

s.
E --> (begin I)

E --> L

E --> (EO El . ..)

E --> (set ! I EO)

E --> (if EO El E2)

E.ntemps = -1.

E.ntemps = -1.

E.ntemps = -1.

EO. save = E1. save = . . . = false;

El .nregs = O;

E2 .nregs = 1;
. . .
EO.nregs = # of args;
if E.tail

then E.ntemps . mar(EO. ntamps, E1. ntemps, . . .)
else E.ntemps = max(O,

EO.ntemps, E1. ntemps, . . .) + E.nregs.

EO.save = E.save; EO.nregs z E .nregs;
E.ntemps = EO.ntsmps.

EO.save = false;
EO.nregs = El .nregs = E2 .nregs = E.nregs;
if EO.ntemps >= O

then El. save = E2. save = false

else El. save = E2. save = E.save;

E.ntemps = max(EO. ntemps, El .nteraps, E2 .ntemps) .

E --> (begin EO El E2 . ..) EO. save = E1. save = E2. save = .,. = false;
EO. nregs = E1. nregs = E2. nregs = . . . = E,uegs;
E.ntemps = max(EO. ntemps, El .ntemps, E2 .ntemps, . . .) .

Figure 7: Attribute grammar for reusing continuation frames.

recursive calls. True optimization of this tradeoff is statically

undecidable.

The algorithm planned for Twobit maintains the follow-

ing invariant: There are never two or more continuation

frames allocated at the same time by a single procedure ac-

tivation. Code will be generated as though a continuation

frame has been allocated, and pop instructions will be emit-
ted before tail-recursive calls and returns, relying on the

assembler to suppress the pop if the value of its symbolic
operand is negative, indicating that no frame was ever ac-
tually allocated.

Two new attributes will be computed by the code gen-
erator. The synthesized attribute nternps is the number of

temporary locations that might be needed by an expression;
its value will be - l. for an expression that not only requires no

temporaries, but also requires no continuation frames. The
inherited attribute save is a boolean that indicates whether

an expression is responsible for allocating a frame itself if
one is necessary for that expression. The existing inherited

attribute nregs indicates how many registers are live.
These attributes are computed according to the attribute

grammar in Figure 7, which is simplified by omitting other
attributes, by ignoring the issue of register spills, and by as-

suming that no procedures are integrable and that operands
are evaluated from left to right. A continuation frame will
be allocated when:

●

●

●

E is (EO El . . .) and E.ntemps ~ O and E.save =
trme.

E is (if EO El E2) and EO. ntemps ~ O and E.save =
true.

E is (begin EO El E2 . ..) and E.ntetups z O and
E. save = true.

This algorithm is suboptimal for examples like

(+ x (if debugging (read) 1))

but it has the desirable property that a continuation frame

will never be allocated except when a frame is potentially

necessary, and no more than one frame can ever be allocated

as part of the activation of a procedure. Furthermore this
algorithm does the right thing for fib, map, and most other
common examples.

Although this is a fairly complex algorithm, it appears
that its net effect will be to simplify the code generator,
because registers will be spilled to stack frames in a simple,

uniform way.

10 Tail recursion

Stack allocation of non-local variables makes proper tail re-
cursion harder to implement, because a tail-recursive call

to a local procedure cannot safely deallocate a stack frame
when that frame contains non-local variables that are needed

by the procedure being called. Consequently a return from
a procedure may involve deallocating stack frames that were
allocated by neither the returning procedure nor by the pro-
cedure to which it is returning [12].

Lambda lifting as in Twobit eliminates this problem by
eliminating non-local variables, except for those variables
that must be allocated in the heap anyway as part of a

closure. Figure 8 shows a troublesome example from [12],
and Figure 9 shows that same example after lambda lifting.

The fact that Twobit currently doesn’t use the stack for
local variables is irrelevant. Twobit wdl allocate some local
variables on the stack when the code generator is rewritten.
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(clef he accumulate

(lambda (binary-op initial items)
(if (null? items)

initial

(letrec
((loop

(lambda (value it ares)

(if (null? items)
value

(loop (binary-op ; on the stack?

value

(car items))

(cdr items))))))

This next call should be properly

; tail recursive.

(loop (car items) (cdr items))))))

Figure 8: Interference between stack allocation and tail re-
cursion.

