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Abstract

This paper describes an implementation of the new Scheme

multiple values interface. The implement ation handles mul-
tiple values efficiently, with no run-time overhead for normal

calls and returns. Error checks are performed where neces-

SZWYto insure that the expected number of values is returned
in all situations. The implementation fits cleanly with our
direct-style compiler and stack-based representation of con-

trol, but is equally well suited to continuation-passing style

compilers and to heap-based run-time architectures.

1 Introduction

In this paper we describe azI implementation of the new

Scheme multiple values interface that handles multiple val-
ues efficiently without penalizing code that does not use

them or sacrificing our fsst implementation of first-class con-
tinuations. Full run-time error checking is performed to in-
sure that the correct number of values is received in all sit-
uations. We also describe how the implementation can be
adapted to handle Common Lisp’s multiple vrdues interface.

The implementation first rewrites all direct calls to the

primitives defined by the interface into internal forms that
can be optimized by the compiler. These forms are further
rewritten to eliminate uses of multiple values in all situa-

tions except across procedure calls. Values returned from

procedure calls are handled much like values passed to pro-

cedures, simplifying the communication of multiple values to
unknown consumers. Separate multiple- and single-value re-
turn points are used to eliminate most of the error checking

overhead for multiple-value calls and all run-time overhead
from normal calls. The implementation generates especially
efficient code when the multiple value consumer is known.

Although we assume a direct-style compiler with a stack-
baaed run-time architecture, our results are applicable to
compilers that convert their input to continuation-passing

style and to systems that employ a heap-based run-time
axchit ecture.

This paper is organized as follows. Section 2 describes

the Scheme multiple values interface and argues for full er-
ror checking in situations whose behavior is left unspecified
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by the adopted proposal. Section 3 presents our implemen-

tation of the interface. Section 4 discusses the performance

characteristics of our implementation. Section 5 discusses
related work. Section 6 summarizes and concludes the pa-
per.

2 Multiple Return Values

A proposal to include a multiple values interface in the suc-

cessor to the Revised4 Report on Scheme [1] has been ap-
proved [10]. Two procedures, ua~ues and call-with-values,
comprise the interface.

(values VI . ..)

(call-with-values producer consumer)

The procedure values accepts any number of arguments and

simply passes (returns) the arguments to its continuation.
The producer argument to call-with-values may be any pro-

cedure accept in-g zero arguments, and consumer may be any
procedure. call-with-values applies consumer to the values

returned by invoking producer without arguments. The fol-
lowing simple examples demonstrate how call-with-values
and values interact:

(caU-with-values (lambda () (values 1 2)) +) ~ 3

(caU-with-values values (lambda args args)) - ()

In the second example, values itself serves as the producer.

It receives no arguments and thus returns no values.

The more realistic example below employs multiple vrd-

ues to divide a list nondestructively into two sublists of aJ-
temating elements.

(define split

(lambda (2s)

(if (or (null? k) (null? (cdr 1s)))

(values 1s ‘())

(call-with-values

(lambda () (split (cddr 1s)))

(lambda (odds evens)

(values (cons (car 1s) odds)

(cons (cadr b) evens)))))))

(split ‘(a b c d e f)) +

(ace)

(b d f)

At each level of recursion, the procedure split returns two
values: a list of the odd-numbered elements from the argn-
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ment list and a list of the even-numbered elements.

The continuation of a call to values need not be one es-

tablished by call-with-values, nor must only values be used

to return to a continuation established by call-with-values.

In particular, ( vahes v) and v are equivalent in sll situa-

tions. For example

(+ (dues 2) 4) + 6

(if (vaJues #t) 1 2) ~ 1

(call-with-values

(lambda ()4)

(lambda (z) z)) ~ 4

Similarly, values may be used to pass any number of values
to a continuation that ignores the valuesl, as in:

(begin (vaiues 1 23) 4) 44

Because a continuation may now accept zero or more

than one value, reified continuations obtained via the proce-
dure call-with- current-continuation (call/cc) may also accept

zero or more thsn one argument:

(call-with-values

(lambda ()

(call/cc (lambda (k) (k 2 3))))

(lambda (z y) (list z y))) + (2 3)

The multiple values proposal leaves unspecified the case

in which a continuation expecting exactly one value receives
zero values or more than one value. For example, the be
havior of each of the following expressions is not specified:

(if (values 1 2) z y)

(+ (values) 5)

Similarly, since there is no requirement in Scheme to signal
an error when the wrong number of arguments is passed to a
procedure2, the behavior of each of the following expressions

is not specified:

