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Abstract

Lists are a pervasive data structure in functional programs.

The generality and simplicity of their structure makes them
expensive. Hindley-Mllner type inference and partial evalua-
tion are all that is needed to optimise this structure, yielding

considerable improvements in space and time consumption
for some interesting programs. This framework is applica-

ble to many data types and their optimised representations,

such as lists and parallel implementations of bags, or arrays

and quadtrees.

1 Introduction

Lkts are a pop&r data structure among programmers us-

ing strongly-typed functional languages such as ML and
Haskell~dEtA192]. For this reason, it is important to rep-

resent and use them as efficiently as possible.
There are a variety of optimisations on simple list rep-

resentation, and it isn’t difficult to think of new ones. The
hard problem, and the one solved in this paper, is to au-

tomatically infer where an optimised representation can be
used. The approach we take can be summarized as follows;

●

b

●

Each pair of constructors in a simple list is replaced
in a compressed list by one ‘hydra’ constructor with
two heads. If the list has an odd length, then a single
headed constructor appears at the end.

Lists are treated as an abstract data-type (ADT). The

new list ADT exports a simple list representation, and

operations on both the simple and the compressed rep-
resentations.

A systematic transformation, guided by an analysis

phase, transforms a user program written entirely in
terms of simple lists into one which uses compressed
lists in as many places as possible.
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benchmark time

adder 82%

cosine transform 92~o

fast fourier transform 8870

life 51%

peano 37%

s igrna 66%

transit ive closure 69~o

Figure 1: Summary of results (optimised execution time di-
vided by unoptimised execution time)

The analysis and transformation propagates local con-
straints on list structure by using Hindley-Milner type

inference on a list type modified to represent both com-
pressed and simple lists.

A two-stage process handles global constraint propaga-

tion. First, the type inference uses a standard trans-

formation to convert the type-checked source program
into a restricted form of the second order polymorphic
lambda calculus. In this ‘core language’, each poly-
morphic function application receives extra type ar-
guments which instantiate the polymorphic variables
of the function’s type. Some of these type arguments
express local constraints on list structure.

Partial evaluation then statically reduces these type

applications,propagating global constraints to each in-
stance of an operation on lists and replacing it with a

reference to a version whose type expresses the same

constraints.

Given the appropriate pragmas, this framework is ap-
plicable to many data types and their optimised represen-
tations, such as lists and parallel implementations of bags
[KuG193], or arrays and quadtrees. Unlike many transfor-
mations, it is fully higher order.

The analysis and transformation has been implemented
in the Glasgow Haskell compiler, and has significantly im-

proved execution times on a number of small programs (see
Figure 1) — up to a factor of two or more on list inten-
sive programs. A later section of the paper gives additional
statistics, such as total space allocation ratios and changes

in code size.
The next section describes the basic ideas in more de-

tail, and is followed by comparisons with related work. The
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analysis and transformation are specified using type infer-
ence rules and a partial evaluation algorithm, followed by an

extended example. Finally, we show that the transformation

is safe and terminates, and give performance figures.

2 The idea

Compilers often perform an optimisation czdled ‘loop un-

rolling’, in which the loop body is substituted once for its
call. This is applicable when a loop test is expensive and the
body of the loop is small. It trades code size for the time
and space needed to perform the loop test.

Here is an unrolled version of map &IlWs89], written in
Haskell [HdEtA192], The list constructor cons is written :,

and nil is [1.

map f (xl:x2:xs)
=fxl:fx2 : map f X8

map f (xl: [1)

=f xl: [1
map f []

= [1

The optimised map constructs half as many thunks for
recursive calls. We can make map even more efficient by
giving it a compressed list type that builds only half the

number of cons cells. This new list type contains a “hydra”

constructor Cons2, a cons-cell with more than one head.

data List2 a
= Cons2 a a (List2 a)

I Consl a
I Nil

Here is map’s definition using the compressed representa-
tion. We refer to this version aa map-o.o, because it receives
and returns an optimised list.

map-O-O :: (a -> b) ->

List2 a -> List2 b
map_ O-O f (Cons2 xl x2 X8)

= Cons2 (f xl) (f x2) (map_ O-O f x8)
map-O-O f (Consl xl)

= Consl (f xl)
map-O-O f Nil

= Nil

Similarly, we write map_S-0 for the version of map with
type

(a -> b) -> List Simple a
-> List u b

The version map.O_O is significantly more efficient than

the original, but it isn’t directly usable because it refers to
List 2. Instead, we develop a transformation that automat-

ically inserts references to it at compile time.