( (lambda ()
(clef ine . 100P.3

(lambda ( .binarv-ou_2 .value.5 items-5)

(if (null? . i;am;~5)
. value.5
( ,100p-3 . binary -op-2

( .binary-op-2

(cdr .itema-5)
(begin

(set ! accumulate

value-5

car . items-5))

)))

(lambda (. binary -Op-2 . initial-2 . items-2)
(if (null? . items.2)

. initial-2

IIo problem 8ith tail recursion here.

( . 1OOP-3 .binary-op-2
(car . items-2)
(cdr items-2)))))

‘accumulate)))

Figure 9: The accumulate example after lambda lifting.

The real reason Twobit is able to avoid this problem with
tail recursion is that all non-local variables live in the heap.

11 Performance of Larceny

Larceny was written by Hansen under Clinger’s direction to
study the effect of programming style on performance, es-

pecially the performance of garbage collection [11]. Figure
10 compares the performance of Larceny with that of three
other systems on several small benchmarks described in the
next section. By comparing system performance we hope
to place the issue of compiler optimization in context. We
believe the costs of procedure calls, storage allocation, and

garbage collection are more import ant than compiler opti-
mization for this sort of language. Our goaJ is not to show
that Twobit is the best compiler-we know, for example,

that Standard ML of New Jersey has a substantially more
sophisticated compiler—but to show that simple optimizing

I Larceny I Chez I Allegro I SML/NJ I
Scheme CL

f ib30 6.9 7.0 6.3 8.3

cPst* .47 .43 —

reverse

10000 x 100 2.3 3.0 2.8 1.3
100 x 10000 3.9 4.5 5.8 2.2

native reverse
10000 x 100 1.8 . 1.3
100 x 10000 2.7 6.2 2.3

reverse !
10000 x 100 1.4 5.1 1.4

100 x 10000 1.5 5.1 1.4

native reverse !
10000 x 100 1.6 1.’7
100 x 10000 1.6 1.8

append-1

10000 x 100 4.6 4.3 21.4 4.0

100 x 10000 30.2 12.2 20.0 6.6

append-2
- ioooo x 100 I 3.5 I 6.5 ! 4.0 I I

100 x 10000 5.1 8.6 6.9

native append
10000 x 100 3.6 4.0 2.5
100 x 10000 10.7 7.5 4.5

idiv2 .33 .57 .53

rdiv2 .54 .65 2.18

boyer 5.6 4.0 5.2

perm8 3.7 3.2 4.0

mergesort 9.3 15.4 21.6

quick-i

recux-
sieve

I , ,

k–. I 6.0 6.8 -8.7 7.2

rsive-nfa 2.2 I 2.5 6.2 4.1

B-4 1.4 1.5 I 8.3 2.3
I

rmzzle I 3.2 I 6.5 I 9.2 I I

Figure 10: Times in seconds for several small benchmarks.

comDilers such as Twobit can be good enoutzh to serve as.
the foundation for an efficient implement atio~.

Of the benchmarks reported in Figure 10, the best tests
of compiler optimization occur toward the bottom. The

times reported in Figure 10 represent CPU time in sec-

onds, including garbage collection, for the median (Larceny)

or second fastest (all others) of at least three runs. More

runs were used when anomalous or variable timings were

observed. All measurements were performed on owyhee, a

Sun-4/40 (SPARCstation IPC). No declarations were used

except for compiler switches, which were set to generate the
fastest reasonably safe code (the only kind Larceny can gen-
erate at present). Generic arithmetic was used except in
Standard ML.

Larceny can be configured with any of three distinct
garbage collectors. The times shown in Figure 10 are for

Larceny version 0.15 with the generational collector, which
is most simlar to the collectors used in the other systems.

The default compiler switches were used.
Chez Scheme 4.1 was timed with (optimize-level 2).
Allegro Common Lisp 4.1 [SPARC; Rl] (3/17/93 20:38)

was timed with

(proclaim > (optimize (speed 3) (safety 1)

(space O) (debug O)))

Standard ML of New Jersey 0.93 was timed with the

default compiler switches, of which it is said “There is little

point in fiddling with these flags to improve the performance

of the optimizer” [2].
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12 Benchmarks

Source code for most of these benchmarks can be found

in [1 I] or [10]. To allow for the failure of tail recursion

in Common Lisp, the Common Lisp versions of append-2,

reverse, reverse!, perm8, and sieve-4 were rewritten to
use do and/or prog instead of tail recursion. The Standard