(call-with-values

(lambda () (values23 4))

(lambda (z y) a))

(call-with-values

(lambda () (call/cc (lambda (k) (k O))))

(lambda (z y) z))

Each implementor of Scheme’s multiple wakes interface

must decide what should happen in the unspecified cases. It

is natural for an implementation to handle caaes where an
unexpected number of values are psased to the consumer in

a caU- with-values call in whatever manner the implement ~
tion normally handles cases where procedures receive an un-

expected number of arguments. Like most implementations,

our implement ation signals errors when procedures receive
an unexpected number of arguments, tmd we maintain this
semantics for call-with-values.

For a continuation expecting a single value, one approach

is to ignore the extra values when more than one value is

1This statement conflicts with the original proPOd ~ Wordedt

which left the behavior in this case unspecified, but subsequent elec-

tronic discussions appear to have resulted in a consensus in favor of

the behavior described here.
2The formal ~mantjc~ contained in Section 7.2 of the Revised4

Report signals an error in such cases, but the text of the report does
not appear to say whether passing the wrong number of arguments is

an error, much less that an error must be signaled.

received and to generate a special value when no values are

received, as in Common Lisp [8]. Another approach is to
ignore extra values but signal an error when no values are

received. We feel that either approach tends to mask pro-

s amming errors without adding significantly to the flexi-

bility of the language. Thus, we have chosen to signal an
error both when no values are received and when more than

one value is received by a continuation expecting a single
value. As shown in the following section, this error checking
can be implemented etliciently, with no run-time overhead

for single-value calls and returns and minimal overhead for

multiple-value calls and returns.

3 Implementation

The multiple values interface requires that call-m”th-values
and values be implemented aa procedures. With the proce-

dural interface, closures may need to be created for the pro-

ducer and consumer, and up to four procedure calls must be

made, to call-with-values, to the producer, to values, and to

the consumer. This overhead is especially unfortunate since
a major motivation for including a multiple values interface

in Scheme is efficiency relative to other techniques for com-

municating multiple values, e.g., via lists, assignments, or
continuation-paasing style.

Therefore, when primitive integrations are enabled, our
compiler recognizes and optimizes direct calls to both
call-with-values and values. Sect ion 3.1 describes how these
calls are converted into internal forms and how the inter-
nal forms are further rewritten to eliminate in many cases
the unnecessary closures and procedure calls inherent in

the procedural interface. After rewriting, some uses of
call- with-values and values are effectively eliminated, and

the remaining uses are handled by an adaptation of the pro-

cedure call interface.

Section 3.2 describes the procedure cdl interface along
with efficient strategies for verifying correct return value

count s. Section 3.3 describes how procedural values for
call-with-values and values are implemented. Section 3.4 de-
scribes adjustments necessary to implement first-class con-
tinuations in the presence of multiple values and multiple-

mwent continuations. Section 3.5 describes how variable-
arit y consumers are supported efficiently. Finally, Sec-
tion 3.6 describes how our techniques can be adapted to

support the Common Lisp multiple values interface.

3.1 Rewriting values and call-with-values

Calls to va~ues are converted into the internal rev-values
form:

(values) * (rev-values)

(values e) * e

(values el ez es . ..) = (mv-valuesel ez es . ..)

Calls to values with exactly one argument are not converted
to rev-values, since (values e) must be treated the same as
e. Calls to call-with-values are converted into the internal

rev-call form:

(call-with-values producer consumer) ~

(rev-call (producer) consumer)

All uses of rev-call are normalized via syntactic rewrites so
that the producer is either an expression that evaluates to
a single value (such as a constant, variable, set! form, or
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Figure 1. The diagram on the left illustrates the control state just before control

transfers to the callee. The diagram on the right shows the control state just before
control returns to the caller.

open-coded primitive application), a use of rev-values, or
an application. This is done by pushing the use of rev-call

into the producer so that the rev-call form occurs in tail
position with respect to the producer. In particular, if the
producer from the original call-with-values application is a

lambda expression (as it often will be), the rev-call can be

rewritten as follows:

(rev-call ((lambda () e)) consumer) ~

((lambda () (rev-call e consumer)))

or more simply:

(rev-call ((lambda () e)) consumer) ~

(rev-call e consumer)

When the rev-call producer is known to evaluate to a
single value or is an rev-values expression, the rev-call
may be rewritten into a simple application:

(rev-call ea consumer) *

(consumer e,)

(rev-call (rev-values e . ..) con9u7ner) 9

(consumer e . ..)