Theoretically, there are four possible versions of map to
work with, and these have the following types:

map-S-O :: (a -> b) ->

[al -> List2 b

map_ O-S :: (a -> b) ->
List2 a -> [b]

map_ O-O :: (a ->b) ->
List2 a -> List2 b

map_S_S :: (a -> b) ->
[al -> [b]

In fact, it seems reasonable to assume that each opera-
tion on lists will have 2“ versions if its type has n list types.

However, this assumes that it is always a good idea to com-

press a list. Our goal is to compress lists only if that doesn’t

create extra work which might slow the program down.
It turns out that some functions cannot w List2 with-

out performing extra work. For example, the append func-
tion (++) should not take an optimised list aa its second

ZU_went. Suppose that its call wss

append

(Cons2 1 2 (Consl 3))
(Cons2 4 5 Nil)

The result would be

(Cons2 1 2

(Cons2 3 4

(Consl 5 Nil)))

which means that the second argument had to be recopied.

Restricting the second argument to be a simple list forces
the result of append to be simple as well. We can still decide

whether or not to optimise the firat argument, as this list
haa to be traversed and rebuilt anyway.

Thus while eight versions of append are available, only
two, which have the following types, are beneficial:

append-SJ3-S :: [a] -> [a] -> [a]
append-O-S-S :: List2 a -> [a] -> [a]

This demonstrates that the transformation must be able
to decide where it should use compressed lists and where it
should not. The goal is to select the most optimised version

available, then set tle for something worse when necessary.
Notice that it never has to coerce one type to another, which
would be inefficient. The compressed and simple types are
completely separate.

2.1 Using type inference to distinguish between forms
of the type

The transformation must infer where lists are constrained
to be simple before determining which versions can be used.

This is done in two stages, the first being Hindley-Ivfilner
type inference.

The compiler uses a list-type definition that includes a

new field called a selector jield. For example, the usual list-

type, defied as

data List a = Nil

I Cons a (List a)

is extended as follows:

data List t a = Nil t

I Cons t a (List t a)

The extra type variable t is only relevant to the analysis.

Unification will instantiate this selector field if either a
producer or consumer of a given list requires it to be simple,

otherwise it will remain polymorphic. If it remains poly-
morphic, then both producer and all consumers can handle

compressed lists, so the compiler is at liberty to substitute
optimised versions of the functions. Thus there are only two
forms that selector types can take on — the Simple type or
a type variable.

The function map can take and produce any form of list,
so we give it the type:
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map : : (a->b) ->
List t a -> List u b

where t and u are unconstrained selector fields. The selector

fields in this type can be instantiated in any one of four
ways, allowing the transformation to select one baaed upon
context.

However, wegiveappend the type:

append :: Listta
-> List Simple a
-> List Simple b

where Simple is some predefine type known to the com-
piler. This indicates that the first argument to append may

be either a simple list or a compressed list, but both its
second argument and its result must be simple lists.

We need the full power of unification because constraints

on list structure flow up and down the parse tree. For ex-

ample, suppose we have the expression

map f (append xs ys)

When this is typechecked, the argument type of map f will
be unified with the type of (append xs ys). This type, and
the type of ys, are constrained to be simple by our type for

append, and this in turn constrains the argument typeof
map.

On the other hand, the expression

append xs (map f ys)

shows that constraints can cause function results to be sim-

ple lists.