ML benchmarks use pattern matching where possible.
Fib30 is a doubly recursive computation of the 30th Fi-

bonacci number. Cpstakis a translation of the tak bench-
mark [10] into continuation-passing style as a test of closure
allocation. The reverse benchmarks allocate one million
pairs by calling the reverse procedure (as in this paper)

either 10000 times (10000 x 100) or 100 times (100 x 10000).
The native reverse benchmark calls the predefine reverse

instead, which is presumably written in a style that is close
to optimal for a particular system. The reverse! bench-

mark is similar but uses a destructive reversal that allo-

cates no storage. Append-1 uses a deeply recursive version

of append, while append-2 uses an iterative version that per-
forms destructive operations on newly allocated pairs. Idiv2

and Rdiv2 are widely reported benchmarks of simple iter-
ative and recursive list processing [10]. Boyer is another

garbage collection benchmark based on a theorem prover
[10]. With the exception of fib30 and reverse!, these
benchmarks have more to do with storage allocation and
garbage collection than with the compiler.

Perm8 uses Zaks’s algorithm to create a list of the 40320
permutations of a list of eight integers in grey code order,

allocating 149912 pairs to represent that list. The perm8
benchmark creates no garbage whatsoever. Mergesort sorts

the list created by perm8 using a destructive merge sort
that aJlocates no storage. Quick-1 is an in-place quicksort
of a vector of 30000 randomly chosen nonnegative integers.

Recurs ive-nf a is 1000 calls to a recursive implementation of
a string pattern matcher. Sieve-4 uses thunks as generators

to compute the first 800 primes. Puzzle is written in the

style of the Pascal benchmark from which it was translated

[10].
The last six benchmarks offer the greatest opportunities

for compiler optimization. As may be inferred from our
analysis in the next section, however, there is no such thing
as a pure compiler benchmark for this class of programming

languages.

13 Analysis of benchmark results

Larceny, Chez Scheme, and Standard ML of New Jersey are

properly tail recursive and eschew the SPARC’S register win-
dows, while Allegro Common Lisp uses the register windows

for non-tail-recursive calls but does not handle tail recursion

properly in general.8 It follows that Allegro Common Lisp
has an advantage on benchmarks that use shallow recursion
(fib30) but is at a disadvantage on benchmarks that use

deep recursion (append-1, rdiv2) or tail recursion (cpstak,
mergesort ).

Larceny and Chez Scheme both allocate continuation
frames in a stack cache [5,13], but Standard ML of New Jer-
sey allocates all continu-ation frames in the heap, relying on

sophisticated garbage collection to make this strategy prac-
tical [1]. This becomes evident on the fib30 benchmark.

6The anti-correlation between tail recursion and register windows
ifi not accidental. The SPARG% standard calling conventions use the

register windows but render a fully general implementation of proper

tail recursion impractical.

To simplify its three interchangeable garbage collectors,

Larceny flushes the stack cache on every garbage collection.

The cost of this becomes apparent on the append-1 bench-
mark with a recursion depth of 10000. Allegro Common

Lisp performs poorly on this benchmark even with a recur-

sion depth of 100 because owyhee’s processor has only 20

register windows. Standard ML of New Jersey does well on
this benchmark because it does not use a stack cache.

We observed excessive garbage collection when Allegro

Common Lisp’s native reverse procedure was called re-

peatedly on lists of length 100. Its performance was aJmost
uniformly better on lists of length 10000, contrary to expec-
tation.

By default, Twobit compiles self-recursive calls to global

procedures that are written in a certain style as if the pro-
cedure will never be redefined. This benchmark-mode may

give Larceny an unfair advantage on rdiv2 and a small ad-
vantage on boyer. The other benchmarks are not affected

by this compiler switch.
Chez Scheme and Allegro Common Lisp use a “function

cell” for fast er calls to global procedures, which improves
performance on the boyer benchmark.

Although the mergesort benchmark itself allocates no
storage, its side effects may require a generational garbage

collector to record cross-generational pointers. All four of
the benchmarked systems use such a collector. Larceny’s

superior performance on mergesort may be accounted for

in part by its large ephemeraJ area, which at one megabyte

is large enough to accommodate most of the storage for the
permutations being sorted. Side effects into the ephemeral

area do not have to be recorded. We observed times rang-
ing from 7.9 to 10.4 seconds on this benchmark, apparently
depending on how much of the storage had been promoted

to an older generation. This phenomenon may benefit both
Larceny and Standard ML of New Jersey on the quick-l

and puzzle benchmarks. We do not know the size of the
ephemeral area used by Chez Scheme and Allegro Common

Lisp.
Although the mergesort benchmark neither allocates nor

deallocates storage, it reveals one of the true costs of garbage
collection. In C a side effect is cheap. With generational
collectors, side effects are expensive [1 I].