After these and similar rewrites, only rev-call expressions
in which the producer expressions are applications remain.

The compiler performs an additional transformation

when possible that is analogous to recognizing when a direct
lambda application is equivalent to a let expression:

(rev-call ezpr (lambda (id . ..) body)) ~

(rev-let ezpr (id . ..) body)

As with let expressions, the overhead from creating a closure
and making a procedure call is avoided by treating rev-let

as a local binding operator.

At this point, we can elirninat e each occurrence of

rev-values that is not in tail position with respect to the
enclosing lambda expression. If it appears in a statement
context, we need ensure only that its subexpressions are
evaluated for their effects, if any, and can therefore convert
the form into a begin expression. In any other context,
evaluating to zero or more than one value would result in
a run-time error, so we are free to replace the form with a
begin expression that generates the appropriate error mes-
sage after evaluating the rev-values subexpressions. Thus,

rev-values is reduced to a mechrmism for returning zero
values or more than one value from a procedure call.

After rewriting, the following forms of rev-call, rev-let,
and rev-values remain:

(rev-call (ep,Oc e.,, . ..) ezpr)

(rev-let (eP.Oc e~~g . ..) (id . ..) trody)

(rev-values)

(rev-values el ez e. . ..)

In order to implement these forms as well as normal calls

and returns, we must consider the mechanisms by which
procedure calls are set up, values are returned, incorrect

numbers of values are detected, and values are provided to

rev-call and rev-let consumers.

Terminology: Throughout the remainder of this paper,

multiple. value continuation are continuations established
for the producer by rev-call and rev-let. Statement con-

tinuations are continuations that ignore the values passed to
them; these continuations are established by begin or im-

plicit begin. Single-value continuations are continuations

expecting exactly one value. Although a continuation es-
tablished by rev-call or rev-let may accept one value if

the consumer accepts one argument, such continuations are

nevertheless considered to be multiple-value continuations.
A single-value return is a return of exactly one value, and a
multiple-value return is a return of zero values or more than

one value.

3.2 Procedure call interface

Our implementation’s general procedure call mechanism re-
quires the caller to place the values of the first few (k) argu-

ment expressions into argument registers and the remaining

values onto the stack, load a “value count” register (UC) with
the number of arguments, and transfer control to the code

for the procedure. The return address is also passed in a
register, but a hole3 is left at the base of the callee’s frame,
just below the stack arguments, in which the callee may save

the register if the callee itself makes any nontail calls. On
return, the first k values are placed in the corresponding

argument registers, and the remaining values are placed at
the base of the callee’s stack frame. (See Figure 1.)

3Holes in the frame do not confuse the garbage collector since a
live pointer mask is kept behind every return point to indicate which

words of the frame must be traced during collection [3].
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The code generated for an rev-call expression evaluates

the consumer expression, saves the resulting value in a tem-

porary stack location at the top of the frame, performs the

producer call, and transfers control to the consumer. If the

rev-call expression is in tsil position, the call to the con-
sumer is a tail call, and the stack return values must be
shift ed to the base of the current frame before control is

transferred, (The register values need not be shifted.) The

mgwuent co~t check performed by the consumer suilices to
verify that the correct number of values has been returned.

The code generated for an rev-let expression performs
the producer call and evaluates the rev-let body with the

rev-let variables bound to the register or stack locations

that contain the resulting values. -

There are a variety of strategies for verifying that the

number of values returned matches the number of values ex-

pected. We describe three strategies here. The third strat-

egy is the one used by our implementation. The first two
may be reasonable choices in some circumstances, and are

included for completeness. The iirst requires all procedure
returns to paas back a return count along with the values,
and for all procedure call return points to check this count.

The second eliminates this overhead for single-value returns
into single-value or statement continuations, while adding

additional overhead to multiple-value returns. The third
also places no run-time overhead on single-value returns into

single-value or statement continuations and eliminates most

of the overhead for multiple-value returns as well.

3.2.1 Register-based ret urn count

“In the fist and simplest strategy, all procedure call returns
set the value count register uc to the number of values re-
turned, and procedure call return points veri~ that the ex-
pected number of values have been received. Return points
representing single-value continuations verify that exactly
one value has been returned, but otherwise proceed as usual.