2.2 Propagating context information

In the same way that more than one version of map may be
needed, so the transformation may have to generate more

than one version of a user defied function. For example,
suppose that the program defines the function

glue front rni.ddle back
= append front

(append raiddle back)

The type inference will assign glue the polymorphic type

glue :: List ta->Listua

-> List Simple a

-> List Simple a

which allows for the possibility that the fist two arguments

may be compressed. It would be a mistake to assume that
these must be compressed, because the function maybe used

in a context that constrains its arguments to be simple. For
example, one of them may receive a value created by append.
Thus in each application of glue, the transformation has to
ensure that the application’s context determines the appro-

priate version.
There is a simple way to do this. We can make the

t ypechecker translate a program into the second order poly-
morphic lambda calculus in which types are manipulated
directly, almost like values themselves. In particular, a poly-
morphic function will have a number of type parameters. An
instance of the function is expressed as a type apphcation in
which the function receives the actual instance types, which

are then bound to the type parameters within that function
body.

For example, the polymorphic function glue is translated
into the following form:

glue
=At.

A front middle back.

append tfront
(append tmiddle back)

The type variable t is bound by the type lambda form A,
and is in turn passed as an argument to the two instances of

append! where it will take on the type of the list elements.
Note, however, that when lists are being optimised, the defi.

nition of glue contains some extra polymorphism introduced

by the selector field (in small caps here).

glue

= A SEL1 tSEL2.
A front middle back.

append $EL 1 tfront
(append SEL2 tmiddle back)

If glue is ever used in a context where its first argument,

say, is unoptimised, then it will be applied to the type Sm-

PLE, which is bound to (and instantiates) the polymorphic

type variable for this argument. Thus all that has to be done

to propagate these contexts safely is to use partial evalua-

tion with respect to type applications, creating new versions
when necessary.

For example, the partial evaluation of glue in the appli-

cation

glue SIMPLE Char TV front middle back

will be

A front middle back.

append SIMPLE Char ~ont
(append TV Char middle back)

which is translated into

,4 front middle back.

append_S.SS front
(append.O-S.S middle back)

Here, partial evaluation has performed a compile-time
beta-reduction of type applications (in practice, the type-
lambda forms are left in place to enable other optimisations).

The result is a version of glue in which all the information
needed to select versions of append is now present.
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3 Comparison with other work

There is an old LISP technique called cdr-coding which is

related to this approach. Whenever a copy garbage collec-
tion occurred, list elements would be laid out in successive

locations, and the cells tagged to indicate representation.

This superseded technology selects list representation dy-
namically, whereas our approach allows static choices.

One question that might reasonably be asked is: can
overloading of data types as defined by Jones [J093] handle
our problem? Jones does this by defining a class of data-

types, and then instantiating the class type variable with
the appropriate type.

Unfortunately, this does not work. It is easy to see why
when we look at the Funct or class, defined as

class Functor f uhere

nap :: (a-> b)-> fa->fb

This has to be modified so that it can handle two different
list types, one for the argument and an independent one for

the result. That requires us to add another class variable,
as in

class Functor f 1 f 2 where
map :: (a-> b)-> fla->f2b

Unfortunately, overloading at more than one class type vari-
able is often ambiguous, and unlikely to handle cases such as
zip, which has two independent list arguments and returns
a list result.

Shao, Reppy and Appel [ShReAp93] present an efficient
representation for lists in ML which is slightly different from

the one given here. The odd element appears at the be-
ginning of the list, rather than the end, which produces a

better version of tail. They use an algorithm based on
refinement types to determine list parity, introducing opti-

mised versions of cons when possible. Their results are also

promising, and it would be interesting to compare our two
methods for programs in ML. However, their approach ap-
plies to this problem only, and not to the general problem
of introducing optimised representations for abstract data
types.