On the sieve-4 benchmark, Larceny generates better

code than Standard ML of New Jersey because of a subtle
difference in the flow equations used for lambda lifting. This

is discussed in the next section.

14 Related work

Twobit is heir to a distinguished family of compilers that
began with Guy Steele’s Rabbit [23], which introduced alpha

conversion, local source transformations, and several other

optimizations used in Twobit. Steele is also responsible for
the view that a procedure call is simply a goto that passes
arguments [22,24,20,21], from which it follows that a lambda
expression is simply a label that can accept arguments.

Lambda lifting, as a practical compilation technique, was
introduced by Augustsson for Lazy ML, who noted an anal-

ogy with combinator abstraction but gave few details [3,14,
25]. Lambda lifting is more radical than hoisting in Stan-

dard ML of New Jersey (SML/NJ) or lambda drifting in
Liar, neither of which will lift a lambda expression out-
side the scope of one of its free ~ariablee [1 ,19], Lambda
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lifting corresponds instead to the closure-conversion7 algo-
rithm of SML/NJ [I]. The flow equation used for lambda
lifting in Twobit is more local than the equations used in
SML/NJ, since it involves only those variables whose scope
is being left by the lifted procedures. This makes it easy
to end the lifting short of the outermost lambda expression,
which allows greater sharing of environment structure than
in SML/NJ. Twobit’s local, incremental approach to lambda

lifting seems simpler, may be faster, and can at times gen-
erate better code than the global, all-or-nothing approach

taken by SML/NJ. The flow equation for lambda lifting in
Twobit was developed independently of [1].

The semantics of assignment in Scheme makes assign-
ment elimination, introduced by the Orbit compiler [16], a

prerequisite to lambda lifting. Orbit was probably the first
Scheme compiler to view the evaluation of arguments as a
parallel assignment to registers, and to optimize their order.

Single assignment analysis has long been used in Mac-

Scheme and possibly in Orbit, but has not been described
heretofore. The MacScheme machine architecture used by

Twobit is descended from Scheme 311, and from an analysis

of what is wrong with the architecture used in MacScheme

versions 2 through 4 [4,17]. The incremental stack/heap
strategy for continuations also comes from MacScheme [5].

Conversion to continuation-passing style (CPS) has been
advocated by several authors of optimizing compilers [23,

16,1]. Despite the documented advantages of CPS, Clinger

prefers direct style as a more readable intermediate form.

Premature conversion to CPS makes register allocation, tar-
geting, and parallel assignment optimization more difficult.

Since these were the focus of Twobit, it seemed better to
use direct style. Nothing in the design of Twobit precludes
a conversion to CPS by the code generator, but this would

add an extra pass.
The machine-independent part of Twobit contains less

than 5000 lines of code, which is less than one tenth the size
of some compilers. The machine-specific assembler, disas-
sembler, and linker for the SPARC also come to less than
5000 lines. Twobit is much less ambitious than Python [18]

or the compiler for Standard ML of New Jersey [1], but
achieves its limited ambitions: simplicity, portability, and

efficient generation of efficient code.

15 Conclusion

Twobit is simple because all non-local and assigned variables
are allocated on the heap. Twobit generates reasonably effi-
cient code because lambda lifting makes most variables local,
and because a heuristic ordering of the parameters for each

lambda expression, combined with paraJlel assignment op-
timization, often yields a good interprocedural allocation of

registers. Twobit is portable because it is written in Scheme,

its intermediate language is Scheme, and it is easy to change
the target of the MacScheme machine assembler. Compared
to other optimizing compilers, Twobit is fairly fast because
it conaiats of a small fixed number of pamee, the first of which

gathers information needed for optimization while perform-

ing macro expansion.

The most important idea in Twobit is that lambda lifting

converts a known local procedure into an assembly language

7T0 sdd to the cOnfusion, [26] uses “closure cOnversl On”
to refer

to a source code transformation that replaces a procedure by some

representation of the procedure. This transformation is orthogonal to

lsrnbda Iiftlng.

label that has been augmented by a description of the reg-
isters that are live at that label.
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