Return points representing statement continuations, which

imore the returned ~ues> simply proceed M USU=J
An rev-let return point checks the return count to verify

that the appropriate number of arguments has been returned

and then proceeds to evaluate its body. An rev-call return
point simply invokes the consumer. The count of return
values returned in uc serves as the count of argument values

which the consumer uses to verify that the correct number
of arguments is received. If the call to the consumer is not a

tail call, the temporary location used to store the consumer

becomes the first word of the consumer’s frame, i.e., the
location used by the consumer to store its return address if

necessary.

This strategy is simple to understand and implement,

but it stiers from the drawback that single-value calls and

returns are slowed by the setting and checking of the return
count register.

3.2.2 Stack-based return count

In the second strategy, full responsibility for error checking

is placed on rev-call, rev-let, and multiple-value returns.

A flag is placed in the instruction stremn behind every
return point indicating whether or not multiple return values
are accepted. This flag is set to true for both multiple-
value continuations and statement continuations, and false
for single-value continuations. In the iirst two cases, the
stack location directly below the return address is reserved

to hold the count of values returned. Both rev-let and

rev-call arrange to seed this slot with the value 1.

Code for a multiple-value return checks the flag in the
code stream behind the return point to insure that multiple

values are accepted. If not, an error is signaled. Otherwise,

the return value count is placed in the return count slot

below the return address (rather than in the uc register as
before) before control returns to the caller. Code for a single

value simply returns without changing the return count slot,
The return count slot need not be set in this case since it is
seeded with 1 for multiple-value continuations and ignored
bv statement continuations..

Return points representing single-value and statement

continuations proceed without any checks. Single-value con-
tinuations are guamateed to receive a single value, and state

ment continuations do not care how many values are re-
turned. An rev-let return point retrieves the return count

from the stack, verifies that the appropriate number of ar-
guments has been returned, and evaluates the body. An
rev-call return point retrieves the consumer from its t em-
porary location, moves the return value count from the stack
into UC, and transfers control to the consumer. If the call to
the consumer is not a tail call, the location used to indkate

the number of return values becomes the location used to
store the consumer’s return address,

While this strategy is more complicated, it has the ad-
vantage that the overhead for handling multiple return val-

ues has been eliminated for normal calls and returns. The
drawback is that the overhead for handling multiple values

has increased. Multiple-value returns must check a flag be-

fore returning and must write the return count to memory
rather than to a register. Multiple-value continuations must

load the count from memory.

3.2.3 Separate multiple-value return point

Our final strategy improves the performance of multiple-
value returns and continuations without sacrificing the speed
of normal calls and returns. In place of the flag in the second

model, m alternate multiple-value return point is situated at

a fixed offset behind the normal (single-value) return point
in the instruction stream. Procedure calls returning one

value return to the single-value return point. Calls returning
zero values or more than one value place the number of
values being returned into uc and return to the multiple-
value return Doint.

If control-returns to the single-value return point of a

single-value continuation, a single vslue must have been re-
turned and execution proceeds without any check. If control

returns to the alternate return point of a single-value con-

tinuation, a jump is made to an error routine signaling that
multiple values were returned to a single-value continuation.

For statement continuations, the single-value return
point again performs no check, and the multiple-value re-

turn point simply falls through to the single-value return
point, achieving the desired effect that any number of val-
ues returned are ignored.

If control returns to the single-value return point of an

rev-call, uc is loaded with the value 1 and control is trans-
ferred to the consumer. The code at the multiple-value re-
turn point jumps around the load of uc with 1, directly to

the code that transfers control to the consumer.
The single-value return point of an rev-let can simply

load vc with 1, as in rev-call, and fall through to the code
for the return count check and rev-let body. Alternatively,
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Figure 2. There is now a multiple-value return point behind each normal (single-

value) return point. The diagram on the left illustrates the co trol state just before
a single-value return. The diagram on the right shows the cent 01 state just before a

multiple-value return.

the single-value return point can jump directly to the body
(if one value is accepted) or to the error signaling code. The
multiple-value return point of an rev-let jumps over the
single-value return point to the return count check.

Figure 2 illustrates the stack layouts for both multiple-

and single-value returns along with the code sequences found

at the various return points.

The virtues of this model are that normal calls and re-

turns proceed without overhead, and no checks are required
to prevent multiple-value returns into single-value continu-

ations. It is tempting to “optimize” the mechanisms in the

previous models by skipping the error checks necessary to
verify that a single value was returned to a single value con-
tinuation, but this model has no test to eliminate. Signaling

errors when possible even in optimized code is an essential
part of our design philosophy, and preserving the error check
at no extra cost allows us to remain consistent with this phi-

losophy without sacrificing efficiency.