Xavier Leroy [Le92] uses coercions wrap and unwrap and

Hkdley-Milner type inference to determine where unboxed
types can be used. However, he observes that recursive data
types require boxed elements at all times. The data type we

propose in effect finesses this problem by unboxing all of the
tails of the list represented by a hydra constructor. Leroy’s

approach also requires wrapping and unwrapping overhead
whenever the list is constmcted or accessed, which is not

necessary in this framework.
Could deforestation [GiLaPJ93] largely or completely get

rid of lists, making this work unnecessary? We have found
that the two approaches are complimentary. In addition,

current deforestation algorithms tend to degrade in the pres-
ence of higher order functions, and cannot handle sharing,
whereas our technique compresses shared lists and is folly
higher order.

Wadler’s views [WS87] are somewhat related to this prob-
lem. Both problems involve manipulating different represen-
tations of a data-type. However, the idea behind views is
that it allows a variety of representations to be exported

from an abstract data-type and used by the programmer at
the source level, whirh is quite different from the approach
given here.

map_O_O

/\

map_S_O map_O_S

\/
map_S_S

Figure 2: Lattice relating versions of map

4 The type inference rules

Type inference takes place after the program has been type

checked, desugared, and after any analysis, such as strictness

analysis, that supplies information it needs.

4.1 List operation versions

For each operation on lists, the transformation needs an
‘optimal’ version, one that uses the compressed data-type
wherever possible. This is currently provided by the ADT
library, but automatic version generation is also possible.
Given the type of an optimal version, that library must also
supply all versions with types below that type in the com-
plete finite lattice induced by the Hkdley-Milner polymor-

phic type ordering on the selector argument of the list type.
For example, the most general type for map is

[

(a -7 b) -> List t a -> List u b

The complete lattice of map versions appeara in Figure 2.

If it isn’t possible to use the ‘best’ version because not
all versions below it exist, then a poorer ‘optimal’ version
must be provided instead. For example, if the ADT could
not provide map-O-S, then the best version would have to be

map_S-S. However, none of the rest of the algorithm needs
to be modified if this happens, as this worse version is still

treated as the best available.

The reason for requiring a complete lattice of versions
is that there must be a version available for every possible
instantiation of the selector fields in the type of the best

version. Initially the type inference rules use the best version
type for each operation on lists, however the subsequent

transformation must be able to instantiate that type freely.

4.2 The type environment and operations on it

The type inference rules take a program in the ‘core lan-
guage’ of the compiler (F@re 3) and transform it into the
second order polymorphic lambda calculus (Figure 4).

The core language is a standard intermediate language
for functional compilers. It is the source and target language
of the analysis and transformation. We assume that fix is

a built-in function.

Extension of the type environment, r, is defined as

rl @ r2 =Ai. iCd0rnr2 +1’2ijr1i

The function dorn returns the domain of an environment.
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Expressions:

e ~:= vconel . .. en.

el e2
Ave
case e(pl, el) .
let v el e2

Patterns:

p i’= ~on PI . ..Pn.

variables
n~O constructor applications

application
lambda binding

. . (P., en), nzl caseanalysis
let binding

variable patterna
n ~ O constructor patterns

Figure 3: The core language

Types:

T ~:= ;T1...rn, n~O

71 + T2

u ::= Vcrl . ..cY~.T. n~O

Expressions:

e ~:= vconel. ..en

el ez
erl. ..rn,

Aal.. .ae, e,
Ave

type variables
constructor types

function types

polymorphic types

variables
n~O constructor application

application
n ~ O type application

n z O type lambda binding
lambda binding

I case e (pi, el). ..(pn, en), n~l case analysis

let v el e2 let binding

Patterns:
variable pat term

p i’= ~onP1-Pn, n~O constructor pattern

Figure 4: The second order polymorphic lambda calculus

The usual initial type assignment, rin,c, maps primitive The first, I-P”lY’XP, infers a polymorphic type for an ex-

functions and constructors to their tvDes. rxession, while the second, F, infers a monomordic t.we.