3.3 Procedural versions of valuea and call-with-

values

The compiler can rewrite uses of call-with-values and values
when they are applied directly to arguments, but we must
still provide procedural definitions for them. Once the com-
piler recognizes direct calls to call-with-values, a procedural

definition of call-with-values is trivial:

(define call-with-values

(lambda (z y)

(call-with-values z y) ) )

Although this definition appears to be circular, the use of
call-with-values is recognized by the compiler and rewritten
into the corresponding rev-call form.

A trivial definition for values:

(detine values

(lambda args

(apply values args)))

I
would be circular ince the compiler recognizes only direct
calls to values. W cannot list the arguments individually
and call values di ectly since values accepts an indethite
number of argume ts. We thus implement values as a prim-

itive library routin . This routine first moves the stack argu-
ments, if any, to t e base of the frame, leaving the register
rugurnents in plac . It then transfers control to the nor-

mal (single-value) eturn point if one argument is received

(VC = 1) and to th multiple-value return point otherwise.

The argument cou t in uc serves as the return value count

in the latter case.

3.4 Multiple va lues and first-class continuations

Our strategy fits c eanly with our implementation of first-
class continuations [7]. When a continuation is captured,
the current stack segment is split into two smaller segments.

The first segment i s the part of the stack in use when the

continuation is capl mred, and the second segment is the un-

used portion of the t stack. A distinguished return address,

the address of a con tinuation handler, is placed at the base of

the second segment ; this handler effects an implicit continu-

ation invocation if c:ontrol returns through it. The displaced

return address is p.laced in a data structure that also links

the two segments ar Id maintains other bookkeeping informa-
tion. Execution co ntinues using the second stack segment

as the current stacl t segment.

Whether a captl ued cent inuation is invoked explicitly or
implicitly, cent rol i s transferred to one of two entry points

into the continuati( m handler: the single-value entry point
or the multiple-vah ~e entry point. Since the handler serves

as an artificial retur n point, the multiple-value entry point is
at the same fixed o ffset behind the single-value entry point

as for ordinary prot ~edure call return points. The procedure

representing a cent nuation branches to the appropriate en-

try depending upo~ the number of arguments received.
The handler co,pies the saved stack segment4 into the

4The sesment to be copied may be split before it is copied if its size

exceeds a predetermine ~d limit on the size of segments the continuation
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current segment and returns to the displaced return address.

The only difference between the multiple- and single-value

entries into the continuation handler is that the multiple-
value entry must first move the stack return values to just
beyond where the saved stack segment will be inserted into

the current segment. (See Figure 3.)

3.!5 Variable-arity consumers

Scheme permits procedures to accept arbitrary numbers of
arguments through its “dot” interface. It is possible to ex-
tend rev-let to accommodate the dot interface. In place
of a simple check to verify that the exact number of values
expected has been received, rev-let verifies that the mini-

mum number expect ed has been received and packages the
remaining arguments in a list. This packaging can be per-
formed out-of-line to reduce code size.

Our implementation supports a multiple-arity procedure

call interface with case-lambda [4, 12]. A case-lambda

expression takes the following form:

(case-lambda (idspec body) . ..)

Each clause of a case-lambda expression specifies an in-
terface to the procedure and the expression to be evaluated

when the procedure is called through that interface. For
example:

(let ((~ (case-lambda

((z) (+ s 1))

((x . 2s) (cow (+ z 2) 2$))

(m o))))
(list (f5) (/123) (f))) ~ (6(323)0)

The particular interface chosen for an application is the first
clause that accepts the number of arguments provided. Any
lambda expression cau be rewritten into a case-lambda
expression with only one clause.

handier is allowed to copy [7].

Our system allows case-lambda to be used to specify
the consumer when using call-with-values. In order to allow

the consumer to be a case-lambda expression, we must

extend rev-let to handle multiple consumers. The revised
syntax for rev-let is:

(rev-let ezpr (idspeco ZJodg.) . . . (i&pecn body.))

When rev-call appears with a case-lambda expression

aa the consumer, the compiler rewrites the expression as

follows:

(rev-call ezpr

(case-lambda
(rev-let ezpr

(irfspeco bodyo ) . . .
+ (idspeco bodyo) . . .

(idspecn bodyn)))
(idspecn body.))

The implementation of this extended form of rev-let is al-

most identical to the single clause case. The only difference
is that a case dispatch on the number of values received must

be performed to determine which clause to execute. As with

caae-lambd% the iirst clause that accepts the number of

values provided is chosen aa the consumer.

The optional argument interfaces provided by Common

Lisp [8] and by other Scheme systems, e.g., MIT Scheme [6],
can be hsmlled in a similar manner.

3.6 Common Lisp multiple values interface

Our strategy can be adapted to implement the Common
Lisp multiple values interface efBciently. Common Lisp
provides two basic interfaces for receiving multiple values:

multiple-value-call and multiple-value-bind The for-

mer is essentially equivalent to our internal rev-call form,
except that the consumer arguments are constructed from

values received from an arbitrary number of producers. The

latter is essentially equivalent to our rev-let form, except
that extra return values are ignored and the variables cor-
responding to missing values are set to nil.

In order to speed the handling of multiplevalue returns
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mvlet

Cps

Cons

byref

reverse

time space

1.00 1.00

1.21 2.00

1.26 1.60

1.20 1.10

1.53 2.10

I time space

mvlet 1.00 1.00 I
I mvcall I 1.27 1.50

vmceduml 1.94 2.00 I
Table 2.

Table 1.

Both cpu time and allocation costs are given, normalized

into single-value continuations, zero value returns should
place nil in the first return value location in addition to

setting the return value count to O. The multiple-value re-
turn point for a single-value continuation may then simply

fall through to the single-value return point, as for statement
continuations. The return points for a multiple-value-call
with one producer behave the same as for our rev-call form;

handling more than one producer is a straightforward gen-
eralization but may require some shuffling of values. Both
the single- and multiple-value return points for a multiple-

value continuation established by multiple-value-bind
must generate one nil value for each return value expected

by the consumer beyond those actually returned. This may

be accomplished by a dispatch to the appropriate point in a
sequence of move instructions inserted before the consumer

code. For single-value entries, the dispatch can be replaced

by a direct jump to a fixed address within the sequence of

move instructions.

The minor savings relative to a similar adaptation of
the strategy described in Section 3.2.1 may not compensate
for the added complexity of providing two return points.
The primary benefit derived from our model when full er-
ror checking is performed comes from eliminating the return

count test for single-value continuations. No such check is re-
quired, however, by either of the strategies to implement the

Common Lisp semantics. Furthermore, on modern pipelined
architectures, the cost of moving the return value count into
the vc register, as required by the simpler strategy, is likely

to cost little or nothing.

4 Performance

The multiple values implementation has been incorpo-
rated into the Chez Scheme compiler and run-time system.

The implementation performs well, especially when calls

to call-with-values can be recognized internally as rev-let
forms. Table 1 compares the performance of several ver-
sions of the split procedure defined in Section 2. The differ-

ent variations are:

mvlet values returned via values (original version)

CPS values returned via continuation-passing style
cons values returned via cons
bys$ values returned via aasignrnents

reverse values accumulated in reverse, then reversed

We call the original version “mvlet” since the use of
call-with-values is ultimately converted into the internal
rev-let internal form. The reverse version is included for
completeness, but does not represent a generally applicable

style for handling multiple values. Definitions for all but the
original version are given in the appendix.

to the values for the mvlet version. Lists of length 10 were

used os input, and the tests were timed over many itera-
tions to produce measurable data. The table shows that the
performance of the multiple values interface for this simple

benchmark is significantly better in terms of both CPU time

and allocation costs.
As a more realistic benchmark, we rewrote three passes

of our compiler that require the use of mult iple vahes to use

the new interface in place of a vector-based interface that
we had been using. AU occurrences of call-with-values are
recognizable as rev-let forms internally. This resulted in a

20% improvement in the speed of the three passes.

We also compared the performance of a set of bench-
marks that do not use multiple values (Scheme versions of

the Gabriel benchmarks [5] ) before and after the multiple
value interface was added to the svstem. As emected. we

found that supporting multiple vrd~es has no r&time’ im-
pact on code that does not use them, although the code
generated is naturally slightly larger due to the addition of

multiple-value return points.
We also studied what happens when the compiler is not

able to convert calls to call-with-values into the internal

rev-let form. Table 2 compares the performance of the orig-
inal mvlet version with the following variants:

mvcalt recognition of consumer as a lambda expression
disabled

pmceduml: recognition of direct calls to call-with-values

and values disabled

As the table shows, the mvlet version has a significant edge.