The type assignment rlist maps” ~st operationsto the
type of the best version for the operation, and the construc-

tors Nil and Cons to the type List applied to Simple.
Thus the initial type assignment used by these rules is

4.3 Inference rules

The rules themselves appear in Figure 5. They are straight-

forward, and are similar to others given elsewhere [MiHa88].
There are three judgement forms. They all have a similar

structure,
r+e:roe

in which r is the type assignment, e the expression being

typed, and e the translation of that expression.

The third, EPat, infers a type, and a type assi&nen~ ~or

bound pattern variables.

Notice that type-lambda forms may enclose let-bound
function definitions, but never are enclosed themselves (un-
less surrounded by a let). The reason for this is that

Hindley- Milner types do not permit universal quantifica-
tion unless it takes place over all type variables in the type;
in other words, it must be at the outermost level.

5 Partial evaluation

The partial evaluator, T, takes a program in the second or-
der polymorphic lambda calculus and converts it back into
the core language, inserting the appropriate operation ver-
sion names.
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r l-pO1yexp v : va~ . . .an.~ -v

t- V: ’r’rlo’l. .. Tnan - vT1. ..Tn

rcon = XT, . ..Tn

r 1- el:rl -+ el

. . .
r 1- e*:Tn -+ en
r 1- con el ...e~:x~l...r~: -.+ conel. ..en

r 1- el:71+T2 +el
r I- e2:T1 -.+ ez

r 1- ele2:T2 -+ el el

r@{ V:Tl} k e:T2 we

1- (Ave ):71+m --+Ave

r 1- e:re we

r ~pat pl : (T,, r:) - PI

r~rl 1- e~:7 -+ el

. . .

r ~pat Pn: (T., r.) * Pn
r@r. F en:T * en

r i- casee pl, el . . . pn, en :T - casee pl, el . . . pn, en

r 1- e:r -+e

Vi, l<i<ra, ai@r

r ~polyexp e . val ., . an ~ ~ *al . . . an.e

r l_pOlyexp el : ~ --+ el

r~{v:u} t- ez :T - ez

r F (let v el ez) : ‘r w (let v el ez)

rv=r
r +p,t v :( T,{ V:7}) + v

r con = %71...?”

r Fpat P1: (TI, rl) + P1

. . .

r l_p.t Pn : (Tn, r.
- Pn

r l_P= con pl . ..pn. (x T1. ..7n, rl @... @r”) u conpl. ..pn

Figure 5: Type inference rules
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5.1 The partial evaluation algorithm

More specifically, the rules examine each type application,

f 7-, . . . Tn

They distinguish between list operationa and other func-
tions as follows.

5.1.1 List operations

If ~ is a list operation, the sequence of type arguments is

used to select the version.

We define a function provided by the compiler,

* :: Name + [T] + Name

which maps the name of the best veraion of the list OP

eri~tion, labelled with this type argument sequence, into the
correct version for this particular occurrence of the opera-
tic,n.

This function first forms a substitution s from the poly-
morphic type of the best version,

V(II . . . (Yn.’r

and the sequence of types from the application. How-

ever, the idea is to instantiate only those type variables cor-
responding to the selector arguments, since these are what

determine the veraion required. So from s, ‘1 creates another

su”bstitution s’, that maps all type variables to themselves,
unless the variable is bound to Sirnple.

s’ = {(a, cr) I (a, T) E s, ~ # Simple} U

{(a, Simple) I (a, Simple) C 9}

For example, suppose that

[Int, Simple, Bool, tvl

is a type argument sequence for the operation map. The
substitution created is

[(a, d ,(t,Simple) ,(b,b) ,(u,u)I

When applied to map’s optimal version type, it produces
the type

(a -> b)
-> List Simple a

-> List u b

and so the version selected is map_S.O.

Thus the transformation must build substitutions, using

u ● Subst :: Tv + Ty.

The function aps applies a substitution to a type.
The initial substitution is

aO = A ci.unbound.