Comparing Tables 1 and 2, it also appears that programmers
are better off, in terms of performance, using some other

mechanism for returning multiple values unless the compiler
can recognize the caU-with-values application.

5 Related work

Other implementations of Scheme, notably T [13] and MIT

Scheme [6], provide multiple values interfaces. We have ex-
perimented with T Version 3.1 on a Spare processor and
MIT Scheme Version 7.2 on an SGI MIPS processor. The

T interpreter’s semantics for multiple return values matches

ours, but the compiler does not perform the run-time checks
necessary to guarantee that the correct number of values is
received. Their compiler seems to optimize only caaes where

both the producer and consumer are lambda expressions;
in other cases they use the procedural interface. In MIT

Scheme, the semantics for multiple return values is similar
to ours, but their current implementation appears to require
that values be used only to return to continuations created
by call-with-values. Their system also does not appear to

treat the caae where the consumer is a lambda expression
as a local binding operation.
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The model described in Section 3.2.1, with the modi-

fication for zero-value returns mentioned in Section 3.6, is

essentially the same aa the model used by Kyoto Common

Lisp [14]. Rather than intermix stack arguments with other

control information on a single stack, however, they use mul-

tiple stacks with one stack reserved for passing and returning
values to procedure calls. Also, their compiler targets C and

therefore does not have access to the machine registers, so
they use the stack for all arguments and return values.

On Spare-baaed computer systems, the prescribed me-

thod for communicating whether fixed-length structures are
expected and ret umed in C and similar languages somewhat
resembles the stack-based return count model described in

Section 3.2.2 [11]. The return point for a call to a procedure
expected to return a structure is flagged with a particular

“unimplemented” instruction, and the address of a location

into which to place the returned structure is passed as a

special argument on the stack. A procedure returning a
structure must check to determine if the unimplemented in-

struction is at the return point. If it is, it copies the return
value to the specified address. In either case, control returns
to the instruction following the unimplemented instruction.

A procedure returning a nonstructure value returns as usual,
resulting in an unimplemented instruction trap.

The Spineless Tagless G-machine [9] uses vectored re-
turns to control closure updating. Control is returned to

one point if the closure needs to be updated and to another
return point if it does not. Also, if the result is a construc-

tor, and if the constructor haa sutliciently few fields, the

fields me returned in registers instead of in a data struc-

ture. The effect in this case is a multiple-value return to the
continuation using a mechanism similar to ours,

6 Conclusions

In this paper we have described an implementation of

Scheme’s multiple values interface. The implementation

converts aJl direct calls to call-with-values and values into
internal forms that can be optimized by the compiler. These

forms are rewritten to eliminate uses of multiple values when

the producer is a lambda expression whose body evaluates
to one value or to multiple values via a direct call to values.

The implementation handles arbitrary consumer expressions

efficiently but optimizes the common case in which the con-

sumer is a lambda expression by treating the consumer call

aa a local bindimz oDeration. as with let. The tirst few values
“.

returned from a procedure call are placed in the same regis-

ters as the first few argument values passed to procedures,
and the remainder are stored on the stack na for procedure

calls. This helm make multirJe-value returns efficient and. a

simplifies the communication of multiple values to unknown

consumers.

Full error checking for unexpected numbers of values is
Derformed with no run-time overhead for normal mocedure. .
calls, i.e., single-value returns to single-value and statement

continuations, and little overhead for multiple-value proc~
dure calls. This is accomplished with the use of a separate

multiple-value return point placed at a tixed offset behind

the normal (single-value) return point for each procedure
call.

Programs that wish to ignore extra values in particular

cent exts can do so easily by calling call-with-values explic-
itly. The syntactic form first defined below abstracts the

discarding of more than one value when only one is desired:

(define-syntax tirst

(s~t~jj~les ()

(;all-with-values

(lambda () ezpr)

(lambda (z. y) z)))))

Ignoring values in this manner is inexpensive in our imple-

mentation because of our treatment of call-with-values and
because our implementation does not construct lists for un-

referenced “rest” variables. The code generated simply ver-

ifies that at least one value has been returned and ignores
the remaining values.

It is possible to implement the multiple values interface

entirely in Scheme, although doing so precludes doing some-
thing sensible when a single value continuation receives zero

values or more than one value. Such an implementation is

also certain to be much less efficient than a native imple-
mentation of the interface. The code below demonstrates
one way in which this can be done:

(define call-with-current-continuation)

(define values)

(define call-with-valuea)

(let ((magic (COW ‘multiple ‘values)))

(define magic ?