5.1.2 User defined functions

If the function ~ is user-defined, then the sequence of type

arguments must be propagated into its body, eventually to

applications of list operations.
The definition of ~ is partially evaluated with respect to

these type arguments, which are always static values. If a
veraion of ~ haa already been partially evaluated with re-
spect to the same type arguments, then no new partial eval-
uation takea place. Instead, a reference to that version is
inserted.

5.2 The code and version environments

In order to create versions, the partial evaluation rules need
to be able to retrieve function definitions. This is done using

the code environment

peEnv:: Name + Exp

which maps let bound variables to their definitions. The
initial code environment is

PO = A n. unbound.

Fhnction versions are uniquely identifiable by a type ar-
gument sequence, which is used as a label:

Label :: [Ty]

We write a labelled variable as V7.
The veraions of a particular function are stored in an

environment

$2 e Vfun :: (Name, Label) + Exp

When a let expression ia translated back into the core
language, ~ provides the versions of the locally defined func-
tion. We alter the .g-ammar of the source language slightly,

changing only the let form, which is redefined as

let p e

and adding labels to variables.
Versions for all let-bound functions in a particuk scope

are stored in a version environment

?r c vEnv :: Name + Vfun

which is altered using update, defined aa

update r v v= e = 7r[((z v)[e/v~])/v]

The initial veraion environment is

TO = A n. unbound.

5.2.1 The partial evaluator

The partial evaluator T takes an expression, a substitution,
a code environment, a version environment and a tuple con-
taining the operation type assignment rli.t and the abstract
data type function W. Each rule returns an expression and
the new version environment, threading around the accumu-
lated information on versions already created.

7 :: Exp + Subst + E1’lV

-+ vhv + (Ty&lv, Adtf)
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7-[[v]]rTp7r L = ([[w]], ~)

T[[conel . ..en]]up7r~
. let (e~,7r’) = TelupxL

. . .
(e~, mn) = Te. u p#-l L

in

([[con e; . . .e~]], mn)

T [[cl ez]] CT p K L
= let (e{jr’) = Telapm’

in (ej, x’) = Tez apm’ L

([[4 411,T2)

T [[v T1 . . . Tn]]u p n @( I’li~t, V)
. let~[, . . ..r~= ap,su rl, . ..)aps u 7-n

T = [T,,..., T;]

in
case (v 6 dom rlist) of

!&ue + (w v T, T)

Fake

‘T [[case e (PI, el)
= let

in

T [[A v.e]] a p x L
. let

in

+ id (Aal... ae)e) = pV
(e’, 7/) = ~ e (C7[7{/LYl]...[TCIII])]) p T L

in ([[vT]], update m’ v VF e’)

..(rh, en)]]a P 7r L

(e’, m’) = Teup7rb

(e~,7r’) = Telupr’L
. . .

(e~,7rn) = Ten Up#’-l L

([[c=e e (pi, ei)... (pm,eL)]],7rn)

(e’, 7r1) = ‘Teup7r L

([[A v.e’]], 7+)

T[[let v el e2]] u p n L
= let (e’, 7r’) = T ez u (p[e~/v]) r L

in

([[let (7r’ v) e’]], 7r1[l/v])

Figure 6: Partial evaluation of core expressions
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+ (Exp, Wkv)

The interesting rules are those handling variables and
let.

Variables that are not applied to a series of types are
lambda bound, in which case the variable is given a label
indicating that it is monomorphic and returned.

A function applied to zero or more types is either a list

operation or is defined by the program. If it is an operation,
it will be in the domain of the type assignment for opera-

tions, in which case the appropriate version is found by W.
Otherwise, its definition is retrieved, the substitution is ex-
tended with a binding for each type variable bound by that
definition, and it is partially evaluated. Fkdly, the version
environment is updated with the new definition.

6 An example

In this section, we show what happens during compilation
to this small program:

inc x . X+l

inclist X5 = map inc X5

main resps
= list (AppendChan stdout

(show
(inclist

(inclist
(1:2:0)))))

Initially, the compiler inserts references to the best ver-

sions for each list operation, and converts lists appearing

in the user pro~am into applications of Cons and Nil to

Simple.

inc x = x+]

inclist X5 = map.O-O inc xs

main resps
= list (AppendChan stdout

(show
(inclist
(inclist

(Cons SIMPLE 1

(Gone SIMPLE 2

(Nil SIMPLE)))))))

When Hindley-Milner type inference takes place, it con-
verts the program into the second order polymorphic lambda

calculus (we’ve abstracted away from Haekell overloading
here!):

inc . Ax. x+l

inclist
= A SEL1 SEL2. ~ X5.

map-o-o ht SEL ] ~nt SEL2 inc xa

main resps
= list (AppendChan stdout

(show
(inckt TV1 TV2

(inchst SIMPLE TV3

(Cons SIMPLE Tnt 1

(Cons SIMPLE lnt 2

(Nil SIMPLE)))))))

Notice that one of the instances of inclist is applied to
a simple list, while the other is applied to the result of the

first call to inclist. This last list can be compressed, while

the first cannot, so the compiler must generate versiona.
Partial evaluation starts from the main program, cre-

ating a version for inclist which expects a simple list of
integers. When it encounters incl ist again, it creates a

new version which expects a compressed list.

inc =

inclistS.O
.

inclist.o-o
=

main resps
.

Ax. x+l

A X5.

map.S-O inc X5

A X5.
map-O-O inc X5

list (AppendChan stdout
(show
(inclist-O-O
(inclistJ%O

(1:2:0)))))

In practice, the constant lists were created by versions
of a special list operation, so in fact the final program does

not contain any constructors with selector fields.

7 Termination and safety

In this section, we prove that the transformation terminates
and is safe. Termination is always an issue when a transfor-
mation crest es versions of recursive programs, but Hindley-
Milner type inference allows this to be controlled without
modifying the partial evaluation algorithm.

Theorem 1 T creates a jkite number of function versions.

Proof By structural induction. The interesting case is
letrec (here, let and fix). Hindley-Milner type inference
forces all recursive references to a given function to have the

same monomorphic type, thus subrecursive references will
not be partially evaluated. ❑

A ‘safe’ program is one in which no function expecting
one list representation receives the other one instead. The

transformed program will refer to functions using two dis-
tinct types for lists, so it is sufficient to prove that the entire
analysis and transformation produces a well-typed program
when given one.
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Lemma 1 If the initial program e is well-typed, then so is
,e’, where r. 1- e : r - e’.

ProoE This is a standard [M1Ha88], well-undemtood trans-
lation. ❑

Lemma 2 It the translation e’ is weU-typed, then

(7 [[e’]] uo PO m (lli.k, *)) J 1

is well-typed.

ProoE By Lemma 1, all typdambda expressions in e’
are well-typed. Mitchell and Harper give rules typing ex-
pressions in the second order polymorphic lambda calculus
[MiHa88], including the following type inference rule for type
applications (TAPP):

Thus, compile-t;m’e ~eta reduction of type applications
preserves the original typing.

Theorem 2 Let e be well-typed and let e“ be

(T [[e’]] uo PO 7ro (lli~t, *)) -11

where

roke:~+e’.

Then e“ is well-typed.

Proof The transformation receives a well-typed pr-

gram, e. By Lemmas 1 and 2, each type application re-
ferrimz to a list oDeration contains the correct monomorphic

type for each selector field in the type of the best version for
that operation. When creating a substitution, V partitions

these types into two equivalence classes: one containing only

Simple and the other containing all the remaining monomor-
phic types (which will be type variables). It then selects a

version by forming a one-to-one mapping between equiva-
lence classes and list types, ensuring that e“ is well typed.
❑

8 Some figures for benchmarks

The benchmark table in Figure 7 gives the following figures:

● the execution time taken by the optimised program

divided by the time taken by the unoptimised program,

● the total number of bytes allocated by the optimised

program divided by the total number of bytes allocated

by the unoptimised program,

● the number of extra versions of user-detined functions
crest ed by the transformation.