(lambda (z)

(and (pair? z) (eq? (car z) magic))))

(set! call-with-current-continuation

(let ((pritnitive-caU/cc

call-with- current-continuation) )

(lambda (p)

(primitive-call/cc

(lambda (k)

(p (lambda args

(k (apply values arcs)))))))))

(set ! values

(lambda args

(if (and (not (null? args)) (null? (cdr args)))

(car any)

(cow magic args))))

(set ! call-with-values

(lambda (producer consumer)

(let ((2 (producer)))

(if (magic? z)

(apply cowumer (cdr z))

(consumer z))))))

The special flag (magic) used to mark multiple values can
be any unique Scheme object. When anything other than a

single value is returned to a single value continuation, the

continuation receives a list whose car is this flag. Without
altering the compiler or macro expander’s treatment of ap-

plications, it is not possible to signal an error or even to

ignore extra values in this case.

As with first-class continuations, multiple return val-

ues can be implemented via a global source-level rewrite
into continuation-passing style (CPS). Just as implementing

first-class continuations in this manner prevents the com-
piler from assuming that all continuations have dynamic ex-
tent, implementing multiple return values in this manner
prevents the compiler from assuming that all continuations
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receive exactly one value. CPS compilers that wish to flag

return value count mismatches must therefore verify that
the correct number of values is passed to each continuation.

The same technique used to implement multiple values in
a direct-style compiler such aa ours may be used in a CPS
compiler: the multiple-value return point behind each nor-
mal return point becomes a multiple-value entry point be-

hind each normal continuation entry point.

A compiler might perform a CPS conversion early in
the compilation process to simplify subsequent process-
ing, then convert back into direct style just prior to code

generation. The reverse CPS transformation developed
by Danvy and Lawall [2] to recognize transformed calls

to call- with-current-continuation and reified continuations

should be straightforward to extend to recognize trans-
formed calls to call-with-values and values.

Unoptimized multiple-value calls may require as many
ss two additional closures and four additional procedure
calls. In implementations that do not optimize the inter-

face when possible, code using the interface will likely run

slower than code using other mechanisms for returning mul-

tiple values. Unless most implementations optimize the in-
terface, call-with-values will be of little practical use as a

portable tool for performance enhancement.

Because the interface is procedural rather than syntac-
tic, the code that produces the values must be encapsu-

lated in a zero-argument procedure. As well as leading to
awkward-looking code, this has the effect of forcing the con-

sumer expression to be evaluated before the values are com-
puted. This artificird ordering constraint does not exist for
ordinary calls: the consumer (procedure expression) may
be evaluated either before or after the sxgument values are

computed. The constraint can result in the generation of
suboptimal code.

Because of the awkwardness, potential inefficiency, and
artificial ordering constraint inherent in the procedural in-

terface, we believe it would have been better to have stan-
dardized on a syntactic version of call-with-values, which we

~ght cdl wit h-valueK

(with-values producer consumer)

In this form, the producer is aa expression evaluating to

zero or more values, and the consumer is an expression eval-

uating to a procedure that accepts the number of values

yielded by the producer. Nothing would be lost with this

change: call-with-values can be defied trivially in terms of
with-values.
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A Variants of split used for performance compar-

isons

(define split-cps

(lambda (ls values)

(if (or (null?’ k) (null? (cdr b)))

(values 1s ‘())

(split-cps (cddr 1s)

(lambda (odds evens)

(values (cons (car 1s) odds)

(cons (cadr k) evens)))))))

(define split-cons

(lambda (b)

(if (or (null? h) (null!’ (cdr k)))

(cons ls ‘())

(let ((pair (split-cons (cddr k))))

(cons (cons (car h) (car pair))

(cons (cadr Zs) (cdrpair)))))))
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(define split-byref

(lambda (1s pair)

(if (or (null? L9) (null? (cf.fr k)))

(begin (set-car! pair h)

(set-cffr! pair ‘()))

(begin (split-byref (cddr k) pair)

(set-car! pair

(coa (car 1s) (car pair)))

(set-cdr! pair

(COW (cadr 1s) (cdrpair)))))))

(define split-reverse

(lambda (b)

(le~c~jh L9) (offdc ‘()) (evens ‘()))

((null? /s)

(cow (reverse odds) (reverse evens)))

((rudl? (cdr Zs))

(cons (reverse (cow (car Zs) odds))

(reverse evens)))

(else (f (cddr k)

(cow (car k) odds)

(cow (cadr 1s) evens)))))))
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