These programs were compiled by the Glasgow Heakell
compiler, version 0.16, modified to optimise lists using this
transformation. They were executed on a Sun SPARCsta-

tion 1 with 28M of RAM, using a two-space garbage col-
lector. The list representation used was unrolled 5 times,

rather than 2.
In estimating the value of the transformation on lists,

the ratios expressing space consumption are probably the

no. benchm ark I time I space I versions
1) I adder 82~o 9070 I 10

2) cosine transform 92% 9370 0

3) fast fourier transform 88% 98% 1

4) life 51% 89% 3

5) peano 37% 78% o
6) s igrna 66% 87% o

transitive closure 69% 77% 1

F@re 7: Percentages for the optimised list transformation
implemented in glhc, Version 0.16, executing on a Sun 4/25.

most useful, since timings can vary from machine to ma-
chine, and Sun SPARCstation 1 machines executing func-
tional programs behave poorly when cache misses occur and
the cache is direct mapped ~aBuHo93].

The programs themselves varied, but were between 10
to 100 lines long. F@res for the entire Haskell ‘nofib’ suite

would be more convincing, however the implementation is

not yet ready for it. For example, it does not handle im-

ported modules, and manipulating simple lists still trips over
the tricky code structure that can be expected at core level

(these are restrictions incurred only by the prototype - there

is no fundamental reason why this technique can’t be used
with modules). However, several smaller benchmarks were

written in the clmsic functional style that this transforma-
tion currently supports.

●

●

●

●

●

●

●

adder implements a combinational binary adder cir-

cuit;

coa ine transf orrn is part of Rex Page’s Fourier bench-
mark in the ‘spectral’ section of the Glasgow Haakell

compiler nof ib suite [Pa92];

fast f ourier transform is another part of the same

benchmark;

1 if e is John Launchbury’s implementation of Con-
way’s Life [Gr83], also in the ‘spectral’ section of the

nof ib suite;

peano performs multiplication using lists to represent
the natural numbers;

sigma adds up a series of numbers;

transit ive closure implements a transitive closure

algorithm based on the usual inductive definition. It

is one of the programming assignments for a course on
functional programming.

The number of versions indicated by the table is the num-
ber of additional user-deiined function versions created by
partial evaluation.

While some of these test cases were intended to push the
representation as hard as possible to see what it could do
under supposedly ideal circumstances (peeno ,s igma), others
needed to do a substantial amount of tiltering (transitive
closure), or did odd things with list elements such as shift
them to the left or right (life), or had many components

which appeared in different contexts (adder), or contained
cyclic structures which sometimes required that the whole

structure be made simple (cosine transform, fast fourier
transform). Handling cyclic structures is still a research
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problem, and requires intervention by hand at times to avoid
black holes.

It is worth noting that the strictness analysis used was
aggressive — lists were unrolled if they contained no tails

that were undefined, which is much stronger than the usual
tail strictness requirement. This worked well in practice,
but probably will hurt programs with space leaks. On the
other hand, ML programs do not require strictness analysis

at all, and so they should do particularly well under this
transformation.

9 Conclusion and further work

We have given a general framework for integrating opera-
tions over unoptimised data types with versions that use an

optimised implementation. This has been successfully ap-
plied to operations on lists, and we expect it to apply to a
number of other data types.

For example, a parallel implementation of bags [KuG193]
has been suggested as providing a new way to take advan-
tage of implicit list parallelism in functional languages. Pro-

grammers import functions that handle bags, such as map
and f oldr, and then use them where sequential lists are not

required by the program. The implemental ion of these func-
tions, which is imperative, is hidden within the abstract data

type. It should be possible to infer coercions between bags
and lists using this framework if the programmer can supply

pragmas identifying associative and commutative functions
for f oldr. The compiler would have to receive versions for

list operations that have unoptimised types if the operation
sequentially accesses a list. For example, the nth function,
which retrieves the nth element of a list, would have a type
that forces its argument to be unoptimised.
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